Metric Structures	Metric Linear Orders	UDLO	o-Minimality

Finding Order in Metric Structures

Aaron Anderson (joint with Diego Bejarano)

UPenn

May 13, 2025

Metric Structures	Metric Linear Orders	UDLO	o-Minimality
•0			

Metric Structures

Definition

A *metric language* is just like a regular first-order language, consisting of functions and relations.

Definition

A metric structure consists of:

- A complete metric space of diameter 1
- For each *n*-ary function symbol, a uniformly continuous function $M^n \to M$
- For each *n*-ary relation symbol, a uniformly continuous function $M^n
 ightarrow [0,1]$

Metric Structures ⊙●	Metric Linear Orders 000	UDLO 000	<i>o</i> -Minimality 000000
Formulac			

Definition

An *atomic formula* is defined as usual, except instead of =, the basic relation is d(x, y).

Definition

- A formula is
 - An atomic formula
 - $u(\phi_1, \ldots, \phi_n)$ where ϕ_i s are formulas and $u : [0, 1]^n \to [0, 1]$ is continuous

ヘロア 人間ア 人間ア 人間ア

э

• $\sup_x \phi$ or $\inf_x \phi$

Definition

A definable predicate is a uniform limit of formulas.

Metric Structures 00	Metric Linear Orders ●00	UDLO 000	<i>o</i> -Minimality 000000
Making Linear	[·] Orders Metric		

- Most famous examples of metric structures are stable or not NIP - how do we put an order on one?
- Itaï Ben Yaacov has described Ordered Real Closed Metric Valued Fields, but making the metric space bounded complicated things.
- Diego Bejarano and I are working to simplify this approach.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Metric Structures 00	Metric Linear Orders ○●○	UDLO 000	<i>o</i> -Minimality 000000
Metric Linear	Orders		

- Call *M* a *metric linear order* if
 - *M* has a bounded complete metric
 - M has a linear order
 - open balls are order-convex.
- M is a metric structure in the language $\{r\}$, with

$$r(x,y) = \begin{cases} 0 & x \le y \\ d(x,y) & y \le x \end{cases}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ■ めの(?)

• Think of r(x, y) as "the amount x is greater than y."

Metric Structures Metric I	Linear Orders UDLO	o-Minimality
00 000		

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへつ

Axiomatizing Metric Linear Orders

Definition

A theory is a set of conditions $\phi(x) = 0$.

Theorem (A., Bejarano)

Metric linear orders are axiomatized in $\{r\}$ by

- $\sup_{x,y} |(r(x,y) + r(y,x)) d(x,y)| = 0$
- $\sup_{x,y} \min\{r(x,y), r(y,x)\} = 0$
- $\sup_{x,y,z} r(x,z) (r(x,y) + r(y,z)) = 0$

Metric Structures 00	Metric Linear Orders 000	UDLO ●oo	<i>o</i> -Minimality 000000
Ultrametric Dense	Linear Orders		

- $\bullet\,$ DLO and ${\rm Th}(\mathbb{Z},<)$ are two useful completions of the theory of linear orders
- We seek an analogous completion of MLO
- For simplicity, assume the metric is an ultrametric

Definition

Let UDLO be the theory of *ultrametric-dense linear orders*, consisting of MLO with the following axioms:

- $d(x,z) \leq \max(d(x,y), d(y,z))$
- For any rational $p \in \mathbb{Q} \cap [0,1]$, $\sup_x \inf_y |r(x,y) p| = 0$
- For any rational $p \in \mathbb{Q} \cap [0,1]$, $\sup_x \inf_y |r(y,x) p| = 0$.

Metric Structures	Metric Linear Orders	UDLO	o-Minimality
		000	

Ultrametric Dense Linear Orders

Theorem (A., Bejarano)

- UDLO is complete
- UDLO eliminates quantifiers
- UDLO is the model companion of the theory of ultrametric linear orders
- The metric and order topologies agree in a model of UDLO
- dcl in UDLO is metric closure
- Orders Van Thé put on Urysohn ultrametric spaces model UDLO

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Metric Structures	Metric Linear Orders	UDLO	<i>o</i> -Minimality
00	000	oo●	000000
Constructing a Se	parable UDLO		

- Let $S \subseteq (0,1]$ be countable, dense.
- Let $U_S = \{f : S \to \mathbb{Q} : \forall r > 0, \{s > r : f(s) \neq 0\}$ is finite.}
- Let $d(f,g) = \max\{x : f(x) \neq g(x)\}.$
- Let f(x) < g(x) when f(d(f,g)) < g(d(f,g)).

Lemma (A., Bejarano)

 $U_{S} \models \text{UDLO}.$

Theorem (Van Thé)

 U_S has extremely amenable automorphism group, following from Fraïssé theory in the discrete-logic language of ordered S-valued metric spaces.

Metric Structures	Metric Linear Orders	UDLO	o-Minimality
			000000

o-Minimality in Discrete Logic

Fact

If M expands a linear order, TFAE:

- every formula $\phi(x)$ in one variable is qf-definable in $\{<\}$
- every formula $\phi(x)$ in one variable is a finite union of intervals.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

- If these happen, *M* is *o-minimal*.
- How do we describe these properties for MLOs?

Metric Structures	Metric Linear Orders	UDLO	<i>o</i> -Minimality
00	000	000	0●0000

Metric o-Minimality

Theorem (A., Bejarano)

If M expands a metric linear order, TFAE:

- every predicate $\phi(x)$ in one variable is qf-definable in $\{r\}$
- every predicate φ(x) in one variable is regulated (a uniform limit of step functions).

Definition

If M expands a metric linear order, call M o-minimal if every predicate $\phi(x)$ in one variable satisfies these equivalent properties.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

By QE, a model of UDLO is *o*-minimal.

Metric Structures	Metric Linear Orders	UDLO	<i>o</i> -Minimality
00	000	000	00●000

Definable Functions

Definition

A function $f: M \to M$ is definable when d(f(x), y) is.

Theorem (A., Bejarano)

If $f : M \to M$ is definable in an o-minimal metric structure M, then for all a < b, M can be partitioned into finitely many intervals on which either f(x) > a or f(x) < b.

Proof.

The definable predicate r(f(x), a) is regulated. Approximate this with an appropriate step function, and partition into the intervals on which it is constant.

Metric Structures 00	Metric Linear Orders 000	UDLO 000	<i>o</i> -Minimality 000●00
Definable Cat	_		

Definition

ennable Sels

A set $D \subseteq M$ is *definable* when it is closed and $\inf_{y \in D} d(x, y)$ is a definable predicate.

Theorem (Definable completeness: A., Bejarano)

Let M be an o-minimal metric structure and $D \subset M$ a definable set. If D is bounded above (resp. below), then D has a least upper bound (resp. greatest lower bound).

Theorem (A., Bejarano)

Let M be an o-minimal expansion of MDLO and $D \subset M$ a definable set. The complement of D is a union of countably many intervals, with only finitely many of diameter $\geq \varepsilon$ for any $\varepsilon > 0$.

Metric Structures 00	Metric Linear Orders 000	UDLO 000	<i>o</i> -Minimality 0000●0
	sition		
Cell Decompos	sition		

By using the bounded alternation numbers of (weakly) regulated functions, we can build distal cell decompositions:

・ロト < 同ト < 三ト < 三ト < 三 ・ つんの
</p>

Theorem (A., Bejarano)

Any (weakly) o-minimal metric structure is distal.

Our main goal is to find more specific *o*-minimal cell decompositions for definable predicates and sets.

Metric Structures	Metric Linear Orders	UDLO	<i>o</i> -Minimality
00	000	000	00000●

Thank you, ASL Model Theory Session!

