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Main Definitions. Modal Logics

The modal language ML(A) for an alphabet of modalities A consists of formulas built
from propositional variables PV using the Boolean connectives ∨, ∧, ¬, . . . and unary
connectives ♢ ∈ A.

Definition
Logical version Algebraic version
A modal logic with alphabet of
modalities A is a subset of ML(A) that
contains:
▶ All propositional tautologies,
▶ ♢⊥ ↔ ⊥ for all ♢ ∈ A,
▶ ♢(p ∨ q) ↔ ♢p ∨ ♢q for all ♢ ∈ A,

and is closed under Modus Ponens,
Substitution, and

(Mon♢)
φ→ ψ

♢φ→ ♢ψ
for all ♢ ∈ A.

A modal algebra for an alphabet
of modalities A is a Boolean algebra
endowed with unary operations ♢ ∈ A
satisfying:
▶ ♢0 = 0 for all ♢ ∈ A,
▶ ♢(x ∨ y) = ♢x ∨ ♢y for all ♢ ∈ A.

A set of terms L is a modal logic, if for
some class K of modal algebras it holds
that

φ ∈ L ⇐⇒ K |= φ = 1.

K is the minimal unimodal logic.
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Main Definitions. Kripke Semantics

We work in the standard Kripke semantics for ML(A) :
▶ A frame is a structure F = (X, (R♢)♢∈A), where R♢ ⊆ X × X .
▶ The truth relation (F, v), a |= φ for a ∈ X and v : PV → 2X is defined by:

Logical version Algebraic version

▶ (F, v), a |= p iff a ∈ v(p);
▶ the Boolean connectives ⊥, → are

interpreted as usual;
▶ (F, v), a |= ♢φ iff aR♢b

and (F, v), b |= φ for some point b.

▶ Alg F is the powerset algebra of X
endowed with unary operators ♢F
for ♢ ∈ A :

♢F(Y) = R♢
−1[Y]

= {a ∈ X | ∃b ∈ Y (aR♢b)}
▶ v(φ) ⊆ X is the value of the term φ

in Alg F under valuation v
▶ (F, v), a |= φ iff a ∈ v(φ)

We say that F |= φ, if (F, v), a |= φ for any v : PV → 2X and any a ∈ X.

The logic of a class of frames F is {φ ∈ ML(A) | ∀F ∈ F (F |= φ)}. It is a modal logic for
any F .
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Main Definitions. Local Tabularity and Local Finiteness

Definition
Logical version Algebraic version
Let L be a modal logic for an alphabet A.
The equivalence relation ∼L on ML(A) is
defined by

φ ∼L ψ iff φ↔ ψ ∈ L.

A modal logic L is locally tabular, if
for any n ∈ ω there are finitely many
∼L-equivalence classes of formulas in n
variables.

An algebra A is locally finite, if any finitely
generated subalgebra of A is finite.

A class of algebras is locally finite, if it
consists of locally finite algebras.

For a modal logic L, the variety of L-algebras is {A | ∀φ ∈ L (A |= φ = 1)}.

Trivial fact: A modal logic L is locally tabular iff the variety of L-algebras is locally finite.
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Hierarchy of Properties of Modal Logics
▶ All modal logics are algebraically complete (AC).
▶ A modal logic is Kripke complete (KC), if it is the logic of some class of frames.
▶ A modal logic has the finite model property (FMP), if it is the logic of some class of

finite frames.
All inclusions are strict:

AC

KC

FMP

Locally
tabular

Finitely axiomatizable

Any finitely axiomatizable logic with FMP is decidable. In particular, any finitely
axiomatizable and locally tabular logic is decidable.
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Some Present Works on Locally Tabular Logics

▶ Segerberg, K., “An Essay in Classical Modal Logic,” 1971.
▶ Maksimova, L. Modal logics of finite slices, 1975.
▶ Byrd, M. On the addition of weakened L-reduction axioms to the Brouwer system,

1978.
▶ Makinson, D. Non-equivalent formulae in one variable in a strong omnitemporal

modal logic, 1981.
▶ Maksimova, L. Interpolation in modal, infinite-slice logics which contain the logic K4,

1989.
▶ Bezhanishvili, G. and Grigolia, R. Locally tabular extensions of MIPC, 1998.
▶ Bezhanishvili, N. Varieties of two-dimensional cylindric algebras. Part I: Diagonal-free

case, 2002.
▶ Shehtman, V. Squares of modal logics with additional connectives, 2012.
▶ Shehtman, V. Canonical filtrations and local tabularity, 2014.
▶ Shapirovsky, I. and Shehtman, V. Local tabularity without transitivity, 2016.
▶ Shapirovsky, I. Glivenko’s theorem, finite height, and local tabularity, 2021.
▶ Bezhanishvili, G. and Meadors, C. Local finiteness in varieties of MS4-Algebras,.
▶ Shapirovsky, I. Sufficient conditions for local tabularity of a polymodal logic, 2025.
▶ Shapirovsky, I. and V.S. Locally tabular products of modal logics, manuscript.
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Towards Criterion: Clusters, Skeleton, Height

Let F = (X, R) be a preordered set.
▶ ∼ = R ∩ R−1 is an equivalence relation on X.
▶ The ∼-equivalence classes are called clusters of F.
▶ R induces a preorder on X/∼F by

[a] ≤F [b] ⇐⇒ ∃c ∈ [a]∃d ∈ [b] (cRd).

▶ The poset Sk F = (X/∼F ,≤F) is called the skeleton of F.
▶ The height of F, denoted h(F), is defined as

sup
{
|S|

∣∣ S is a finite chain in Sk F
}
.

Generalization. For a Kripke frame F = (X, R) with arbitrary R, the height h(F) is defined
to be h(X, R∗), where R∗ is the reflexive transitive closure of R.

Theorem (Segerberg 1971)
If R is transitive, then h(F) ≤ n iff F |= bhn, where

bh0 = ⊥, bhn+1 = pn+1 → □ (♢pn+1 ∨ bhn) ;

□φ abbreviates ¬♢¬φ.
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Segerberg-Maksimova Criterion

K4 = K+♢♢p → ♢p is the logic of all transitive frames.

The height of a logic L ⊇ K4 is defined as the least n ∈ ω such that bhn ∈ L.

Theorem (Segerberg 1971, Maksimova 1975)
A unimodal logic L ⊇ K4 is locally tabular iff it has finite height.

No axiomatic criterion is known for:
▶ The family of all unimodal logics
▶ Polymodal logics
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Necessary Conditions of Local Tabularity: Pretransitivity, Height

▶ A relation R is k-transitive, if

Rk+1 ⊆ Id ∪ R ∪ R2 ∪ . . . ∪ Rk.

▶ R is pretransitive (or weakly transitive), if it is pretransitive for some k ∈ ω.

▶ A Kripke frame F = (X, R) is k-transitive (pretransitive), if R is so.

▶ F is k-transitive iff F |= trak, where trak is

♢k+1p → p ∨ ♢p ∨ . . . ∨ ♢kp.

▶ A unimodal logic L is k-transitive, if trak ∈ L, and pretransitive, if it is k-transitive for
some k.

▶ Let ♢≤kφ = φ ∨ ♢φ ∨ . . . ∨ ♢kφ.

▶ The translation [φ]k , compatible with Boolean connectives, is given by [♢φ]k = ♢≤kφ.

Definition
The height h(L) of a k-transitive unimodal logic L is defined as the largest n ∈ ω such
that [bhn]k ∈ L.

Theorem (Shapirovsky & Shehtman 2016)
If L a 1-finite modal logic, then L is pretransitive and has finite height.
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Necessary Conditions of Local Tabularity: 1-finiteness

▶ A modal logic L is m-finite, if there are finitely many non-L-equivalent formulas built
from m variables.

▶ Equivalently, L is m-finite, if any m-generated L-algebra is finite.
▶ By the definition, L is locally tabular iff L is m-finite for all m ∈ ω.

Theorem (Maksimova 1989)
If a unimodal logic L ⊇ K4 is 1-finite, then it is locally tabular.

Hence, in the transitive case:

L is locally tabular ⇐⇒ L is 1-finite ⇐⇒ L has finite height.

However, in general neither 1-finiteness nor finite height is sufficient for local tabularity:
▶ Height 1 is not sufficient for local tabularity (Byrd 1978).

Moreover, it does not imply the 1-finiteness (Makinson 1981).
▶ 1-finiteness does not imply the local tabularity (Shapirovsky 2021)
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Necessary Conditions for Polymodal Logics

Let F = (X, (R♢)♢∈A) be a frame for an alphabet A of modalities.
▶ Define RF =

⋃
{R♢ | ♢ ∈ A}.

▶ The height and clusters of F are defined to be those of (X, RF).

▶ F is k-transitive, if (X, RF) is k-transitive. Pretransitivity is defined accordingly.
▶ If A is finite, then we may translate bhn and trak using compound modalities to define

the height and k-transitivity for polymodal logics.

Corollary
If a polymodal logic L is 1-finite, then L is pretransitive and has finite height.
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Criteria for local tabularity of products of
modal logics

Part II.
Product Logics. Criteria.
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Product Frames
Definition
The (modal) product of frames F = (X, (R♢)♢∈A1 ) and G = (Y , (S♢)♢∈A2 ) is defined as

F × G = (X × Y , (Rh
♢)♢∈A1 , (R

v
♢)♢∈A2 ),

Rh
♢ = {((a, b), (c, b)) | a, c ∈ X, b ∈ Y , aRc}, ♢ ∈ A1

Rv
♢ = {((a, b), (a, d)) | a ∈ X, b, d ∈ Y , bSd}, ♢ ∈ A2.

We say that the relation Rh is horizontal, and Rv is vertical.
For classes of frames F and G, F × G = {F × G | F ∈ F and G ∈ G}.

Definition
The product of logics L1 and L2 is

L1 × L2 = Log{F × G | F |= L1 and G |= L2}

Classic Problem: Find product logics with the finite
model property.

Our goal: Find locally tabular product logics.

� Neither FMP nor LT is preserved in products!

AC

KC

FMP

Locally
tabular

Finitely axiomatizable
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Conditions for LT of products: Bounded Cluster Property

▶ A class of frames F has the bounded cluster property BCm, if

sup{|C|
∣∣ C is a cluster in some F ∈ F} ≤ m.

▶ If F is a class of k-transitive frames of finite height, then there exists a modal
formula bcm,k such that

F has BCm ⇐⇒ F |= bcm,k.
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Conditions for LT of products: Reducible Path Property

Let F = (X, R) be a unimodal frame.
▶ F has the reducible path property RPm, if any path between a pair of points in F

contains a subpath of length at most m between the same points.
▶ This property is definable by the modal formula rpm:

p0 ∧ ♢ (p1 ∧ ♢ (p2 ∧ . . . ∧ ♢pm+1) . . .) → ∨
i<j≤m+1

♢i(pi ∧ pj) ∨
∨

i<j≤m
♢i(pi ∧ ♢pj+1).

A frame F = (X, (R♢)♢∈A) has RPm, if
(
X,

⋃
♢∈A R♢

)
does.

Theorem (Shapirovsky & Shehtman 2016)
If a class of frames F has a locally tabular logic, then F has RPm for some m ∈ ω.
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Main Result

Theorem (Shapirovsky & V.S.)
Semantic criterion
Let F and G be nonempty classes of frames. The following are equivalent:

1. Log(F × G) is locally tabular.

2. LogF and Log G are locally tabular and at least one of F , G has the bounded cluster
property.

3. LogF and Log G are locally tabular and F × G has the reducible path property.

4. LogF and Log G are locally tabular and Log(F × G) is 1-finite.

The bounded cluster and reducible path properties are modally definable, so we have:
Syntactic criterion

Let L1 and L2 be Kripke complete consistent modal logics. The following are equivalent:
1. L1 × L2 is locally tabular.
2. L1 and L2 are locally tabular and at least one of them contains a bounded cluster property

formula.
3. L1 and L2 are locally tabular, and L1 × L2 contains a reducible path property formula.
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Criteria for local tabularity of products of
modal logics

Part III.
Variations.
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Applications

Example
The following logics are locally tabular:

1. L1 × L2, where L1 ⊢ □m
A ⊥ and L2 is locally tabular — this is a generalization of

(Shehtman 2012);
2. (GL + bhn)× L where L is locally tabular and n ∈ ω

(GL is the logic of all strict partial orders without infinite ascending chains);
3. (Grz + bhn)× L where L is locally tabular and n ∈ ω

(Grz is the logic of all non-strict partial orders without infinite ascending chains);
4. All extensions of the logics above.
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Product Finite Model Property

A logic L has the product finite model property, if L is the logic of a class of finite
product frames.

Theorem (Shapirovsky & V.S.)
Local tabularity is not sufficient for the product finite model property.
Let L denote the logic of this frame:

Then L × S5 is locally tabular but lacks the product fmp.
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Prelocal Tabularity
A logic L is prelocally tabular, if L is not locally tabular and all other modal logics that
contain L are locally tabular.

Theorem (Maksimova 1975)
The logic Grz3 of finite linear orders is the only prelocally tabular logic above S4.

Theorem (N. Bezhanishvili 2002)
The logic S5 × S5 is prelocally tabular, where S5 is the logic of all equivalence relations.

Theorem (Shapirovsky & V.S.)
The logic of this frame is another prelocally tabular extension of S4 × S4:

......

......

......

......

............ ... ...

............ ... ...

......

......

......

......

......

......

22 / 25



Further Results: Prelocal Tabularity Above S4[h]× S4[l]
Theorem
There are exactly four prelocally tabular logics above S4[h]× S4[l], namely the logics of the
following frames:
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Theorem
Every logic above S4[h]× S4[l] is locally tabular or contained in a prelocally tabular logic.

Theorem
Every logic above S4[h]× S4[l] is locally tabular iff it contains a reducible path property
formula.
Even a stronger statement is true:

Theorem
Let F and G be some classes of preorders with Noetherian skeletons, and L = Log(F × G).
Then every normal extension of L is locally tabular or contained in one of the four logics
above, Grz3 × Triv, or Triv × Grz3.

......
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Prelocal Tabularity Above S4 × S4
Theorem
The following logics are prelocally tabular:
▶ Grz3U↓ = Log{(m,≤,m × m) | m < ω}

...

▶ LinTGrz = Log{(m,≤,≥) | m < ω}

...

LinT is the logic of all frames (X, R, R−1), where R is a linear preorder.

Theorem
Every logic above LinT is locally tabular or contained in LinTGrz.

Open Problem
Classify all prelocally tabular logics above S4 × S4.

Open Problem
Is every non-locally tabular extension of S4 × S4 contained in a prelocally tabular logic?
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Prelocal Tabularity Above S4 × S4
The story continues...

PT(∗ ,0) PT(0 ,∗) PT(1 ,0) PT(0 ,1)

PT(∗ ,1) PT(1 ,∗)PT(∗-1 ,0) PT(0 ,∗-1)

PT(∗,∗) PT(1 ,1) PT(0 ,0)PT(∗-1,∗-1)

PT(∗-1 ,1) PT(1 ,∗-1) PT(∗-1 ,2) PT(2 ,∗-1)

PT(∗-1,∗) PT(∗ ,∗-1) PT(∗-2 ,1) PT(1 ,∗-2)

25 / 25


