
Emily Riehl

Johns Hopkins University

Prospects for formalizing the theory of
weak infinite-dimensional categories

joint with Mario Carneiro, Nikolai Kudasov, Dominic Verity, and Jonathan Weinberger

Association for Symbolic Logic
North American Annual Meeting



Abstract
A peculiarity of the ∞-categories literature is that proofs are often written without
reference to a concrete definition of an ∞-category, a practice that creates an
impediment to formalization. We describe three broad strategies that would make
∞-category theory formalizable, which may be described as

(i) analytic, (ii) axiomatic, and (iii) synthetic.

We then highlight two parallel ongoing collaborative efforts to formalize ∞-category
theory in two different proof assistants:
● the axiomatic theory in Lean and
● the synthetic theory in Rzk.

We show some sample formalized proofs to highlight the advantages and drawbacks of
each approach and explain how you could contribute to this effort. This involves joint
work with Mario Carneiro, Nikolai Kudasov, Dominic Verity, Jonathan Weinberger, and
many others.



Plan

1. Prospects for formalizing the ∞-categories literature

2. Formalizing axiomatic ∞-category theory via ∞-cosmoi in Lean

3. Formalizing synthetic ∞-category theory in simplicial HoTT in Rzk
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Prospects for formalizing the ∞-categories
literature



Avoiding a precise definition of ∞-categories

The precursor to Jacob Lurie’s Higher Topos Theory is a 2003 preprint On ∞-Topoi,
which avoids using a precise definition of ∞-categories:

We will begin in §1 with an informal review of the theory of ∞-categories.
There are many approaches to the foundation of this subject, each having
its own particular merits and demerits. Rather than single out one of those
foundations here, we shall attempt to explain the ideas involved and how to
work with them. The hope is that this will render this paper readable to a
wider audience, while experts will be able to fill in the details missing from our
exposition in whatever framework they happen to prefer.

Perlocutions of this form are quite common in the field.

Very roughly, an ∞-category is a weak infinite-dimensional category.

In the parlance of the field, selecting a set-theoretic definition of this notion is referred
to as “choosing a model.”



The idea of an ∞-category
Lean defines an ordinary 1-category as follows:

The idea of an ∞-category is just to
● replace all the types by ∞-groupoids aka homotopy types aka anima, i.e., the

information of a topological space encoded by its homotopy groups
● and suitably weaken all the structures and axioms.



“Analytic” ∞-categories in Lean
A popular “model” encodes an ∞-category as a quasi-category, which Johan Commelin
contributed to Mathlib:

where ∞-groupoids can be similarly “coordinatized” as Kan complexes:

But very few results have been formalized with these technical definitions. Indeed, earlier
this year, Joël Riou discovered that the definition of Kan complexes was wrong!



How are quasi-categories ∞-categories?
Recall the idea of an ∞-category is just to replace all the types in an ordinary 1-category

by ∞-groupoids. In particular,
● the maximal sub Kan complex in a quasi-category 𝑆 defines the ∞-groupoid of

objects,
● a certain pullback of the exponential sHom(Δ[1], 𝑆) defines the ∞-groupoid of

arrows between two objects,
● 𝑛-ary composition can be shown to be well-defined up to a contractible

∞-groupoid of choices.
None of this has been formalized in Mathlib.



Prospects for formalization?
I can imagine three strategies for formalizing the theory of ∞-categories.

Strategy I. Give precise “analytic” definitions of ∞-categorical notions in some model
(e.g., using quasi-categories). Prove theorems using the combinatorics of that model.

Strategy II. Axiomatize the category of ∞-categories (e.g., using the notion of
∞-cosmos or something similar). State and prove theorems about ∞-categories in this
“axiomatic” language. To show that this theory is non-vacuous, prove that some model
satisfies the axioms and formalize other examples, as desired.

Strategy III. Avoid the technicalities of set-based models by developing the theory of
∞-categories “synthetically,” in a domain-specific type theory. Formalization then
requires a bespoke proof assistant (e.g., Rzk).
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Formalizing axiomatic ∞-category theory via
∞-cosmoi in Lean



An axiomatic theory of ∞-categories in Lean
The ∞-cosmos project — co-led Mario Carneiro, Dominic Verity, and myself — aims to
formalize a particular axiomatic approach to ∞-category theory in Lean’s mathematics
library Mathlib. Pietro Monticone and others helped us set up a blueprint, website,
github repository, and Zulip channel to organize the workflow.

emilyriehl.github.io/infinity-cosmos

https://emilyriehl.github.io/infinity-cosmos/


The idea of the ∞-cosmos project
The aim of the ∞-cosmos project is to leverage the existing 1-category theory,
2-category theory, and enriched category theory libraries in Lean to formalize basic
∞-category theory.

This is achieved by developing the theory of ∞-categories more abstractly, using the
axiomatic notion of an ∞-cosmos, which is an enriched category whose objects are
∞-categories.

From this we can extract a 2-category whose objects are ∞-categories, whose
morphisms are ∞-functors, and whose 2-cells are ∞-natural transformations. The
formal theory of ∞-categories (adjunctions, co/limits, Kan extensions) can be defined
using this 2-category and some of these notions are in the Mathlib already!

Proving that quasi-categories define an ∞-cosmos will be hard, but this tedious verifying
of homotopy coherences will only need to be done once rather than in every proof.



Progress
The ∞-cosmos project was launched in September 2024. After adding some background
material on enriched category theory, we have formalized the following definition:



A formalized definition of an ∞-cosmos



A blueprint for the next phase of the project
In the next phase of the project, we will construct the 2-category of ∞-categories,
∞-functors, and ∞-natural transformations as a quotient of an ∞-cosmos.
To do so, we must prove that:
● the functor that takes a quasi-category to its homotopy category preserves products
● a category that is enriched over Cat — in the adjective sense, not the noun sense

— is a 2-category.

There is a lot of work that remains to be done!



Related contributions to Mathlib
One successful aspect of our project is the rapid rate of contributions to Mathlib:
● codiscrete categories (Alvaro Belmonte)
● reflexive quivers (Mario Carneiro, Pietro Monticone, Emily Riehl)
● the opposite category of an enriched category (Daniel Carranza)
● a closed monoidal category is enriched in itself (Daniel Carranza, Joël Riou)
● StrictSegal simplicial sets are 2-coskeletal (Mario Carneiro and Joël Riou)
● StrictSegal simplicial sets and in particular nerves are quasicategories (Johan

Commelin, Emily Riehl, Nick Ward)
● left and right lifting properties (Jack McKoen)
● hoFunctor, the left adjoint to the nerve (Mario Carneiro, Pietro Monticone, Emily

Riehl, Joël Riou)
● SimplicialSet (co)skeleton properties (Mario Carneiro, Pietro Monticone, Emily

Riehl, Joël Riou)
A key challenge is the extraordinary demands this has placed on Joël Riou as a reviewer.



Challenge: Lean’s difficulty with the 1-category of categories
To define the 2-categorical quotient of an ∞-cosmos (WIP), Mario Carneiro and I
defined the homotopy category functor

and showed it is left adjoint to the nerve functor:

We also showed the nerve is fully faithful and concluded that Cat has colimits.

After six months spent revising our series of pull requests, this is now in Mathlib.

See Mario Carneiro and Emily Riehl, Formalizing colimits in Cat, arXiv:2503.20704

https://arxiv.org/abs/2503.20704


Challenge: Lean’s difficulty with the 1-category of categories
At various stages of the proof, we have to show that two parallel functors are equal:
● showing that nerves of categories are 2-coskeletal
● proving naturality of the unit
● verifying the triangle identities

The problem is that for 𝑓∶𝑋 → 𝑌, even if 𝐹𝑋 = 𝐺𝑋 for all 𝑋, the arrows 𝐹𝑓 and 𝐺𝑓
belong to different types, which can be thought of as two different fibers of the fibration
defined by the arrows of a category over the domain and codomain objects. To identify
them, one must transport one of these terms to the other type using the path in the
base space defined by the identifications ℎ𝑋 ∶ 𝐹𝑋 = 𝐺𝑋 and ℎ𝑌 ∶ 𝐹𝑌 = 𝐺𝑌.



Challenge: formalizing 2-categorical pasting composition

On paper, 2-cells in a 2-category compose by pasting:

𝐴 𝐶 𝐶 𝐸 𝐸

𝐵 𝐵 𝐷 𝐷 𝐹
⇙𝜖1

⇙𝛼𝐿1

𝐺1

𝐿2

⇙𝜂2

⇙𝜖2

⇙𝛽𝐿2

𝐺2

𝐿3
⇙𝜂3𝑅1

𝐻1

𝑅2

𝐻2

𝑅3

In Mathlib, the 2-cells displayed here belong to dependent types (over their boundary
1-cells and objects).

Depending on how the whiskerings are chosen, 2-cells that are composable on paper are
composable in Lean as 1-cells along their common boundary are not definitionally equal:

e.g., is 𝑅3𝐻2𝐿2𝜂2𝐺1𝑅1 composable with 𝑅3𝐻2𝜖2𝐿2𝐺1𝑅1?



Challenge: formalizing 2-categorical pasting composition

𝐴 𝐶 𝐶 𝐸 𝐸

𝐵 𝐵 𝐷 𝐷 𝐹
⇙𝜖1

⇙𝛼𝐿1

𝐺1

𝐿2

⇙𝜂2

⇙𝜖2

⇙𝛽𝐿2

𝐺2

𝐿3
⇙𝜂3𝑅1

𝐻1

𝑅2

𝐻2

𝑅3

is 𝑅3𝐻2𝐿2𝜂2𝐺1𝑅1
composable
with 𝑅3𝐻2𝜖2𝐿2𝐺1𝑅1?

Lean has a clever composition operation for 2-cells in a bicategory:

but no normal form for whiskered 2-cells or pasting diagram composites.



Challenge: formalizing 2-categorical pasting composition

A formal proof by Yuma Mizuno
leveraged his bicategory tactic to prove
an equality between the previous
pasting composite and a reduced form
(with the whiskered composite of 𝜂2
and 𝜖2 replaced by an identity).

But his proof required a lot of
intermediate calculation — specifying a
particular sequence of presentations of
the pasted composite as a vertical
composite of whiskered 2-cells — that
ideally would be automated.



Contributors to the ∞-cosmos project

So far formalizations (and preliminary mathematical work) have been contributed by:

Dagur Asgeirsson, Alvaro Belmonte, Mario Carneiro, Daniel Carranza, Johan Commelin,
Kunhong Du, Jon Eugster, Julian Komaromy, Aaron Liu, Jack McKoen, Yuma Mizuno,
Pietro Monticone, Matej Penciak, Nima Rasekh, Emily Riehl, Joël Riou, Joseph
Tooby-Smith, Adam Topaz, Dominic Verity, Nick Ward, and Zeyi Zhao.

Anyone is welcome to join us!

emilyriehl.github.io/infinity-cosmos

https://emilyriehl.github.io/infinity-cosmos/
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Formalizing synthetic ∞-category theory in
simplicial HoTT in Rzk



Could ∞-category theory be taught to undergraduates?
Recall ∞-categories are like categories where all the sets are replaced by ∞-groupoids:

sets :: ∞-groupoids
categories :: ∞-categories

The traditional foundations of mathematics are not
really suitable for “higher mathematics” such as
∞-category theory, where the basic objects are built
out of higher-dimensional types instead of mere sets.
However, there are proposals for new foundations for
mathematics based on Martin-Löf’s dependent type
theory where the primative types have “higher
structure” such as
● homotopy type theory,
● higher observational type theory, and the
● simplicial type theory, that we use here.



∞-categories in simplicial homotopy type theory
The identity type family gives each type the structure of an ∞-groupoid: each type 𝐴
has a family of identity types over 𝑥, 𝑦 ∶ 𝐴 whose terms 𝑝 ∶ 𝑥 =𝐴 𝑦 are called paths.
In a “directed” extension of homotopy type theory introduced in

Emily Riehl and Michael Shulman, A type theory for synthetic ∞-categories,
Higher Structures 1(1):116–193, 2017

each type 𝐴 also has a family of hom types Hom𝐴(𝑥, 𝑦) over 𝑥, 𝑦 ∶ 𝐴 whose terms
𝑓 ∶ Hom𝐴(𝑥, 𝑦) are called arrows.

defn (Riehl–Shulman after Joyal and Rezk). A type 𝐴 is an ∞-category if:
● Every pair of arrows 𝑓 ∶ Hom𝐴(𝑥, 𝑦) and 𝑔 ∶ Hom𝐴(𝑦, 𝑧) has a unique composite,

defining a term 𝑔 ○ 𝑓 ∶ Hom𝐴(𝑥, 𝑧).
● Paths in 𝐴 are equivalent to isomorphisms in 𝐴.

With more of the work being done by the foundation system, perhaps someday
∞-category theory will be easy enough to teach to undergraduates?



An experimental proof assistant Rzk for ∞-category theory

The proof assistant Rzk was
written by Nikolai Kudasov:

rzk-lang.github.io/rzk

https://rzk-lang.github.io/rzk


Extension types in simplicial homotopy type theory

Formation rule for extension types

Φ ⊂ Ψ shape 𝐴 type 𝑎 ∶ Φ → 𝐴

⟨
Φ 𝐴

Ψ

𝑎

⟩ type

A term 𝑓 ∶ ⟨
Φ 𝐴

Ψ

𝑎

⟩ defines

𝑓 ∶ Ψ → 𝐴 so that 𝑓(𝑡) ≡ 𝑎(𝑡) for 𝑡 ∶ Φ.

The simplicial type theory allows us to prove equivalences between extension types along
composites or products of shape inclusions.



Hom types

In the simplicial type theory, any type 𝐴 has a family of hom types depending on two
terms in 𝑥, 𝑦 ∶ 𝐴:

Hom𝐴(𝑥, 𝑦) ≔ ⟨
𝜕Δ1 𝐴

Δ1

[𝑥,𝑦]

⟩ type

A term 𝑓 ∶ Hom𝐴(𝑥, 𝑦) defines an arrow in 𝐴 from 𝑥 to 𝑦.

The type Hom𝐴(𝑥, 𝑦) as the mapping ∞-groupoid in 𝐴 from 𝑥 to 𝑦.



Pre-∞-categories
defn (Riehl–Shulman after Joyal). A type 𝐴 is a pre-∞-category if every pair of arrows
𝑓 ∶ Hom𝐴(𝑥, 𝑦) and 𝑔 ∶ Hom𝐴(𝑦, 𝑧) has a unique composite, i.e.,

⟨
Λ2

1 𝐴

Δ2

[𝑓,𝑔]

⟩ is contractible.
A type 𝐶 is contractible just when

∑
𝑐∶𝐶

∏
𝑥∶𝐶

𝑐 = 𝑥.

By contractibility, ⟨
Λ2

1 𝐴

Δ2

[𝑓,𝑔]

⟩ has a unique inhabitant comp𝑓,𝑔 ∶ Δ2 → 𝐴.

Write 𝑔 ○ 𝑓 ∶ Hom𝐴(𝑥, 𝑧) for its inner face, the composite of 𝑓 and 𝑔.
Thus, like ordinary categories, pre ∞-categories have a composition function!

○ ∶ Hom𝐴(𝑦, 𝑧) → Hom𝐴(𝑥, 𝑦) → Hom𝐴(𝑥, 𝑧)



Identity arrows

For any 𝑥 ∶ 𝐴, the constant function defines a term

id𝑥 ≔ 𝜆𝑡.𝑥 ∶ Hom𝐴(𝑥, 𝑥) ≔ ⟨
𝜕Δ1 𝐴

Δ1

[𝑥,𝑥]

⟩,

which we denote by id𝑥 and call the identity arrow.

For any 𝑓 ∶ Hom𝐴(𝑥, 𝑦) in a pre-∞-category 𝐴, the term in the contractible type

𝜆(𝑠, 𝑡).𝑓(𝑡) ∶ ⟨
Λ2

1 𝐴

Δ2

[id𝑥,𝑓]

⟩

witnesses the unit axiom 𝑓 = 𝑓 ○ id𝑥.



Stating the Yoneda lemma
Let 𝐴 be a pre-∞-category and fix 𝑎, 𝑏 ∶ 𝐴.

Yoneda lemma. Evaluation at the identity defines an equivalence

evid ≔ 𝜆𝜙.𝜙𝑎(id𝑎) ∶ (∏
𝑧∶𝐴

Hom𝐴(𝑧, 𝑎) → Hom𝐴(𝑧, 𝑏)) → Hom𝐴(𝑎, 𝑏)

While terms 𝜙 ∶ ∏𝑧∶𝐴 Hom𝐴(𝑧, 𝑎) → Hom𝐴(𝑧, 𝑏) are just families of maps

𝜙𝑧 ∶ Hom𝐴(𝑧, 𝑎) → Hom𝐴(𝑧, 𝑏)

indexed by terms 𝑧 ∶ 𝐴, such families are automatically natural:

Prop. Any family of maps 𝜙 ∶ ∏𝑧∶𝐴 Hom𝐴(𝑧, 𝑎) → Hom𝐴(𝑧, 𝑏) is natural:

for any 𝑔 ∶ Hom𝐴(𝑦, 𝑎) and ℎ ∶ Hom𝐴(𝑥, 𝑦)

𝜙𝑦(𝑔) ○ ℎ = 𝜙𝑥(𝑔 ○ ℎ).



Proving the Yoneda lemma
Let 𝐴 be a pre-∞-category and fix 𝑎, 𝑏 ∶ 𝐴.

Yoneda lemma. Evaluation at the identity defines an equivalence

evid ≔ 𝜆𝜙.𝜙𝑎(id𝑎) ∶ (∏
𝑧∶𝐴

Hom𝐴(𝑧, 𝑎) → Hom𝐴(𝑧, 𝑏)) → Hom𝐴(𝑎, 𝑏)

The proof is (a simplification of) the standard argument for 1-categories!
Proof: Define an inverse map by

yon ≔ 𝜆𝑣.𝜆𝑥.𝜆𝑓.𝑓 ○ 𝑣 ∶ Hom𝐴(𝑎, 𝑏) → (∏
𝑧∶𝐴

Hom𝐴(𝑧, 𝑎) → Hom𝐴(𝑧, 𝑏)).

By definition, evid ○ yon(𝑣) ≔ 𝑣 ○ id𝑎, and since 𝑣 ○ id𝑎 = 𝑣, so evid ○ yon(𝑣) = 𝑣.
Similarly, by definition, yon ○ evid(𝜙)𝑧(𝑓) ≔ 𝜙𝑎(id𝑎) ○ 𝑓. By naturality of 𝜙 and another
identity law 𝜙𝑎(id𝑎) ○ 𝑓 = 𝜙𝑧(id𝑎 ○ 𝑓) = 𝜙𝑧(𝑓), so yon ○ evid(𝜙)𝑧(𝑓) = 𝜙𝑧(𝑓).



A formalized proof of the ∞-categorical Yoneda lemma
Nikolai Kudasov, Jonathan Weinberger, and I formalized the ∞-Yoneda lemma:

emilyriehl.github.io/yoneda/

https://emilyriehl.github.io/yoneda/


Challenges

While there certainly are advantages to formalizing the synthetic theory of ∞-categories
rather than the axiomatic or analytic theory, there are also some challenges:
● As a proof assistant, Rzk is much less user-friendly, and requires greater focus.
● Formalized results in Rzk are not available to users of Lean’s Mathlib.
● The language of simplicial HoTT is not sufficiently expressive to correctly state

(much less prove) all theorems about ∞-categories.

All of these obstacles could be overcome with sufficient time and effort.

Comparing my experiences in Lean vs Rzk, I personally prefer shorter less painful
formalizations in a more sophisticated formal system—designed to optimized for
reasoning in a particular subfield of mathematics—a where the technical content of a
formal proof is more about big ideas and less about fine details.



Contributors to the simplicial HoTT library

So far formalizations to the broader project of formalizing synthetic ∞-category theory
(and work on the proof assistant Rzk) have been contributed by:

Abdelrahman Aly Abounegm, Fredrik Bakke, César Bardomiano Martínez, Jonathan
Campbell, Robin Carlier, Theofanis Chatzidiamantis-Christoforidis, Aras Ergus, Matthias
Hutzler, Nikolai Kudasov, Kenji Maillard, David Martínez Carpena, Stiéphen Pradal,
Nima Rasekh, Emily Riehl, Florrie Verity, Tashi Walde, and Jonathan Weinberger.

Anyone is welcome to join us!

rzk-lang.github.io/sHoTT

https://rzk-lang.github.io/sHoTT/


Questions for the future
● It is very painful to elaborate higher categorical proofs all the way down to the

foundations. Are enough contributors willing to do this wearisome technical work?
● Lean is very powerful and will only become more so. But will the tactics introduced

to speed up formalization make proofs too hard to understand?
● Proofs in Rzk of theorems that are way beyond the current capacity of Lean are

conceptual and short. But the formal system is unfamiliar and so far incomplete. Is
this too much of a hurdle for non-expert users?
● Theorems formalized in Rzk are useless to users of Mathlib. Will we be able to

integrate them into Lean?
● A healthy ecosystem for mathematical formalization will involve lots of

domain-specific formal systems. Will AI-powered co-pilots ever be able to support
formalization in experimental proof assistants?
● Many of us expect an increasing degree of automation in the production of

formalized mathematics. How do we ensure that computer formalized mathematics
remains understandable by humans?
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