
Formally verifying automata for trusted decision
procedures

Aeacus Sheng, advised by Jeremy Avigad



A sequence and an automaton

The infinite Thue-Morse sequence, where tn is the parity of the
number of 1s in the base-2 digits of n: tn = 1 if there are an odd
number of 1s, and tn = 0 otherwise.

t = (tn)n≥0 = t0t1t2 . . . = 011010011001011010010110 . . .

It can be generated by a finite automaton.

q0/0start q1/1

0

1

0

1

Put an index into base-2, and feed its digits into the automaton.



Walnut

Question: Is it ultimately periodic?
Answer: No, initially by an induction proof that takes pages.

In Presburger arithmetic Th(N,+) extended by a unary function T
such that T (i) = ti , we can express this as:

¬∃n ≥ 0, ∃p ≥ 1, ∀i ≥ n, T (i) = T (i +p)

A software, Walnut, runs an automata-theoretic decision procedure
to answer questions like this. It is well-known that Presburger
arithmetic (LIA) is decidable, using quantifier elimination (By
Presburger). This extension, however, needs automata.



Decision procedure using automata

(By Büchi) For Presburger arithmetic, build inductively, for every
formula A(⃗x), an automation that accepts a representation of a⃗ iff
A(⃗a) is true.

Represent natural numbers as words (sequences) over
Σk = {0,1, ...,k−1}. n-tuples of natural numbers are words
over Σn

k

Build automata for atomic formulas, like equality and addition.

Parsing a complex formula corresponds to performing
operations on automata.

After the language is extended by a function for automatic
sequences, the general idea still works. Just need to handle more
atomic formulas.



Problem

Walnut has been used in more than 100 papers and books, proving
theorems in combinatorics of words and additive number theory.

Unlike SAT solvers, the algorithm does not generate
efficiently-checkable proof certificates.

Goal: A trusted decision procedure for automatic sequences in Lean.

The first step (ongoing work): Implement and verify key automata
involved in the decision procedure.

Current formalization of automata in Lean’s Mathlib is not
designed for computation. It’s also missing lots of stuff we need,
like automata with output.



Finite Automata

A deterministic finite automaton with output (DFAO) is a tuple
M = (Q,Σ,δ ,q0,∆,τ) as follows:

Q is a finite nonempty set of states.

Σ is the input alphabet (usually Σn
k = {0,1, . . . ,k−1}n).

δ : Q×Σ→ Q is the transition function.

q0 is the initial state.

∆ is the output alphabet.

τ : Q →∆ is the output map.

For DFA without output, there is no output alphabet or output
map, but a set of accepting states: the DFA "accepts" an input iff
the transitions end in an accepting state. For NFA, δ allows
multiple states to be reached from a single state upon reading a
single letter. It accepts if any reached state is accepting.



Finite Automata in Lean

structure DFAO (α state out: Type) where
(transition : α →state →state)
(start : state)
(output : state →out)

-- A DFA is a DFAO where the output is a boolean
abbrev DFA (α state : Type) := DFAO α state Bool

abbrev ListND (α : Type) := {l : List α // l.Nodup}

structure NFA (α state : Type) where
(transition : α →state →ListND state)
(start : ListND state)
(output : state →Bool)



VS. Mathlib
Here’s the Mathlib definition of a crucial construction that we need,
turning an NFA into an equiavlent DFA (in the sense that they
accept the same words) using subset construction.

toDFA : DFA α (Set σ ) where
step := M.stepSet
start := M.start
accept := { S | ∃s ∈S, s ∈M.accept }

In our library, it is much more computation-friendly.

def NFA.toDFA (nfa : NFA α state) [DecidableEq state] :
DFA α (ListND state) where

transition := fun a qs => NFA.transList nfa a qs
start := nfa.start
output := fun qs => qs.val.any nfa.output



Number representations

Automata evaluate words recursively, so we naturally take words to
be lists. Tuples of natural numbers are represented as lean vectors.
To verify automata in the decision procedure, we need to represent
natural number tuples as a word. Wrong choice of data structure
here will make verification much more difficult.

def toWord (v: Fin m →N) (k: N) : List (Fin m →Fin (k +
2)) :=

zip (stretchLen (mapToBase (k + 2) v)) (by
apply stretchLen_of_mapToBase_lt_base
omega

) (by
intro i
apply stretchLen_uniform

)



Automata for Equality and Inequality

Equality Automaton:

The automaton for checking equality reads two inputs in parallel
(e.g. representing two numbers digit-by-digit) and accepts if every
pair of corresponding digits is equal.

q0start q1

(0,0),(1,1)
(0,1),(1,0)

Σ2
2

Not-Equal Automaton:

Swap the roles of the states: q0 becomes non-accepting and
q1 is now accepting.

Note that this construction is general, which simulates ¬.



Correctness Proofs

theorem eqBase_iff_equal (k m: N) (v : Fin m →N) (a b :
Fin m):

v a = v b ↔(eqBase k m a b).eval (toWord v k)

theorem DFA.negate_eval (dfa : DFA α state) (s : List α )
:

(dfa.negate).eval s = ! dfa.eval s

theorem project_iff [Fintype state] [DecidableEq state] (v
: Fin m →N) (i : Fin (m + 1)) (dfa : DFA (Fin (m+1)

→Fin (k+2)) state) (hres: dfa.respectZero):
(∃ (x : N), dfa.eval (toWord (Fin.insertNth i x v) k)) ↔

(project i dfa).fixLeadingZeros.eval (toWord v k)



Now & Future

We have verified all automata construction for the "first-order logic
with equality" fragment of the language. But there’s still a long
way to go.

Verify addition and functions for automatic sequences.

Meta-programming on Lean expressions.

Verify optimizations to the procedure, such as minimization.

Verify other number representations (Fibonacci).

Now, a toy demo in Lean.

https://github.com/Aeacu2/Automata

Check Walnut out at
https://cs.uwaterloo.ca/~shallit/walnut.html

https://cs.uwaterloo.ca/~shallit/walnut.html

