Sublocale lattices and the T_D-duality

Igor Arrieta

University of Coimbra & EHU/UPV joint work with Anna Laura Suarez, Université Côte d'Azur

Let *L* be a frame.

• A $p \neq 1$ is called **covered prime** if $\bigwedge_i x_i = p \implies x_i = p$ for some *i*.

Example

If $L = \Omega(X)$, an $X - \overline{\{x\}}$ is covered iff $\{x\}$ is locally closed.

• Thus, a T_0 -space X is T_D iff every $X - \overline{\{x\}}$ is a covered prime.

Denote

$$pt_D(L) := \{ p \in L \mid p \text{ is a covered prime.} \}$$

Background

- A locale *L* is T_D -spatial if $L \cong \Omega(X)$ for a T_D -space *X*.
- Equivalently, a locale is *T*_D-spatial if and only if every element is a meet of covered primes.
- B. Banaschewski and A. Pultr Pointfree aspects of the T_D axiom of classical topology, Quaestiones Mathematicae 33 2010.
 - A *D*-homomorphism between frames is a frame homomorphism with the additional property that its right adjoint preserves covered primes.
 - Let Frm_D be the category of frames and D-homomorphisms between them. There is an adjunction

D-sublocales

If p is a prime in a sublocale S, then it is a prime in L.

However, arbitrary sublocales are not well-behaved w.r.t. the property of being a covered prime: we may have p which are covered in some $S \subseteq L$ but not in L.

In fact, every prime is covered in the sublocale $\mathfrak{b}(p) = \{1, p\}!$

In

► I. Arrieta, A.L. Suarez, The coframe of D-sublocales and the T_D-duality, Topology and its Applications **291** 2021.

we studied sublocales that satisfy that extra property.

Definition

A sublocale S of L is a D-sublocale if $pt_D(S) \subseteq pt_D(L)$ – i.e. iff $pt_D(S) = S \cap pt_D(L)$ (iff the associated surjection $L \twoheadrightarrow S$ is a D-homomorphism).

Now, we define

```
S_D(L) = \{S \subseteq L \mid S \text{ is a } D \text{-sublocale of } L\} \subseteq S(L).
```

 $\mathcal{S}_{\mathcal{D}}(L)$ is not closed under binary intersections. What can be said about this system?

Theorem

 $\mathcal{S}_D(L)$ is a dense¹ subcolocale of $\mathcal{S}(L)$. In particular, it is a co-frame.

Let now $S_b(L)$ be the Booleanization of S(L). Then

Corollary

For any locale L, one has $S_b(L) \subseteq S_D(L)$.

¹Shorthand for " $S_D(L)^{op}$ is a dense sublocale of $S(L)^{op}$ "

Some examples of D-sublocales:

- All joins of complemented sublocales are D-sublocales. In particular, open, closed, complemented, locally closed sublocales are D-sublocales.
- 2. Every pointless sublocale is a D-sublocale.

The definition of $S_D(L)$ allows us to have a well-defined monotone map $pt_D : S_D(L) \longrightarrow \mathcal{P}(pt_D(L))$. On the other hand, consider the map $\mathfrak{M} : \mathcal{P}(pt_D(L)) \longrightarrow S_D(L)$ given by $\mathfrak{M}(Y) = \bigvee_{p \in Y} \mathfrak{b}(p)$.

Proposition

There is an adjunction

Moreover

- $\mathfrak{M}(pt_D(S))$ is the T_D -spatialization of S—i.e. the largest T_D -spatial D-sublocale of S.
- The fixpoints of $\mathfrak{M}\circ \mathsf{pt}_{\mathsf{D}}$ are the $\mathsf{T}_{\mathsf{D}}\text{-spatial }\mathsf{D}\text{-sublocales},$
- $\mathsf{pt}_{\mathsf{D}}\circ\mathfrak{M}$ is always the identity,

Therefore, we will write

$$\operatorname{sp}_D^L = \mathfrak{m} \circ \operatorname{pt}_D \colon \mathcal{S}_D(L) \to \mathcal{S}_D(L)$$

and we shall refer to it as the **pointwise** T_D -**spatialization** operator, as it sends every *D*-sublocale to its T_D -spatialization.

Lemma

For a frame L, the map $sp_D\colon \mathcal{S}_D(L)\to \mathcal{S}_D(L)$ is an interior operator which preserves joins.

Hence, the map $sp_D^L : S_D(L) \rightarrow sp_D[S_D(L)]$ is a coframe surjection whose codomain is the ordered collection of the T_D -spatial D-sublocales of L.

However, $S_D(L)^{op}$ is a sublocale of $S(L)^{op}$, and hence in particular a frame in its own right. Accordingly, we can also compute the T_D -spatialization of $S_D(L)^{op}$, the **global** T_D -**spatialization**.

Proposition (Sanity check)

We have $sp_D^L[S_D(L)]^{op} = sp_D^{S_D(L)^{op}}(S_D(L)^{op})$ —i.e. the local and the global T_D -spatialization coincide.

Total spatiality

Recall that *L* is said to be **totally spatial** if every sublocale of *L* is spatial.

Theorem (Niefield and Rosenthal)

The following are equivalent or a locale L:

```
(1) L is totally spatial;
```

```
(2) S(L)^{op} is spatial.
```

Let's say a frame *L* is **totally** T_D -**spatial** if every sublocale of *L* is T_D -spatial.

Theorem

The following are equivalent or a locale L:

- (1) L is totally T_D-spatial;
- (2) $S_D(L)^{op}$ is $(T_D$ -)spatial.

A few more equivalent conditions:

Theorem

The following are equivalent for a locale L.

- (1) L is totally T_D-spatial;
- (2) $S_D(L)^{op}$ is $(T_D$ -)spatial;
- (3) S_D(L)^{op} is (T_D-)spatial and Boolean (i.e. a complete and atomic Boolean algebra);
- (4) All D-sublocales of L are T_D -spatial, that is, $\mathfrak{M} \circ pt_D = 1_{\mathcal{S}_D(L)}$;
- (5) $S_D(L) = S_b(L)$ and L is T_D -spatial;
- (6) Every nonzero sublocale of L contains a covered prime in itself.

Example

The Alexandroff topology on the natural numbers is totally T_D -spatial. Moreover, $S_D(\Omega(\mathbb{N})) \subsetneq S(\Omega(\mathbb{N}))$.

The assignment $L \mapsto S_D(L)^{op}$ cannot be made functorial in Frm in such a way that there is a natural transformation $\mathfrak{c}: \mathfrak{1}_{Frm} \to S_D(-)^{op}$. Therefore, we have to deal with *lifts* of individual frame homomorphisms, i.e. commutative squares in Frm of the form

$$\begin{array}{ccc} \mathcal{S}_{D}(L)^{op} & \xrightarrow{\mathcal{S}_{D}(f)} & \mathcal{S}_{D}(M)^{op} \\ & & & \\ c_{L} \uparrow & & c_{M} \uparrow \\ & & L & \xrightarrow{f} & M \end{array}$$

Natural question: is it a functor at least on Frm_D?

Proposition (Necessary condition)

Let $f\colon L\to M$ be a frame homomorphism. If f lifts then it is a D-homomorphism.

Proposition

Let L a frame and $f: L \rightarrow S$ a surjection onto a sublocale S. Then f lifts if and only if it is a D-homomorphism (i.e. iff S is a D-sublocale of L).

Example

For monomorphisms situation much worse: there is an open *D*-homomorphism between spatial locales which is a monomorphism and which does **not** lift.

A couple of differences:

- Consider $S_M(L)$ the set of sublocales S such that $\max(S) \subseteq \max(L)$. It is **never** a subcolocale of S(L) if L contains a non-maximal covered prime.
- A T₁-locale (Rosický & Šmarda) is one in which primes are maximal. They are reflective in Loc.Locales in which all primes are covered (what should be called T_D-locales) do not form a reflective subcategory.

We have considered several subcolocales of the S(L):

- The Booleanization $S_b(L)$;
- the spatialization sp[S(L)];
- the coframe of *D*-sublocales $S_D(L)$;

Recently, another subset has also enjoyed special attention:

• The frame of joins of closed sublocales $S_c(L)$ (J. Picado, A. Pultr, A. Tozzi).

Relations between subcolocales of S(L)

Subsets of $\mathcal{S}(L)$	PROPERTY OF L
S(L) = sp[S(L)]	Totally spatial
$\mathcal{S}_b(L) \subseteq sp[\mathcal{S}(L)]$	Spatial
$S_c(L) \subseteq sp[S(L)]$	Spatial
$sp[\mathcal{S}_b(L)] = \mathcal{S}_b(L)$	T _D -spatial
$S_b(L) = sp[S(L)]$	Strongly T _D -spatial
$S_D(L) = S(L)$	T _D -locale
$sp[\mathcal{S}(L)] \subseteq \mathcal{S}_D(L)$	T _D -locale
$\operatorname{sp}[\mathcal{S}(L)] \subseteq \mathcal{S}_b(L)$	T _D -locale
$sp[\mathcal{S}(L)] \subseteq \mathcal{S}_{c}(L)$	T ₁ -locale
$\mathcal{S}_{D}(L) \subseteq sp[\mathcal{S}(L)]$	Totally spatial
$S_D(L) = \operatorname{sp}[S_D(L)]$	Totally T _D -spatial
$S_b(L) = S(L)$	Scattered
$S_c(L) = S(L)$	Scattered and fit
$S_D(L) = S_b(L)$	D-scattered
$S_D(L) = S_c(L)$	D-scattered and subfit

Thank you!