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Definition

1 A frame L is a complete lattice that satisfies a strong distributive law
where finite infimum distributes over arbitrary supremum.

2 An element c ∈ L is compact if c ≤
∨

aα implies that c ≤ aα1 ∨ · · · ∨ aαn .
The collection of all compact element of L is denoted by K(L).

3 A frame is algebraic if every element in the frame is the supremum of
compact elements.

4 A frame is said to satisfy the finite intersection property (FIP) if
c, d ∈ K(L) implies that c ∧ d ∈ K(L).

5 For each x ∈ L, x⊥ =
∨
{y ∈ L : y ∧ x = 0}.

6 x ∈ L is dense if x⊥ = 0. A compact, dense element of L is called a unit.

All the frames are M-frames (algebraic and satisfies the FIP), and
possesses a unit.
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- An element p ∈ L is prime if p < 1 and for all a, b ∈ L, a ∧ b ≤ p implies that
a ≤ p or b ≤ p.

- A prime element p is minimal if there are no other prime elements q < p.
We denote the collection of minimal prime elements of L by Min(L). Using
Zorn’s lemma we can show that primes and minimal primes exist in algebraic
frames.

Spec(L)={all primes of L}
Min(L)={all minimal primes of L}
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- Zariski Topology on Min(L):
Let c ∈ L.
Define U(c) = {p ∈ Min(L) : c � p}

Lemma

Let x , y ∈ L. The following holds:
1 U(x) ∪ U(y) = U(x ∨ y) and U(x) ∩ U(y) = U(x ∧ y).

2
⋃

U(xα) = U
(∨

xα
)

.

3 U(x) = ∅ ⇔ x = 0.

The Zariski topology on Min(L) is the topology generated by the collection
B = {U(c) | c ∈ K(L)}.

Lemma

Min(L) is a Hausdorff, zero-dimensional (base of clopen sets) space.
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Question: When is Min(L) a compact space?

Henriksen, M. and M. Jerison. The space of minimal prime ideals of a
commutative ring, Trans. Amer. Math. Soc., 115 (1965), 110–130.

Speed, T. Spaces of Ideals of Distributive Lattices II: Minimal Prime
Ideals, J. Austral. Math. Soc., 18 (1974), 54–72.

Conrad, P. and J. Martinez. Complemented lattice-ordered groups,
Indag. Mathem., N.S., 1(3) (1990), 281–298.

McGovern, W. Wm. Neat rings, Journal of Pure and Applied Algebra,
205 (2006), 243–265.
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- Inverse Topology on Min(L), write as Min(L)−1:

Define the set-theoretic complement of U(x), called
V (x) = {p ∈ Min(L) : x ≤ p}. The following holds for the operator V (·).

V (x) ∪ V (y) = V (x ∧ y) and V (x) ∩ V (y) = V (x ∨ y).

V (x) = Min(L)⇔ x = 0.

The collection {V (k) : k ∈ K(L)} forms a basis for a topology on Min(L),
called the Inverse topology, and denoted by Min(L)−1.

Lemma

Min(L)−1 is a compact, T1 space.
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Theorem

The following are equivalent for an M-frame L.

The Zariski topology on Min(L) is compact.

Min(L) = Min(L)−1.

For each x ∈ K(L) there exists y ∈ K(L) such that x ∧ y = 0 and x ∨ y is
a unit.

L is a complemented frame.
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Lemma on Ultrafilters

For an M-frame L, Min(L) is in bijective correspondence with Ult(K(L)). In
particular,

p ∈ Min(L) implies Fp = {c ∈ K(L) : c � p} ∈ Ult(K(L)),

and
U ∈ Ult(K(L)) implies p(U) =

∨
{c⊥ : c ∈ U} ∈ Min(L).

Additionally, p(Fp) = p and Fp(U) = U.

Hence, the map Φ : Ult(K(L))→ Min(L) defined by Φ(U) = p(U) is a
well-defined bijection with Φ−1 = Fp.
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Topologies on Ult(K(L)):

Given c ∈ KL, we define
U(c) = {U ∈ Ult(KL) : c /∈ U} and V(c) = {U ∈ Ult(KL) : c ∈ U}.

The Wallman topology on Ult(K(L)) is generated by the collection
BU = {U(c) | c ∈ K(L)}.

The inverse topology on Ult(K(L)), denoted Ult(K(L))−1, is generated by
the collection BV = {V(c) | c ∈ K(L)}.

Theorem

Let L be an M-frame with a unit. The following holds:
1 The topological space Ult(KL) is homeomorphic to Min(L)−1.
2 The topological space Ult(KL)−1 is homeomorphic to Min(L).

Papiya Bhattacharjee Max(dL)



Preliminaries
Primes and Minimal Primes

Max(dL)
The space Max(dL)
Ultrafilters of KL⊥

Topologies on Ult(K(L)):

Given c ∈ KL, we define
U(c) = {U ∈ Ult(KL) : c /∈ U} and V(c) = {U ∈ Ult(KL) : c ∈ U}.

The Wallman topology on Ult(K(L)) is generated by the collection
BU = {U(c) | c ∈ K(L)}.

The inverse topology on Ult(K(L)), denoted Ult(K(L))−1, is generated by
the collection BV = {V(c) | c ∈ K(L)}.

Theorem

Let L be an M-frame with a unit. The following holds:
1 The topological space Ult(KL) is homeomorphic to Min(L)−1.
2 The topological space Ult(KL)−1 is homeomorphic to Min(L).

Papiya Bhattacharjee Max(dL)



Preliminaries
Primes and Minimal Primes

Max(dL)
The space Max(dL)
Ultrafilters of KL⊥

Topologies on Ult(K(L)):

Given c ∈ KL, we define
U(c) = {U ∈ Ult(KL) : c /∈ U} and V(c) = {U ∈ Ult(KL) : c ∈ U}.

The Wallman topology on Ult(K(L)) is generated by the collection
BU = {U(c) | c ∈ K(L)}.

The inverse topology on Ult(K(L)), denoted Ult(K(L))−1, is generated by
the collection BV = {V(c) | c ∈ K(L)}.

Theorem

Let L be an M-frame with a unit. The following holds:
1 The topological space Ult(KL) is homeomorphic to Min(L)−1.
2 The topological space Ult(KL)−1 is homeomorphic to Min(L).

Papiya Bhattacharjee Max(dL)



Preliminaries
Primes and Minimal Primes

Max(dL)
The space Max(dL)
Ultrafilters of KL⊥

Topologies on Ult(K(L)):

Given c ∈ KL, we define
U(c) = {U ∈ Ult(KL) : c /∈ U} and V(c) = {U ∈ Ult(KL) : c ∈ U}.

The Wallman topology on Ult(K(L)) is generated by the collection
BU = {U(c) | c ∈ K(L)}.

The inverse topology on Ult(K(L)), denoted Ult(K(L))−1, is generated by
the collection BV = {V(c) | c ∈ K(L)}.

Theorem

Let L be an M-frame with a unit. The following holds:
1 The topological space Ult(KL) is homeomorphic to Min(L)−1.
2 The topological space Ult(KL)−1 is homeomorphic to Min(L).

Papiya Bhattacharjee Max(dL)



Preliminaries
Primes and Minimal Primes

Max(dL)
The space Max(dL)
Ultrafilters of KL⊥

Definition

1 An element d ∈ L is a d-element if d =
∨
{c⊥⊥ : c ∈ K(L), c ≤ d}. The

collection of all d-elements of L is denoted by dL.

2 x ∈ dL if and only if given any c ∈ K(L), c ≤ x ⇔ c⊥⊥ ≤ x .

3 Given an x ∈ L, xd =
∨
{c⊥⊥ : c ≤ x , c ∈ KL} ∈ dL. This gives a

nucleus d : L→ dL such that d(x) = xd , and fix(d) = dL. If c ∈ KL, then
cd = c⊥⊥, and x ≤ xd for all x ∈ L.

- dL is a frame, where meet is same as in L and join is given by∨d S = d(
∨

S) = (
∨

S)d .

- If L is algebraic, then fix(d) = dL is algebraic. In this case,
K(dL) = d(KL) = {c⊥⊥ : c ∈ KL}.

- When L satisfies the FIP, dL satisfies the FIP.
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Existence of Max(dL):
- Suppose L is an M-frame that contains a unit u.

- Let A = {x ∈ dL : x < 1}. Obviously 0 ∈ A, which means that A 6= ∅.

- Take a chain {xα} in A and let x = ∨xα. Suppose c ∈ KL and c ≤ x . There
exists a finite subcollection from the chain such that c ≤ x1 ∨ · · · ∨ xn ≤ x .
Hence c ≤ xi ≤ x , for some i . Since xi ∈ dL it follows that c⊥⊥ ≤ xi ≤ x .
Therefore x ∈ dL.

- If possible let x = 1, then u ≤ x . As before, u ≤ xj ∈ A for some j . Since
xj ∈ dL, 1 = u⊥⊥ ≤ xj , contradicting the fact that xj < 1. Hence x < 1,
proving that x ∈ A.

- By Zorn’s Lemma, maximal d-elements exist in L.

- We use Max(dL) to denote the (proper) maximal d-elements of L.
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Two important results:

Theorem

Let x ∈ Max(dL), then x is maximal with respect to u � x for all units u of L.
Conversely, if y ∈ L is maximal with respect to u � x for all units u, then
y ∈ Max(dL).

Theorem

Min(L) ⊆ dL and Max(dL) ⊆ Spec(L).
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We endow Max(dL) with the subspace topology from Spec(L), namely, the
Zariski topology.
Define

Ud (x) = {m ∈ Max(dL) : x � m}.

The following hold for all c, k ∈ KL.
1 Ud (c) = Max(dL) if and only if c is a unit.
2
⋃

Ud (c) = Ud (
∨

c).
3 Ud (c) ∩ Ud (k) = Ud (c ∧ k).
4 Ud (c) = Ud (c⊥⊥).

The collection {Ud (c) : c ∈ KL} forms a basis of open sets for the Zariski
topology on Max(dL).
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Theorem

Let L be an M-frame that possesses a unit u. The space Max(dL) is a
compact topological space.

Important Observation: In case of a W-object (G, u), Maxd (G), w.r.t the
Zariski topology is a compact, Hausdorff space. It so happens that to prove
the Hausdorff condition, we require the property of "disjointification" which
`-groups possess. This is the first result in frames that seems to NOT be
occurring parallel to that of `-groups, since an algebraic frame does not
satisfy disjointification always.

Question: If L is an M-frame with a unit, when is Max(dL) Hausdorff?
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- It is known that

Maxd (G) ∼= Ult(Z ](G)), for W-objects

and
Maxd (X ) ∼= Ult(Z ](X )) for spaces

where Z ](X ) = {cl int Z : Z ∈ Z (X )} ⊆ R(X ) (regular closed subsets of X )

- In frames, B(L) = {x⊥ : x ∈ L} is analogous to R(X ) for spaces.

Q: In frames, what is analogous to Z ](X )?

- Let KL⊥ = {c⊥ : c ∈ KL} ⊆ B(L) be a subset.

Lemma

KL⊥ is a sublattice of B(L), with meet same as the meet of L and the join is
given by x⊥ ∨′ y⊥ = (x ∧ y)⊥. Also, KL⊥ is a bounded lattice

- Filters and ultrafilters on KL⊥ exist.
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Theorem

Suppose L possesses a unit u.
1 If F is a filter on KL⊥, then x(F ) =

∨
{c⊥⊥ : c⊥ ∈ F} is a proper

d-element of L.

2 If x ∈ dL is proper, then F̂x = {c⊥ : c ∈ KL, c ≤ x} is a filter of KL⊥.

3 F̂x(G) = G, for every filter G of KL⊥ and x(F̂y ) = y, for every y ∈ dL.

Let Φd : Ult(KL⊥)→ Max(dL) be defined by Φd (U) = x(U),

Theorem

Let L be an M-frame with a unit. Φd is a well-defined bijection with
Φ−1

d (m) = F̂m.
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Next, we topologize Ult(KL⊥) with the well-known Wallman topology: basic
open sets are M(l⊥) = {U ∈ Ult(KL⊥) : l⊥ /∈ U}, for l ∈ KL.

Finally, the main result:

Theorem

Let L be an M-frame with a unit u. The map Φd : Ult(KL⊥)→ Max(dL) is a
homeomorphism between the topological spaces Ult(KL⊥), with respect to
the Wallman topology, and Max(dL), endowed with the hull-kernel topology.

So,Max(dL) ∼= Ult(KL⊥)
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- If U ∈ Ult(KL), then U∗ = {c⊥ : c ∈ KL \ U} is a prime filter of KL⊥.

- If V ∈ Ult(KL⊥), then V∗ = {c ∈ KL : c⊥ ∈ V} is a prime filter of KL.

Q: When can we have a well-defined bijection between Ult(KL) and
Ult(KL⊥)?

Answer: Complemented frames

Theorem

The following are equivalent for an M-frame L that possesses a unit u.
1 L is a complemented frame.
2 Min(L) = Max(dL).
3 Min(L) is homeomorphic to Max(dL).
4 Ult(KL)−1 ∼= Ult(KL⊥), a homeomorphism.
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