Maximal d-Elements of M-frames

Papiya Bhattacharjee

Florida Atlantic University

BLAST 2021

June 10, 2021
Preliminaries
Primes and Minimal Primes
Max(dL)
The space $Max(dL)$
Ultrafilters of R^L
Definition

1. A frame L is a complete lattice that satisfies a strong distributive law where finite infimum distributes over arbitrary supremum.

2. An element $c \in L$ is compact if $c \leq \bigvee a_\alpha$ implies that $c \leq a_{\alpha_1} \lor \cdots \lor a_{\alpha_n}$. The collection of all compact element of L is denoted by $\mathcal{R}(L)$.

3. A frame is algebraic if every element in the frame is the supremum of compact elements.

4. A frame is said to satisfy the finite intersection property (FIP) if $c, d \in \mathcal{R}(L)$ implies that $c \land d \in \mathcal{R}(L)$.

5. For each $x \in L$, $x^\perp = \bigvee \{y \in L : y \land x = 0\}$.

6. $x \in L$ is dense if $x^\perp = 0$. A compact, dense element of L is called a unit.

All the frames are M-frames (algebraic and satisfies the FIP), and possesses a unit.
Preliminaries
Primes and Minimal Primes
Max\((dL)\)
The space Max\((dL)\)
Ultrafilters of \(\mathcal{R}L\perp\)

Definition

1. A frame \(L\) is a complete lattice that satisfies a strong distributive law where finite infimum distributes over arbitrary supremum.

2. An element \(c \in L\) is compact if \(c \leq \bigvee a_\alpha\) implies that \(c \leq a_{\alpha_1} \lor \cdots \lor a_{\alpha_n}\). The collection of all compact element of \(L\) is denoted by \(\mathcal{K}(L)\).

3. A frame is algebraic if every element in the frame is the supremum of compact elements.

4. A frame is said to satisfy the finite intersection property (FIP) if \(c, d \in \mathcal{K}(L)\) implies that \(c \land d \in \mathcal{K}(L)\).

5. For each \(x \in L\), \(x\perp = \bigvee \{y \in L : y \land x = 0\}\).

6. \(x \in L\) is dense if \(x\perp = 0\). A compact, dense element of \(L\) is called a unit.

All the frames are \(M\)-frames (algebraic and satisfies the FIP), and possesses a unit.
- An element \(p \in L \) is *prime* if \(p < 1 \) and for all \(a, b \in L \), \(a \wedge b \leq p \) implies that \(a \leq p \) or \(b \leq p \).

- A prime element \(p \) is *minimal* if there are no other prime elements \(q < p \). We denote the collection of minimal prime elements of \(L \) by \(\text{Min}(L) \). Using Zorn’s lemma we can show that primes and minimal primes exist in algebraic frames.

\[
\text{Spec}(L) = \{\text{all primes of } L\}
\]

\[
\text{Min}(L) = \{\text{all minimal primes of } L\}
\]
- An element $p \in L$ is **prime** if $p < 1$ and for all $a, b \in L$, $a \land b \leq p$ implies that $a \leq p$ or $b \leq p$.

- A prime element p is **minimal** if there are no other prime elements $q < p$. We denote the collection of minimal prime elements of L by $Min(L)$. Using Zorn’s lemma we can show that primes and minimal primes exist in algebraic frames.

$Spec(L) = \{\text{all primes of } L\}$

$Min(L) = \{\text{all minimal primes of } L\}$
- **Zariski Topology on** \(\text{Min}(L) \):
Let \(c \in L \).
Define \(U(c) = \{ p \in \text{Min}(L) : c \not\preceq p \} \)

Lemma

Let \(x, y \in L \). The following holds:

1. \(U(x) \cup U(y) = U(x \lor y) \) and \(U(x) \cap U(y) = U(x \land y) \).
2. \(\bigcup U(x_\alpha) = U \left(\bigvee x_\alpha \right) \).
3. \(U(x) = \emptyset \iff x = 0 \).

The **Zariski topology** on \(\text{Min}(L) \) is the topology generated by the collection \(B = \{ U(c) \mid c \in \mathcal{R}(L) \} \).

Lemma

\(\text{Min}(L) \) is a Hausdorff, zero-dimensional (base of clopen sets) space.
- **Zariski Topology on** \(\text{Min}(L) \):

Let \(c \in L \).

Define \(U(c) = \{ p \in \text{Min}(L) : c \not\leq p \} \)

Lemma

Let \(x, y \in L \). *The following holds:*

1. \(U(x) \cup U(y) = U(x \lor y) \) and \(U(x) \cap U(y) = U(x \land y) \).
2. \(\bigcup U(x_\alpha) = U \left(\bigvee x_\alpha \right) \).
3. \(U(x) = \emptyset \iff x = 0 \).

The **Zariski topology** on \(\text{Min}(L) \) is the topology generated by the collection \(\mathcal{B} = \{ U(c) \mid c \in \mathfrak{R}(L) \} \).

Lemma

\(\text{Min}(L) \) is a Hausdorff, zero-dimensional (base of clopen sets) space.
- **Zariski Topology on** $\text{Min}(L)$:

Let $c \in L$.

Define $U(c) = \{ p \in \text{Min}(L) : c \not\preceq p \}$

Lemma

Let $x, y \in L$. The following holds:

1. $U(x) \cup U(y) = U(x \lor y)$ and $U(x) \cap U(y) = U(x \land y)$.
2. $\bigcup U(x_\alpha) = U \left(\bigvee x_\alpha \right)$.
3. $U(x) = \emptyset \iff x = 0$.

The **Zariski topology** on $\text{Min}(L)$ is the topology generated by the collection $\mathcal{B} = \{ U(c) \mid c \in \mathfrak{J}(L) \}$.

Lemma

$\text{Min}(L)$ is a Hausdorff, zero-dimensional (base of clopen sets) space.
- **Zariski Topology on** \(\text{Min}(L)\):

Let \(c \in L\).
Define \(U(c) = \{p \in \text{Min}(L) : c \nless p\}\)

Lemma

Let \(x, y \in L\). *The following holds:*

1. \(U(x) \cup U(y) = U(x \lor y)\) *and* \(U(x) \cap U(y) = U(x \land y)\).
2. \(\bigcup U(x_\alpha) = U \left(\bigvee x_\alpha \right)\).
3. \(U(x) = \emptyset \iff x = 0\).

The Zariski topology on \(\text{Min}(L)\) is the topology generated by the collection \(\mathcal{B} = \{U(c) \mid c \in \mathfrak{R}(L)\}\).

Lemma

\(\text{Min}(L)\) *is a Hausdorff, zero-dimensional* (base of clopen sets) *space.*
- **Zariski Topology on** \(\text{Min}(L) \):

Let \(c \in L \).
Define \(U(c) = \{ p \in \text{Min}(L) : c \not\geq p \} \)

Lemma

Let \(x, y \in L \). *The following holds:*

1. \(U(x) \cup U(y) = U(x \lor y) \) and \(U(x) \cap U(y) = U(x \land y) \).
2. \(\bigcup U(x_\alpha) = U \left(\bigvee x_\alpha \right) \).
3. \(U(x) = \emptyset \iff x = 0 \).

The **Zariski topology** on \(\text{Min}(L) \) is the topology generated by the collection \(\mathcal{B} = \{ U(c) \mid c \in \mathbb{R}(L) \} \).

Lemma

\(\text{Min}(L) \) is a Hausdorff, zero-dimensional (base of clopen sets) space.
- **Zariski Topology on** $\text{Min}(L)$:

Let $c \in L$.
Define $U(c) = \{ p \in \text{Min}(L) : c \nleq p \}$

Lemma

Let $x, y \in L$. The following holds:

1. $U(x) \cup U(y) = U(x \lor y)$ and $U(x) \cap U(y) = U(x \land y)$.

2. $\bigcup U(x_\alpha) = U \left(\bigvee x_\alpha \right)$.

3. $U(x) = \emptyset \iff x = 0$.

The **Zariski topology** on $\text{Min}(L)$ is the topology generated by the collection $\mathcal{B} = \{ U(c) \mid c \in \widehat{K}(L) \}$.

Lemma

$\text{Min}(L)$ is a Hausdorff, zero-dimensional (base of clopen sets) space.
- Zariski Topology on $\text{Min}(L)$:
Let $c \in L$.
Define $U(c) = \{p \in \text{Min}(L) : c \nless p\}$

Lemma

Let $x, y \in L$. The following holds:

1. $U(x) \cup U(y) = U(x \lor y)$ and $U(x) \cap U(y) = U(x \land y)$.
2. $\bigcup U(x_\alpha) = U \left(\bigvee x_\alpha \right)$.
3. $U(x) = \emptyset \iff x = 0$.

The Zariski topology on $\text{Min}(L)$ is the topology generated by the collection $\mathcal{B} = \{U(c) \mid c \in \hat{\mathbb{R}}(L)\}$.

Lemma

$\text{Min}(L)$ is a Hausdorff, zero-dimensional (base of clopen sets) space.
Question: When is $Min(L)$ a compact space?

Question: When is $Min(L)$ a compact space?

- **Inverse Topology on** \(\text{Min}(L) \), **write as** \(\text{Min}(L)^{-1} \):

Define the set-theoretic complement of \(U(x) \), called \(V(x) = \{ p \in \text{Min}(L) : x \leq p \} \). The following holds for the operator \(V(\cdot) \):

- \(V(x) \cup V(y) = V(x \land y) \) and \(V(x) \cap V(y) = V(x \lor y) \).
- \(V(x) = \text{Min}(L) \iff x = 0. \)

The collection \(\{ V(k) : k \in \mathcal{R}(L) \} \) forms a basis for a topology on \(\text{Min}(L) \), called the **Inverse topology**, and denoted by \(\text{Min}(L)^{-1} \).

Lemma

\(\text{Min}(L)^{-1} \) is a compact, \(T_1 \) space.
- **Inverse Topology on** $\text{Min}(L)$, **write as** $\text{Min}(L)^{-1}$:

Define the set-theoretic complement of $U(x)$, called $V(x) = \{p \in \text{Min}(L) : x \leq p\}$. The following holds for the operator $V(\cdot)$.

- $V(x) \cup V(y) = V(x \land y)$ and $V(x) \cap V(y) = V(x \lor y)$.

- $V(x) = \text{Min}(L) \iff x = 0$.

The collection $\{V(k) : k \in \mathcal{R}(L)\}$ forms a basis for a topology on $\text{Min}(L)$, called the **Inverse topology**, and denoted by $\text{Min}(L)^{-1}$.

Lemma

$\text{Min}(L)^{-1}$ is a compact, T_1 space.
- **Inverse Topology on** $\text{Min}(L)$, **write as** $\text{Min}(L)^{-1}$:

Define the set-theoretic complement of $U(x)$, called $V(x) = \{ p \in \text{Min}(L) : x \leq p \}$. The following holds for the operator $V(\cdot)$.

- $V(x) \cup V(y) = V(x \land y)$ and $V(x) \cap V(y) = V(x \lor y)$.
- $V(x) = \text{Min}(L) \iff x = 0$.

The collection $\{ V(k) : k \in \mathcal{R}(L) \}$ forms a basis for a topology on $\text{Min}(L)$, called the **Inverse topology**, and denoted by $\text{Min}(L)^{-1}$.

Lemma

$\text{Min}(L)^{-1}$ is a compact, T_1 space.
- **Inverse Topology on** \(\text{Min}(L) \), **write as** \(\text{Min}(L)^{-1} \):

Define the set-theoretic complement of \(U(x) \), called \(V(x) = \{ p \in \text{Min}(L) : x \leq p \} \). The following holds for the operator \(V(\cdot) \).

- \(V(x) \cup V(y) = V(x \wedge y) \) and \(V(x) \cap V(y) = V(x \vee y) \).
- \(V(x) = \text{Min}(L) \Leftrightarrow x = 0 \).

The collection \(\{ V(k) : k \in \mathcal{K}(L) \} \) forms a basis for a topology on \(\text{Min}(L) \), called the **Inverse topology**, and denoted by \(\text{Min}(L)^{-1} \).

Lemma

\(\text{Min}(L)^{-1} \) is a compact, \(T_1 \) space.
- **Inverse Topology on** $\text{Min}(L)$, **write as** $\text{Min}(L)^{-1}$:

Define the set-theoretic complement of $U(x)$, called $V(x) = \{ p \in \text{Min}(L) : x \leq p \}$. The following holds for the operator $V(\cdot)$.

- $V(x) \cup V(y) = V(x \land y)$ and $V(x) \cap V(y) = V(x \lor y)$.

- $V(x) = \text{Min}(L) \iff x = 0$.

The collection $\{ V(k) : k \in \mathcal{R}(L) \}$ forms a basis for a topology on $\text{Min}(L)$, called the **Inverse topology**, and denoted by $\text{Min}(L)^{-1}$.

Lemma

$\text{Min}(L)^{-1}$ is a compact, T_1 space.
Preliminaries
Primes and Minimal Primes
\(\text{Max}(dL) \)
The space \(\text{Max}(dL) \)
Ultrafilters of \(\mathcal R L^\perp \)

\textbf{Theorem}

The following are equivalent for an \(M \)-frame \(L \).

- The Zariski topology on \(\text{Min}(L) \) is compact.
- \(\text{Min}(L) = \text{Min}(L)^{-1} \).
- For each \(x \in \mathcal R(L) \) there exists \(y \in \mathcal R(L) \) such that \(x \land y = 0 \) and \(x \lor y \) is a unit.
- \(L \) is a complemented frame.
Lemma on Ultrafilters

For an M-frame L, $\text{Min}(L)$ is in bijective correspondence with $\text{Ult}(\mathcal{K}(L))$. In particular,

$$p \in \text{Min}(L) \text{ implies } F_p = \{ c \in \mathcal{K}(L) : c \not\preceq p \} \in \text{Ult}(\mathcal{K}(L)),$$

and

$$U \in \text{Ult}(\mathcal{K}(L)) \text{ implies } p(U) = \bigvee \{ c^\perp : c \in U \} \in \text{Min}(L).$$

Additionally, $p(F_p) = p$ and $F_{p(U)} = U$.

Hence, the map $\Phi : \text{Ult}(\mathcal{K}(L)) \to \text{Min}(L)$ defined by $\Phi(U) = p(U)$ is a well-defined bijection with $\Phi^{-1} = F_p$.
Lemma on Ultrafilters

For an M-frame L, $\text{Min}(L)$ is in bijective correspondence with $\text{Ult}(\mathcal{R}(L))$. In particular,

\[p \in \text{Min}(L) \text{ implies } F_p = \{ c \in \mathcal{R}(L) : c \not\approx p \} \in \text{Ult}(\mathcal{R}(L)), \]

and

\[U \in \text{Ult}(\mathcal{R}(L)) \text{ implies } p(U) = \bigvee \{ c^\perp : c \in U \} \in \text{Min}(L). \]

Additionally, $p(F_p) = p$ and $F_{p(U)} = U$.

Hence, the map $\Phi : \text{Ult}(\mathcal{R}(L)) \rightarrow \text{Min}(L)$ defined by $\Phi(U) = p(U)$ is a well-defined bijection with $\Phi^{-1} = F_p$.
Topologies on $\text{Ult}(\mathcal{K}(L))$:

Given $c \in \mathcal{K}L$, we define $\Upsilon(c) = \{U \in \text{Ult}(\mathcal{K}L) : c \notin U\}$ and $\Upsilon^c(c) = \{U \in \text{Ult}(\mathcal{K}L) : c \in U\}$.

- The **Wallman topology** on $\text{Ult}(\mathcal{K}(L))$ is generated by the collection $B_\Upsilon = \{\Upsilon(c) \mid c \in \mathcal{K}(L)\}$.
- The **inverse topology** on $\text{Ult}(\mathcal{K}(L))$, denoted $\text{Ult}(\mathcal{K}(L))^{-1}$, is generated by the collection $B_{\Upsilon^c} = \{\Upsilon^c(c) \mid c \in \mathcal{K}(L)\}$.

Theorem

Let L be an M-frame with a unit. The following holds:

1. The topological space $\text{Ult}(\mathcal{K}L)$ is homeomorphic to $\text{Min}(L)^{-1}$.
2. The topological space $\text{Ult}(\mathcal{K}L)^{-1}$ is homeomorphic to $\text{Min}(L)$.
Topologies on $\text{Ult}(\mathcal{K}(L))$:

Given $c \in \mathcal{K}L$, we define $\Upsilon(c) = \{ U \in \text{Ult}(\mathcal{K}L) : c \notin U \}$ and $\Upsilon(c) = \{ U \in \text{Ult}(\mathcal{K}L) : c \in U \}$.

- The **Wallman topology** on $\text{Ult}(\mathcal{K}(L))$ is generated by the collection $B_{\Upsilon} = \{ \Upsilon(c) : c \in \mathcal{K}(L) \}$.

- The **inverse topology** on $\text{Ult}(\mathcal{K}(L))$, denoted $\text{Ult}(\mathcal{K}(L))^{-1}$, is generated by the collection $B_{\Upsilon} = \{ \Upsilon(c) : c \in \mathcal{K}(L) \}$.

Theorem

Let L be an M-frame with a unit. The following holds:

1. The topological space $\text{Ult}(\mathcal{K}L)$ is homeomorphic to $\text{Min}(L)^{-1}$.
2. The topological space $\text{Ult}(\mathcal{K}L)^{-1}$ is homeomorphic to $\text{Min}(L)$.
Topologies on $\text{Ult}(\mathcal{L})$:

Given $c \in \mathcal{L}$, we define

$\Upsilon(c) = \{U \in \text{Ult}(\mathcal{L}) : c \notin U\}$ and $\Upsilon'(c) = \{U \in \text{Ult}(\mathcal{L}) : c \in U\}$.

- The **Wallman topology** on $\text{Ult}(\mathcal{L})$ is generated by the collection $B_{\Upsilon} = \{\Upsilon(c) \mid c \in \mathcal{L}\}$.

- The **inverse topology** on $\text{Ult}(\mathcal{L})$, denoted $\text{Ult}(\mathcal{L})^{-1}$, is generated by the collection $B_{\Upsilon'} = \{\Upsilon'(c) \mid c \in \mathcal{L}\}$.

Theorem

Let L be an M-frame with a unit. The following holds:

1. The topological space $\text{Ult}(\mathcal{L})$ is homeomorphic to $\text{Min}(L)^{-1}$.
2. The topological space $\text{Ult}(\mathcal{L})^{-1}$ is homeomorphic to $\text{Min}(L)$.
Topologies on $\text{Ult}(\mathcal{K}(L))$:

Given $c \in \mathcal{K}L$, we define

$\Upsilon(c) = \{ U \in \text{Ult}(\mathcal{K}L) : c \notin U \}$ and $\Upsilon(c) = \{ U \in \text{Ult}(\mathcal{K}L) : c \in U \}$.

- The Wallman topology on $\text{Ult}(\mathcal{K}(L))$ is generated by the collection $B_\Upsilon = \{ \Upsilon(c) \mid c \in \mathcal{K}(L) \}$.

- The inverse topology on $\text{Ult}(\mathcal{K}(L))$, denoted $\text{Ult}(\mathcal{K}(L))^{-1}$, is generated by the collection $B_\Upsilon = \{ \Upsilon(c) \mid c \in \mathcal{K}(L) \}$.

Theorem

Let L be an M-frame with a unit. The following holds:

1. The topological space $\text{Ult}(\mathcal{K}L)$ is homeomorphic to $\text{Min}(L)^{-1}$.
2. The topological space $\text{Ult}(\mathcal{K}L)^{-1}$ is homeomorphic to $\text{Min}(L)$.
Preliminaries
Primes and Minimal Primes

Definition

1. An element \(d \in L \) is a \textit{d-element} if \(d = \bigvee \{ c \perp \perp : c \in \mathcal{K}(L), c \leq d \} \). The collection of all \textit{d-elements} of \(L \) is denoted by \(dL \).

2. \(x \in dL \) if and only if given any \(c \in \mathcal{K}(L), c \leq x \iff c \perp \perp \leq x \).

3. Given an \(x \in L \), \(x_d = \bigvee \{ c \perp \perp : c \leq x, c \in \mathcal{K}L \} \in dL \). This gives a nucleus \(d : L \to dL \) such that \(d(x) = x_d \), and \(\text{fix}(d) = dL \). If \(c \in \mathcal{K}L \), then \(c_d = c \perp \perp \), and \(x \leq x_d \) for all \(x \in L \).

- \(dL \) is a frame, where meet is same as in \(L \) and join is given by \(\bigvee^d S = d(\bigvee S) = (\bigvee S)_d \).

- If \(L \) is algebraic, then \(\text{fix}(d) = dL \) is algebraic. In this case, \(\mathcal{K}(dL) = d(\mathcal{K}L) = \{ c \perp \perp : c \in \mathcal{K}L \} \).

- When \(L \) satisfies the FIP, \(dL \) satisfies the FIP.
Preliminaries
Primes and Minimal Primes
\(\text{Max}(dL) \)
The space \(\text{Max}(dL) \) of \(K \perp L \)
Ultrafilters of \(K \perp L \)

Definition

1. An element \(d \in L \) is a **d-element** if \(d = \bigvee \{ c \perp \perp : c \in \mathcal{R}(L), c \leq d \} \). The collection of all d-elements of \(L \) is denoted by \(dL \).

2. \(x \in dL \) if and only if given any \(c \in \mathcal{R}(L) \), \(c \leq x \iff c \perp \perp \leq x \).

3. Given an \(x \in L \), \(x_d = \bigvee \{ c \perp \perp : c \leq x, c \in \mathcal{R}L \} \in dL \). This gives a nucleus \(d : L \to dL \) such that \(d(x) = x_d \), and \(\text{fix}(d) = dL \). If \(c \in \mathcal{R}L \), then \(c_d = c \perp \perp \), and \(x \leq x_d \) for all \(x \in L \).

- \(dL \) is a frame, where meet is same as in \(L \) and join is given by \(\bigvee^d S = d(\bigvee S) = (\bigvee S)_d \).

- If \(L \) is algebraic, then \(\text{fix}(d) = dL \) is algebraic. In this case, \(\mathcal{R}(dL) = d(\mathcal{R}L) = \{ c \perp \perp : c \in \mathcal{R}L \} \).

- When \(L \) satisfies the FIP, \(dL \) satisfies the FIP.
Preliminaries
Primes and Minimal Primes
\(\text{Max}(dL) \)
The space \(\text{Max}(dL) \)
Ultrafilters of \(\mathcal{R}L \)

Definition

1. An element \(d \in L \) is a \(d \)-element if \(d = \bigvee \{ c^\perp \perp : c \in \mathcal{R}(L), c \leq d \} \). The collection of all \(d \)-elements of \(L \) is denoted by \(dL \).

2. \(x \in dL \) if and only if given any \(c \in \mathcal{R}(L), c \leq x \iff c^\perp \perp \leq x \).

3. Given an \(x \in L \), \(x_d = \bigvee \{ c^\perp \perp : c \leq x, c \in \mathcal{R}L \} \in dL \). This gives a nucleus \(d : L \to dL \) such that \(d(x) = x_d \), and \(\text{fix}(d) = dL \). If \(c \in \mathcal{R}L \), then \(c_d = c^\perp \perp \), and \(x \leq x_d \) for all \(x \in L \).

- \(dL \) is a frame, where meet is same as in \(L \) and join is given by \(\bigvee^d S = d(\bigvee S) = (\bigvee S)_d \).
- If \(L \) is algebraic, then \(\text{fix}(d) = dL \) is algebraic. In this case, \(\mathcal{R}(dL) = d(\mathcal{R}L) = \{ c^\perp \perp : c \in \mathcal{R}L \} \).
- When \(L \) satisfies the FIP, \(dL \) satisfies the FIP.
Preliminaries
Primes and Minimal Primes

Max(dL)
The space Max(dL)
Ultrafilters of $\mathfrak{R}L^\perp$

Definition

1. An element $d \in L$ is a d-element if $d = \bigvee\{c^\perp\perp : c \in \mathfrak{R}(L), c \leq d\}$. The collection of all d-elements of L is denoted by dL.

2. $x \in dL$ if and only if given any $c \in \mathfrak{R}(L)$, $c \leq x \iff c^\perp\perp \leq x$.

3. Given an $x \in L$, $x_d = \bigvee\{c^\perp\perp : c \leq x, c \in \mathfrak{R}L\} \in dL$. This gives a nucleus $d : L \to dL$ such that $d(x) = x_d$, and $\text{fix}(d) = dL$. If $c \in \mathfrak{R}L$, then $c_d = c^\perp\perp$, and $x \leq x_d$ for all $x \in L$.

- dL is a frame, where meet is same as in L and join is given by $\bigvee^d S = d(\bigvee S) = (\bigvee S)_d$.

- If L is algebraic, then $\text{fix}(d) = dL$ is algebraic. In this case, $\mathfrak{R}(dL) = d(\mathfrak{R}L) = \{c^\perp\perp : c \in \mathfrak{R}L\}$.

- When L satisfies the FIP, dL satisfies the FIP.
Preliminaries
Primes and Minimal Primes
Max\((dL)\)

The space \(\text{Max}(dL)\)

Ultrafilters of \(\mathcal{K}L\)

Definition

1. An element \(d \in L\) is a *d-element* if \(d = \bigvee\{c^\perp \perp : c \in \mathcal{K}(L), c \leq d\}\). The collection of all *d*-elements of \(L\) is denoted by \(dL\).

2. \(x \in dL\) if and only if given any \(c \in \mathcal{K}(L), c \leq x \iff c^\perp \perp \leq x\).

3. Given an \(x \in L\), \(x_d = \bigvee\{c^\perp \perp : c \leq x, c \in \mathcal{K}L\} \in dL\). This gives a nucleus \(d : L \to dL\) such that \(d(x) = x_d\), and \(\text{fix}(d) = dL\). If \(c \in \mathcal{K}L\), then \(c_d = c^\perp \perp\), and \(x \leq x_d\) for all \(x \in L\).

- \(dL\) is a frame, where meet is same as in \(L\) and join is given by \(\bigvee^d S = d(\bigvee S) = (\bigvee S)_d\).

- If \(L\) is algebraic, then \(\text{fix}(d) = dL\) is algebraic. In this case, \(\mathcal{K}(dL) = d(\mathcal{K}L) = \{c^\perp \perp : c \in \mathcal{K}L\}\).

- When \(L\) satisfies the FIP, \(dL\) satisfies the FIP.
An element \(d \in L \) is a \(d \)-element if \(d = \bigvee \{ c^\perp : c \in \text{K}(L), c \leq d \} \). The collection of all \(d \)-elements of \(L \) is denoted by \(dL \).

\(x \in dL \) if and only if given any \(c \in \text{K}(L), c \leq x \iff c^\perp \leq x \).

Given an \(x \in L \), \(x_d = \bigvee \{ c^\perp : c \leq x, c \in \text{K}L \} \in dL \). This gives a nucleus \(d : L \rightarrow dL \) such that \(d(x) = x_d \), and \(\text{fix}(d) = dL \). If \(c \in \text{K}L \), then \(c_d = c^\perp \), and \(x \leq x_d \) for all \(x \in L \).

\(- dL \) is a frame, where meet is same as in \(L \) and join is given by \(\bigvee^d S = d(\bigvee S) = (\bigvee S)_d \).

\(- If \(L \) is algebraic, then \(\text{fix}(d) = dL \) is algebraic. In this case, \(\text{K}(dL) = d(\text{K}L) = \{ c^\perp : c \in \text{K}L \} \).

\(- When \(L \) satisfies the FIP, \(dL \) satisfies the FIP.
Existence of $\text{Max}(dL)$:
- Suppose L is an M-frame that contains a unit u.
- Let $A = \{ x \in dL : x < 1 \}$. Obviously $0 \in A$, which means that $A \neq \emptyset$.
- Take a chain $\{ x_\alpha \}$ in A and let $x = \bigvee x_\alpha$. Suppose $c \in \mathbb{K}L$ and $c \leq x$. There exists a finite subcollection from the chain such that $c \leq x_1 \vee \cdots \vee x_n \leq x$. Hence $c \leq x_i \leq x$, for some i. Since $x_i \in dL$ it follows that $c^{\perp\perp} \leq x_i \leq x$. Therefore $x \in dL$.
- If possible let $x = 1$, then $u \leq x$. As before, $u \leq x_j \in A$ for some j. Since $x_j \in dL$, $1 = u^{\perp\perp} \leq x_j$, contradicting the fact that $x_j < 1$. Hence $x < 1$, proving that $x \in A$.
- By Zorn’s Lemma, maximal d-elements exist in L.
- We use $\text{Max}(dL)$ to denote the (proper) maximal d-elements of L.
Existence of $Max(dL)$:

- Suppose L is an M-frame that contains a unit u.

- Let $A = \{ x \in dL : x < 1 \}$. Obviously $0 \in A$, which means that $A \neq \emptyset$.

- Take a chain $\{ x_\alpha \}$ in A and let $x = \bigvee x_\alpha$. Suppose $c \in \kappa L$ and $c \leq x$. There exists a finite subcollection from the chain such that $c \leq x_1 \lor \cdots \lor x_n \leq x$. Hence $c \leq x_i \leq x$, for some i. Since $x_i \in dL$ it follows that $c \perp \perp \leq x_i \leq x$. Therefore $x \in dL$.

- If possible let $x = 1$, then $u \leq x$. As before, $u \leq x_j \in A$ for some j. Since $x_j \in dL$, $1 = u \perp \perp \leq x_j$, contradicting the fact that $x_j < 1$. Hence $x < 1$, proving that $x \in A$.

- By Zorn’s Lemma, maximal d-elements exist in L.

- We use $Max(dL)$ to denote the (proper) maximal d-elements of L.
Existence of $\text{Max}(dL)$:
- Suppose L is an M-frame that contains a unit u.

- Let $A = \{x \in dL : x < 1\}$. Obviously $0 \in A$, which means that $A \neq \emptyset$.

- Take a chain $\{x_\alpha\}$ in A and let $x = \bigvee x_\alpha$. Suppose $c \in \mathcal{K}L$ and $c \leq x$. There exists a finite subcollection from the chain such that $c \leq x_1 \lor \cdots \lor x_n \leq x$. Hence $c \leq x_i \leq x$, for some i. Since $x_i \in dL$ it follows that $c^{\perp \perp} \leq x_i \leq x$. Therefore $x \in dL$.

- If possible let $x = 1$, then $u \leq x$. As before, $u \leq x_j \in A$ for some j. Since $x_j \in dL$, $1 = u^{\perp \perp} \leq x_j$, contradicting the fact that $x_j < 1$. Hence $x < 1$, proving that $x \in A$.

- By Zorn’s Lemma, maximal d-elements exist in L.

- We use $\text{Max}(dL)$ to denote the (proper) maximal d-elements of L.
Existence of $\text{Max}(dL)$:
- Suppose L is an M-frame that contains a unit u.

- Let $A = \{x \in dL : x < 1\}$. Obviously $0 \in A$, which means that $A \neq \emptyset$.

- Take a chain $\{x_\alpha\}$ in A and let $x = \bigvee x_\alpha$. Suppose $c \in R\!L$ and $c \leq x$. There exists a finite subcollection from the chain such that $c \leq x_1 \lor \cdots \lor x_n \leq x$. Hence $c \leq x_i \leq x$, for some i. Since $x_i \in dL$ it follows that $c \perp \perp \leq x_i \leq x$. Therefore $x \in dL$.

- If possible let $x = 1$, then $u \leq x$. As before, $u \leq x_j \in A$ for some j. Since $x_j \in dL$, $1 = u \perp \perp \leq x_j$, contradicting the fact that $x_j < 1$. Hence $x < 1$, proving that $x \in A$.

- By Zorn’s Lemma, maximal d-elements exist in L.

- We use $\text{Max}(dL)$ to denote the (proper) maximal d-elements of L.
Existence of $\text{Max}(dL)$:

- Suppose L is an M-frame that contains a unit u.

- Let $A = \{x \in dL : x < 1\}$. Obviously $0 \in A$, which means that $A \neq \emptyset$.

- Take a chain $\{x_\alpha\}$ in A and let $x = \bigvee x_\alpha$. Suppose $c \in \mathbb{K}L$ and $c \leq x$. There exists a finite subcollection from the chain such that $c \leq x_1 \lor \cdots \lor x_n \leq x$. Hence $c \leq x_i \leq x$, for some i. Since $x_i \in dL$ it follows that $c^\perp \perp \leq x_i \leq x$. Therefore $x \in dL$.

- If possible let $x = 1$, then $u \leq x$. As before, $u \leq x_j \in A$ for some j. Since $x_j \in dL$, $1 = u^\perp \perp \leq x_j$, contradicting the fact that $x_j < 1$. Hence $x < 1$, proving that $x \in A$.

- By Zorn’s Lemma, maximal d-elements exist in L.

- We use $\text{Max}(dL)$ to denote the (proper) maximal d-elements of L.
Existence of $\text{Max}(d\mathbb{L})$:

- Suppose L is an M-frame that contains a unit u.

- Let $A = \{ x \in d\mathbb{L} : x < 1 \}$. Obviously $0 \in A$, which means that $A \neq \emptyset$.

- Take a chain $\{ x_\alpha \}$ in A and let $x = \bigvee x_\alpha$. Suppose $c \in \mathbb{L}$ and $c \leq x$. There exists a finite subcollection from the chain such that $c \leq x_1 \lor \cdots \lor x_n \leq x$. Hence $c \leq x_i \leq x$, for some i. Since $x_i \in d\mathbb{L}$ it follows that $c \bot \bot \leq x_i \leq x$. Therefore $x \in d\mathbb{L}$.

- If possible let $x = 1$, then $u \leq x$. As before, $u \leq x_j \in A$ for some j. Since $x_j \in d\mathbb{L}$, $1 = u \bot \bot \leq x_j$, contradicting the fact that $x_j < 1$. Hence $x < 1$, proving that $x \in A$.

- By Zorn’s Lemma, maximal d-elements exist in L.

- We use $\text{Max}(d\mathbb{L})$ to denote the (proper) maximal d-elements of L.
Two important results:

Theorem

Let $x \in \text{Max}(dL)$, then x is maximal with respect to $u \nleq x$ for all units u of L. Conversely, if $y \in L$ is maximal with respect to $u \nleq x$ for all units u, then $y \in \text{Max}(dL)$.

Theorem

$\text{Min}(L) \subseteq dL$ and $\text{Max}(dL) \subseteq \text{Spec}(L)$.
Two important results:

Theorem

Let \(x \in Max(dL) \), then \(x \) is maximal with respect to \(u \nless x \) for all units \(u \) of \(L \). Conversely, if \(y \in L \) is maximal with respect to \(u \nless x \) for all units \(u \), then \(y \in Max(dL) \).

Theorem

\(Min(L) \subseteq dL \) and \(Max(dL) \subseteq Spec(L) \).
We endow $\text{Max}(dL)$ with the subspace topology from $\text{Spec}(L)$, namely, the Zariski topology.

Define

$$U_d(x) = \{ m \in \text{Max}(dL) : x \not\succ m \}.$$

The following hold for all $c, k \in \mathbb{R}L$.

1. $U_d(c) = \text{Max}(dL)$ if and only if c is a unit.
2. $\bigcup U_d(c) = U_d(\bigvee c)$.
3. $U_d(c) \cap U_d(k) = U_d(c \wedge k)$.
4. $U_d(c) = U_d(c^{\perp \perp})$.

The collection $\{ U_d(c) : c \in \mathbb{R}L \}$ forms a basis of open sets for the Zariski topology on $\text{Max}(dL)$.
We endow $\text{Max}(dL)$ with the subspace topology from $\text{Spec}(L)$, namely, the Zariski topology.

Define

$$U_d(x) = \{ m \in \text{Max}(dL) : x \not\approx m \}.$$

The following hold for all $c, k \in \mathbb{R}L$.

1. $U_d(c) = \text{Max}(dL)$ if and only if c is a unit.
2. $\bigcup U_d(c) = U_d(\bigvee c)$.
3. $U_d(c) \cap U_d(k) = U_d(c \wedge k)$.
4. $U_d(c) = U_d(c^\perp\perp)$.

The collection $\{ U_d(c) : c \in \mathbb{R}L \}$ forms a basis of open sets for the Zariski topology on $\text{Max}(dL)$.
We endow $\text{Max}(dL)$ with the subspace topology from $\text{Spec}(L)$, namely, the Zariski topology.

Define

$$U_d(x) = \{ m \in \text{Max}(dL) : x \nless m \}.$$

The following hold for all $c, k \in \mathcal{K}L$.

1. $U_d(c) = \text{Max}(dL)$ if and only if c is a unit.
2. $\bigcup U_d(c) = U_d(\bigvee c)$.
3. $U_d(c) \cap U_d(k) = U_d(c \land k)$.
4. $U_d(c) = U_d(c^\perp \perp)$.

The collection $\{ U_d(c) : c \in \mathcal{K}L \}$ forms a basis of open sets for the Zariski topology on $\text{Max}(dL)$.
We endow \(\text{Max}(dL) \) with the subspace topology from \(\text{Spec}(L) \), namely, the Zariski topology.

Define

\[
U_d(x) = \{ m \in \text{Max}(dL) : x \not\approx m \}.
\]

The following hold for all \(c, k \in \mathbb{R} L \).

1. \(U_d(c) = \text{Max}(dL) \) if and only if \(c \) is a unit.
2. \(\bigcup U_d(c) = U_d(\bigvee c) \).
3. \(U_d(c) \cap U_d(k) = U_d(c \land k) \).
4. \(U_d(c) = U_d(c^{\perp\perp}) \).

The collection \(\{ U_d(c) : c \in \mathbb{R} L \} \) forms a basis of open sets for the Zariski topology on \(\text{Max}(dL) \).
Theorem

Let L be an M-frame that possesses a unit u. The space $\text{Max}(dL)$ is a compact topological space.

Important Observation: In case of a W-object (G, u), $\text{Max}_d(G)$, w.r.t the Zariski topology is a compact, Hausdorff space. It so happens that to prove the Hausdorff condition, we require the property of "disjointification" which ℓ-groups possess. This is the first result in frames that seems to NOT be occurring parallel to that of ℓ-groups, since an algebraic frame does not satisfy disjointification always.

Question: If L is an M-frame with a unit, when is $\text{Max}(dL)$ Hausdorff?
Theorem

Let L be an M-frame that possesses a unit u. The space $\text{Max}(dL)$ is a compact topological space.

Important Observation: In case of a W-object (G, u), $\text{Max}_d(G)$, w.r.t the Zariski topology is a compact, Hausdorff space. It so happens that to prove the Hausdorff condition, we require the property of "disjointification" which ℓ-groups possess. This is the first result in frames that seems to NOT be occurring parallel to that of ℓ-groups, since an algebraic frame does not satisfy disjointification always.

Question: If L is an M-frame with a unit, when is $\text{Max}(dL)$ Hausdorff?
Theorem

Let L be an M-frame that possesses a unit u. The space $\text{Max}(dL)$ is a compact topological space.

Important Observation: In case of a W-object (G, u), $\text{Max}_d(G)$, w.r.t the Zariski topology is a compact, Hausdorff space. It so happens that to prove the Hausdorff condition, we require the property of "disjointification" which ℓ-groups possess. This is the first result in frames that seems to NOT be occurring parallel to that of ℓ-groups, since an algebraic frame does not satisfy disjointification always.

Question: If L is an M-frame with a unit, when is $\text{Max}(dL)$ Hausdorff?
Preliminaries

Primes and Minimal Primes

Max(dL)

The space Max(dL)

Ultrafilters of $\mathcal{K}L^\perp$

- It is known that

$$\text{Max}_d(G) \cong \text{Ult}(Z^\#(G)), \text{ for } W\text{-objects}$$

and

$$\text{Max}_d(X) \cong \text{Ult}(Z^\#(X)) \text{ for spaces}$$

where $Z^\#(X) = \{\text{cl int } Z : Z \in Z(X)\} \subseteq \mathcal{R}(X)$ (regular closed subsets of X)

- In frames, $\mathcal{B}(L) = \{x^\perp : x \in L\}$ is analogous to $\mathcal{R}(X)$ for spaces.

Q: In frames, what is analogous to $Z^\#(X)$?

- Let $\mathcal{R}L^\perp = \{c^\perp : c \in \mathcal{R}L\} \subseteq \mathcal{B}(L)$ be a subset.

Lemma

$\mathcal{R}L^\perp$ is a sublattice of $\mathcal{B}(L)$, with meet same as the meet of L and the join is given by $x^\perp \lor y^\perp = (x \land y)^\perp$. Also, $\mathcal{R}L^\perp$ is a bounded lattice

- Filters and ultrafilters on $\mathcal{R}L^\perp$ exist.
- It is known that

\[\text{Max}_d(G) \cong \text{Ult}(Z^\#(G)), \text{ for W-objects} \]

and

\[\text{Max}_d(X) \cong \text{Ult}(Z^\#(X)) \text{ for spaces} \]

where \(Z^\#(X) = \{ \text{cl int } Z : Z \in Z(X) \} \subseteq \mathcal{R}(X) \) (regular closed subsets of \(X \))

- In frames, \(\mathcal{B}(L) = \{ x^\perp : x \in L \} \) is analogous to \(\mathcal{R}(X) \) for spaces.

Q: In frames, what is analogous to \(Z^\#(X) \)?

- Let \(\mathcal{K}L^\perp = \{ c^\perp : c \in \mathcal{K}L \} \subseteq \mathcal{B}(L) \) be a subset.

Lemma

\(\mathcal{K}L^\perp \) is a sublattice of \(\mathcal{B}(L) \), with meet same as the meet of \(L \) and the join is given by \(x^\perp \lor^\prime y^\perp = (x \land y)^\perp \). Also, \(\mathcal{K}L^\perp \) is a bounded lattice

- Filters and ultrafilters on \(\mathcal{K}L^\perp \) exist.
- It is known that

\[\text{Max}_d(G) \cong \text{Ult}(Z^\#(G)), \text{ for } W\text{-objects} \]

and

\[\text{Max}_d(X) \cong \text{Ult}(Z^\#(X)) \text{ for spaces} \]

where \(Z^\#(X) = \{ \text{cl int } Z : Z \in Z(X) \} \subseteq R(X) \) (regular closed subsets of \(X \))

- In frames, \(B(L) = \{ x^\perp : x \in L \} \) is analogous to \(R(X) \) for spaces.

Q: In frames, what is analogous to \(Z^\#(X) \)?

- Let \(R(L) \perp = \{ c^\perp : c \in R(L) \} \subseteq B(L) \) be a subset.

Lemma

\(R(L) \perp \) is a sublattice of \(B(L) \), with meet same as the meet of \(L \) and the join is given by \(x^\perp \lor^\perp y^\perp = (x \land y)^\perp \). Also, \(R(L) \perp \) is a bounded lattice

- Filters and ultrafilters on \(R(L) \perp \) exist.
It is known that

\[\text{Max}_d(G) \cong \text{Ult}(Z^\#(G)), \text{ for } W\text{-objects} \]

and

\[\text{Max}_d(X) \cong \text{Ult}(Z^\#(X)) \text{ for spaces} \]

where \(Z^\#(X) = \{ \text{cl int } Z : Z \in Z(X) \} \subseteq \mathcal{R}(X) \) (regular closed subsets of \(X \)).

In frames, \(\mathcal{B}(L) = \{ x^\bot : x \in L \} \) is analogous to \(\mathcal{R}(X) \) for spaces.

Q: In frames, what is analogous to \(Z^\#(X) \)?

- Let \(\mathcal{R}L^\bot = \{ c^\bot : c \in \mathcal{R}L \} \subseteq \mathcal{B}(L) \) be a subset.

Lemma

\(\mathcal{R}L^\bot \) is a sublattice of \(\mathcal{B}(L) \), with meet same as the meet of \(L \) and the join is given by \(x^\bot \lor^\prime y^\bot = (x \wedge y)^\bot \). Also, \(\mathcal{R}L^\bot \) is a bounded lattice.

- Filters and ultrafilters on \(\mathcal{R}L^\bot \) exist.
It is known that
\[\text{Max}_d(G) \cong \text{Ult}(Z^\#(G)), \text{ for } W\text{-objects} \]
and
\[\text{Max}_d(X) \cong \text{Ult}(Z^\#(X)) \text{ for spaces} \]
where \(Z^\#(X) = \{ \text{cl int } Z : Z \in Z(X) \} \subseteq \mathcal{R}(X) \) (regular closed subsets of \(X \)).

In frames, \(\mathcal{B}(L) = \{ x^\perp : x \in L \} \) is analogous to \(\mathcal{R}(X) \) for spaces.

Q: In frames, what is analogous to \(Z^\#(X) \)?

- Let \(\mathcal{K}L^\perp = \{ c^\perp : c \in \mathcal{K}L \} \subseteq \mathcal{B}(L) \) be a subset.

Lemma

\(\mathcal{K}L^\perp \) is a sublattice of \(\mathcal{B}(L) \), with meet same as the meet of \(L \) and the join is given by \(x^\perp \lor^\prime y^\perp = (x \land y)^\perp \). Also, \(\mathcal{K}L^\perp \) is a bounded lattice.

- Filters and ultrafilters on \(\mathcal{K}L^\perp \) exist.
Preliminaries
Primes and Minimal Primes
Max(dL)
The space $\text{Max}(dL)$
Ultrafilters of $\mathbb{R}L^\perp$

- It is known that

$$\text{Max}_d(G) \cong \text{Ult}(Z^\#(G)), \text{ for } W\text{-objects}$$

and

$$\text{Max}_d(X) \cong \text{Ult}(Z^\#(X)) \text{ for spaces}$$

where $Z^\#(X) = \{\text{cl int } Z : Z \in Z(X)\} \subseteq \mathcal{R}(X)$ (regular closed subsets of X)

- In frames, $\mathcal{B}(L) = \{x^\perp : x \in L\}$ is analogous to $\mathcal{R}(X)$ for spaces.

Q: In frames, what is analogous to $Z^\#(X)$?

- Let $\mathcal{K}L^\perp = \{c^\perp : c \in \mathcal{K}L\} \subseteq \mathcal{B}(L)$ be a subset.

Lemma

$\mathcal{K}L^\perp$ is a sublattice of $\mathcal{B}(L)$, with meet same as the meet of L and the join is given by $x^\perp \lor' y^\perp = (x \land y)^\perp$. Also, $\mathcal{K}L^\perp$ is a bounded lattice

- Filters and ultrafilters on $\mathcal{K}L^\perp$ exist.
Theorem

Suppose L possesses a unit u.

1. If F is a filter on $K\perp_L$, then $x(F) = \bigvee\{c\perp\perp : c\perp \in F\}$ is a proper d-element of L.

2. If $x \in dL$ is proper, then $\hat{F}_x = \{c\perp : c \in K_L, c \leq x\}$ is a filter of $K\perp_L$.

3. $\hat{F}_{x(G)} = G$, for every filter G of $K\perp_L$ and $x(\hat{F}_y) = y$, for every $y \in dL$.

Let $\Phi_d : Ult(K\perp_L) \to \text{Max}(dL)$ be defined by $\Phi_d(U) = x(U)$.

Theorem

Let L be an M-frame with a unit. Φ_d is a well-defined bijection with $\Phi_d^{-1}(m) = \hat{F}_m$.

Theorem

Suppose L possesses a unit u.

1. If F is a filter on $\mathcal{R}L^\perp$, then $x(F) = \bigvee\{c^\perp : c^\perp \in F\}$ is a proper d-element of L.

2. If $x \in dL$ is proper, then $\hat{F}_x = \{c^\perp : c \in \mathcal{R}L, c \leq x\}$ is a filter of $\mathcal{R}L^\perp$.

3. $\hat{F}_{x(G)} = G$, for every filter G of $\mathcal{R}L^\perp$ and $x(\hat{F}_y) = y$, for every $y \in dL$.

Let $\Phi_d : \text{Ult}(\mathcal{R}L^\perp) \to \text{Max}(dL)$ be defined by $\Phi_d(U) = x(U)$,

Theorem

Let L be an M-frame with a unit. Φ_d is a well-defined bijection with $\Phi_d^{-1}(m) = \hat{F}_m$.
Theorem

Suppose L possesses a unit u.

1. If F is a filter on $\mathbb{K}L^\perp$, then $x(F) = \bigvee \{c^\perp : c^\perp \in F\}$ is a proper d-element of L.

2. If $x \in dL$ is proper, then $\hat{F}_x = \{c^\perp : c \in \mathbb{K}L, c \leq x\}$ is a filter of $\mathbb{K}L^\perp$.

3. $\hat{F}_{x(G)} = G$, for every filter G of $\mathbb{K}L^\perp$ and $x(\hat{F}_y) = y$, for every $y \in dL$.

Let $\Phi_d : Ult(\mathbb{K}L^\perp) \rightarrow Max(dL)$ be defined by $\Phi_d(U) = x(U)$.

Theorem

Let L be an M-frame with a unit. Φ_d is a well-defined bijection with $\Phi_d^{-1}(m) = \hat{F}_m$.
Suppose L possesses a unit u.

1. If F is a filter on $\mathcal{R}L^\perp$, then $x(F) = \bigvee \{ c^\perp : c^\perp \in F \}$ is a proper d-element of L.

2. If $x \in dL$ is proper, then $\hat{F}_x = \{ c^\perp : c \in \mathcal{R}L, c \leq x \}$ is a filter of $\mathcal{R}L^\perp$.

3. $\hat{F}_{x(G)} = G$, for every filter G of $\mathcal{R}L^\perp$ and $x(\hat{F}_y) = y$, for every $y \in dL$.

Let $\Phi_d : \text{Ult}(\mathcal{R}L^\perp) \to \text{Max}(dL)$ be defined by $\Phi_d(U) = x(U)$,

Let L be an M-frame with a unit. Φ_d is a well-defined bijection with $\Phi_d^{-1}(m) = \hat{F}_m$.
Theorem

Suppose L possesses a unit u.

1. If F is a filter on $\mathcal{R}L^\perp$, then $x(F) = \bigvee \{c^\perp : c^\perp \in F\}$ is a proper d-element of L.

2. If $x \in dL$ is proper, then $\hat{F}_x = \{c^\perp : c \in \mathcal{R}L, c \leq x\}$ is a filter of $\mathcal{R}L^\perp$.

3. $\hat{F}_{x(G)} = G$, for every filter G of $\mathcal{R}L^\perp$ and $x(\hat{F}_y) = y$, for every $y \in dL$.

Let $\Phi_d : \text{Ult}(\mathcal{R}L^\perp) \rightarrow \text{Max}(dL)$ be defined by $\Phi_d(U) = x(U)$,

Theorem

Let L be an M-frame with a unit. Φ_d is a well-defined bijection with $\Phi_d^{-1}(m) = \hat{F}_m$.
Next, we topologize $\text{Ult}(\mathcal{K} \mathcal{L})$ with the well-known Wallman topology: basic open sets are $M(l^\perp) = \{ U \in \text{Ult}(\mathcal{K} \mathcal{L}) : l^\perp \notin U \}$, for $l \in \mathcal{K} \mathcal{L}$.

Finally, the main result:

Theorem

Let L be an M-frame with a unit u. The map $\Phi_d : \text{Ult}(\mathcal{K} \mathcal{L}) \to \text{Max}(dL)$ is a homeomorphism between the topological spaces $\text{Ult}(\mathcal{K} \mathcal{L})$, with respect to the Wallman topology, and $\text{Max}(dL)$, endowed with the hull-kernel topology.

So, $\text{Max}(dL) \cong \text{Ult}(\mathcal{K} \mathcal{L})$
Next, we topologize $\text{Ult}(\mathbb{K}L^\perp)$ with the well-known Wallman topology: basic open sets are $M(l^\perp) = \{ U \in \text{Ult}(\mathbb{K}L^\perp) : l^\perp \notin U \}$, for $l \in \mathbb{K}L$.

Finally, the main result:

Theorem

Let L be an M-frame with a unit u. The map $\Phi_d : \text{Ult}(\mathbb{K}L^\perp) \rightarrow \text{Max}(dL)$ is a homeomorphism between the topological spaces $\text{Ult}(\mathbb{K}L^\perp)$, with respect to the Wallman topology, and $\text{Max}(dL)$, endowed with the hull-kernel topology.

So, $\text{Max}(dL) \cong \text{Ult}(\mathbb{K}L^\perp)$
Preliminaries
Primes and Minimal Primes
The space $\text{Max}(dL)$
Ultrafilters of L^\perp

- If $U \in \text{Ult}(L)$, then $U^* = \{ c^\perp : c \in L \setminus U \}$ is a prime filter of L^\perp.
- If $V \in \text{Ult}(L^\perp)$, then $V^* = \{ c \in L : c^\perp \in V \}$ is a prime filter of L.

Q: When can we have a well-defined bijection between $\text{Ult}(L)$ and $\text{Ult}(L^\perp)$?

Answer: Complemented frames

Theorem

The following are equivalent for an M-frame L that possesses a unit u.

1. L is a complemented frame.
2. $\text{Min}(L) = \text{Max}(dL)$.
3. $\text{Min}(L)$ is homeomorphic to $\text{Max}(dL)$.
4. $\text{Ult}(L)^{-1} \cong \text{Ult}(L^\perp)$, a homeomorphism.
If $U \in \text{Ult}(\mathfrak{L})$, then $U^* = \{c^\perp : c \in \mathfrak{L} \setminus U\}$ is a prime filter of \mathfrak{L}^\perp.

If $V \in \text{Ult}(\mathfrak{L}^\perp)$, then $V^*_\perp = \{c \in \mathfrak{L} : c^\perp \in V\}$ is a prime filter of \mathfrak{L}.

Q: When can we have a well-defined bijection between $\text{Ult}(\mathfrak{L})$ and $\text{Ult}(\mathfrak{L}^\perp)$?

Answer: Complemented frames

Theorem

The following are equivalent for an M-frame L that possesses a unit u.

1. L is a complemented frame.
2. $\text{Min}(L) = \text{Max}(dL)$.
3. $\text{Min}(L)$ is homeomorphic to $\text{Max}(dL)$.
4. $\text{Ult}(\mathfrak{L})^{-1} \cong \text{Ult}(\mathfrak{L}^\perp)$, a homeomorphism.
- If $U \in \text{Ult}(_L L)$, then $U^* = \{ c^\perp : c \in _L L \setminus U \}$ is a prime filter of $L\perp$.
- If $V \in \text{Ult}(_L L\perp)$, then $V^* = \{ c \in _L L : c^\perp \in V \}$ is a prime filter of L.

Q: When can we have a well-defined bijection between $\text{Ult}(_L L)$ and $\text{Ult}(_L L\perp)$?

Answer: Complemented frames

Theorem

The following are equivalent for an M-frame L that possesses a unit u.

1. L is a complemented frame.
2. $\text{Min}(L) = \text{Max}(dL)$.
3. $\text{Min}(L)$ is homeomorphic to $\text{Max}(dL)$.
4. $\text{Ult}(_L L)^{-1} \cong \text{Ult}(_L L\perp)$, a homeomorphism.
- If $U \in \text{Ult}(\mathcal{K} \mathcal{L})$, then $U^* = \{c^\perp : c \in \mathcal{K} \mathcal{L} \setminus U\}$ is a prime filter of $\mathcal{K} \mathcal{L}^\perp$.

- If $V \in \text{Ult}(\mathcal{K} \mathcal{L}^\perp)$, then $V^* = \{c \in \mathcal{K} \mathcal{L} : c^\perp \in V\}$ is a prime filter of $\mathcal{K} \mathcal{L}$.

Q: When can we have a well-defined bijection between $\text{Ult}(\mathcal{K} \mathcal{L})$ and $\text{Ult}(\mathcal{K} \mathcal{L}^\perp)$?

Answer: Complemented frames

Theorem

The following are equivalent for an M-frame L that possesses a unit u.

1. L is a complemented frame.
2. $\text{Min}(L) = \text{Max}(dL)$.
3. $\text{Min}(L)$ is homeomorphic to $\text{Max}(dL)$.
4. $\text{Ult}(\mathcal{K} \mathcal{L})^{-1} \cong \text{Ult}(\mathcal{K} \mathcal{L}^\perp)$, a homeomorphism.
- If $U \in \text{Ult}(\mathcal{L})$, then $U^* = \{c^\perp : c \in \mathcal{L} \setminus U\}$ is a prime filter of \mathcal{L}^\perp.
- If $V \in \text{Ult}(\mathcal{L}^\perp)$, then $V_\ast = \{c \in \mathcal{L} : c^\perp \in V\}$ is a prime filter of \mathcal{L}.

Q: When can we have a well-defined bijection between $\text{Ult}(\mathcal{L})$ and $\text{Ult}(\mathcal{L}^\perp)$?

Answer: Complemented frames

Theorem

The following are equivalent for an M-frame L that possesses a unit u.

1. L is a complemented frame.
2. $\text{Min}(L) = \text{Max}(dL)$.
3. $\text{Min}(L)$ is homeomorphic to $\text{Max}(dL)$.
4. $\text{Ult}(\mathcal{L})^{-1} \cong \text{Ult}(\mathcal{L}^\perp)$, a homeomorphism.
Question: If L is an M-frame with a unit, when is $\text{Max}(dL)$ Hausdorff?

We know,

$$\text{Min}(L)^{-1} \text{ Hausdorff } \iff \text{Ult}(K_L) \text{ Hausdorff } \iff K_L \text{ normal lattice } \iff L \text{ Lamron}$$

Similarly,

$$\text{Max}(dL) \text{ Hausdorff } \iff \text{Ult}(K_L^\perp) \text{ Hausdorff } \iff K_L^\perp \text{ normal lattice } \iff L ??$$

THANK YOU
Question: If L is an M-frame with a unit, when is $Max(dL)$ Hausdorff?

We know,

$Min(L)^{-1}$ Hausdorff $\iff Ult(\mathcal{K}L)$ Hausdorff $\iff \mathcal{K}L$ normal lattice $\iff L$ Lamron

Similarly,

$Max(dL)$ Hausdorff $\iff Ult(\mathcal{K}L^\perp)$ Hausdorff $\iff \mathcal{K}L^\perp$ normal lattice $\iff L$??

THANK YOU
Question: If L is an M-frame with a unit, when is $\text{Max}(dL)$ Hausdorff?

We know,

$$\text{Min}(L)^{-1} \text{ Hausdorff} \iff \text{Ult}(\mathcal{K}L) \text{ Hausdorff} \iff \mathcal{K}L \text{ normal lattice} \iff L \text{ Lamron}$$

Similarly,

$$\text{Max}(dL) \text{ Hausdorff} \iff \text{Ult}(\mathcal{K}L^\perp) \text{ Hausdorff} \iff \mathcal{K}L^\perp \text{ normal lattice} \iff L ??$$

THANK YOU
Question: If L is an M-frame with a unit, when is $\text{Max}(dL)$ Hausdorff?

We know,

$$\text{Min}(L)^{-1} \text{ Hausdorff } \iff \text{Ult}(\mathbb{K}L) \text{ Hausdorff } \iff \mathbb{K}L \text{ normal lattice } \iff L \text{ Lamron}$$

Similarly,

$$\text{Max}(dL) \text{ Hausdorff } \iff \text{Ult}(\mathbb{K}L^\perp) \text{ Hausdorff } \iff \mathbb{K}L^\perp \text{ normal lattice } \iff L \text{ ??}$$

THANK YOU