Preliminaries Primes and Minimal Primes Max(dL)The space Max(dL)Ultrafilters of  $\Re L^{\perp}$ 

# Maximal *d*-Elements of *M*-frames

### Papiya Bhattacharjee

Florida Atlantic University

BLAST 2021

June 10, 2021







- Primes and Minimal Primes
- Max(dL)
- The space *Max(dL*)
- **5** Ultrafilters of  $\Re L^{\perp}$

-

Preliminaries Primes and Minimal Primes Max(dL)The space Max(dL)Ultrafilters of  $\Re L^{\perp}$ 

### Definition

- A frame L is a complete lattice that satisfies a strong distributive law where finite infimum distributes over arbitrary supremum.
- Output A contract of *c* ≤ *V a*<sub>α</sub> implies that *c* ≤ *a*<sub>α1</sub> ∨··· ∨ *a*<sub>αn</sub>. The collection of all compact element of *L* is denoted by ℜ(*L*).
- A frame is algebraic if every element in the frame is the supremum of compact elements.
- A frame is said to satisfy the finite intersection property (FIP) if c, d ∈ 𝔅(L) implies that c ∧ d ∈ 𝔅(L).
- So For each  $x \in L$ ,  $x^{\perp} = \bigvee \{y \in L : y \land x = 0\}$ .
- **(**)  $x \in L$  is dense if  $x^{\perp} = 0$ . A compact, dense element of *L* is called a unit.

< □ > < □ > < □ > < □ > < □ >

All the frames are *M*-frames (algebraic and satisfies the FIP), and possesses a unit.

Preliminaries Primes and Minimal Primes Max(dL)The space Max(dL)Ultrafilters of  $\Re L^{\perp}$ 

### Definition

- A frame L is a complete lattice that satisfies a strong distributive law where finite infimum distributes over arbitrary supremum.
- Output A contract of *c* ≤ *V a*<sub>α</sub> implies that *c* ≤ *a*<sub>α1</sub> ∨··· ∨ *a*<sub>αn</sub>. The collection of all compact element of *L* is denoted by ℜ(*L*).
- A frame is algebraic if every element in the frame is the supremum of compact elements.
- A frame is said to satisfy the finite intersection property (FIP) if c, d ∈ 𝔅(L) implies that c ∧ d ∈ 𝔅(L).
- So For each  $x \in L$ ,  $x^{\perp} = \bigvee \{y \in L : y \land x = 0\}$ .
- **(**)  $x \in L$  is dense if  $x^{\perp} = 0$ . A compact, dense element of *L* is called a unit.

< □ > < □ > < □ > < □ > < □ >

# All the frames are *M*-frames (algebraic and satisfies the FIP), and possesses a unit.



- An element  $p \in L$  is *prime* if p < 1 and for all  $a, b \in L$ ,  $a \land b \leq p$  implies that  $a \leq p$  or  $b \leq p$ .

- A prime element *p* is *minimal* if there are no other prime elements q < p. We denote the collection of minimal prime elements of *L* by *Min(L)*. Using Zorn's lemma we can show that primes and minimal primes exist in algebraic frames.

Spec(L)={all primes of *L*} Min(L)={all minimal primes of *L*}



- An element  $p \in L$  is *prime* if p < 1 and for all  $a, b \in L$ ,  $a \land b \leq p$  implies that  $a \leq p$  or  $b \leq p$ .

- A prime element *p* is *minimal* if there are no other prime elements q < p. We denote the collection of minimal prime elements of *L* by *Min(L)*. Using Zorn's lemma we can show that primes and minimal primes exist in algebraic frames.

Spec(L)={all primes of L} Min(L)={all minimal primes of L} Preliminaries Primes and Minimal Primes Max(dL)The space Max(dL)Ultrafilters of  $\Re L^{\perp}$ 

- Zariski Topology on Min(L): Let  $c \in L$ . Define  $U(c) = \{p \in Min(L) : c \leq p\}$ 

#### emma

Let  $x, y \in L$ . The following holds:

• 
$$U(x) \cup U(y) = U(x \lor y)$$
 and  $U(x) \cap U(y) = U(x \land y)$ .

$$\bigcup U(x_{\alpha}) = U\left(\bigvee x_{\alpha}\right).$$

$$U(x) = \emptyset \Leftrightarrow x = 0.$$

The *Zariski topology* on Min(*L*) is the topology generated by the collection  $\mathcal{B} = \{U(c) \mid c \in \mathfrak{K}(L)\}.$ 

#### \_emma

Min(L) is a Hausdorff, zero-dimensional (base of clopen sets) space.



### Lemma

Let  $x, y \in L$ . The following holds:

• 
$$U(x) \cup U(y) = U(x \lor y)$$
 and  $U(x) \cap U(y) = U(x \land y)$ .

$$U(x_{\alpha}) = U\left(\bigvee x_{\alpha}\right)$$

$$U(x) = \emptyset \Leftrightarrow x = 0.$$

The *Zariski topology* on Min(*L*) is the topology generated by the collection  $\mathcal{B} = \{U(c) \mid c \in \mathfrak{K}(L)\}.$ 

#### \_emma

Min(L) is a Hausdorff, zero-dimensional (base of clopen sets) space.



### Lemma

Let  $x, y \in L$ . The following holds:

• 
$$U(x) \cup U(y) = U(x \lor y)$$
 and  $U(x) \cap U(y) = U(x \land y)$ .

$$U(x_{\alpha}) = U(\bigvee x_{\alpha}).$$

$$U(x) = \emptyset \Leftrightarrow x = 0.$$

The *Zariski topology* on Min(*L*) is the topology generated by the collection  $\mathcal{B} = \{U(c) \mid c \in \mathfrak{K}(L)\}.$ 

#### \_emma

Min(L) is a Hausdorff, zero-dimensional (base of clopen sets) space.



### Lemma

Let  $x, y \in L$ . The following holds:

• 
$$U(x) \cup U(y) = U(x \lor y)$$
 and  $U(x) \cap U(y) = U(x \land y)$ .

$$U(x_{\alpha}) = U\left(\bigvee x_{\alpha}\right).$$

$$U(x) = \emptyset \Leftrightarrow x = 0.$$

The *Zariski topology* on Min(*L*) is the topology generated by the collection  $\mathcal{B} = \{U(c) \mid c \in \mathfrak{K}(L)\}.$ 

#### \_emma

Min(L) is a Hausdorff, zero-dimensional (base of clopen sets) space.



### Lemma

Let  $x, y \in L$ . The following holds:

• 
$$U(x) \cup U(y) = U(x \lor y)$$
 and  $U(x) \cap U(y) = U(x \land y)$ .

$$U(x_{\alpha}) = U\left(\bigvee x_{\alpha}\right).$$

$$U(x) = \emptyset \Leftrightarrow x = 0.$$

The *Zariski topology* on Min(*L*) is the topology generated by the collection  $\mathcal{B} = \{U(c) \mid c \in \mathfrak{K}(L)\}.$ 

#### \_emma

Min(L) is a Hausdorff, zero-dimensional (base of clopen sets) space.



### Lemma

Let  $x, y \in L$ . The following holds:

• 
$$U(x) \cup U(y) = U(x \lor y)$$
 and  $U(x) \cap U(y) = U(x \land y)$ .

$$U(x_{\alpha}) = U\left(\bigvee x_{\alpha}\right).$$

$$U(x) = \emptyset \Leftrightarrow x = 0.$$

The *Zariski topology* on Min(*L*) is the topology generated by the collection  $\mathcal{B} = \{U(c) \mid c \in \mathfrak{K}(L)\}.$ 

#### \_emma

Min(L) is a Hausdorff, zero-dimensional (base of clopen sets) space.



### Lemma

Let  $x, y \in L$ . The following holds:

• 
$$U(x) \cup U(y) = U(x \lor y)$$
 and  $U(x) \cap U(y) = U(x \land y)$ .

$$U(x_{\alpha}) = U\left(\bigvee x_{\alpha}\right).$$

$$U(x) = \emptyset \Leftrightarrow x = 0.$$

The *Zariski topology* on Min(*L*) is the topology generated by the collection  $\mathcal{B} = \{U(c) \mid c \in \mathfrak{K}(L)\}.$ 

#### Lemma

Min(L) is a Hausdorff, zero-dimensional (base of clopen sets) space.



# Question: When is *Min(L)* a compact space?

- Henriksen, M. and M. Jerison. The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc., 115 (1965), 110–130.
- Speed, T. Spaces of Ideals of Distributive Lattices II: Minimal Prime Ideals, J. Austral. Math. Soc., **18** (1974), 54–72.
  - Conrad, P. and J. Martinez. *Complemented lattice-ordered groups*, Indag. Mathem., N.S., **1(3)** (1990), 281–298.
- McGovern, W. Wm. *Neat rings*, Journal of Pure and Applied Algebra, 205 (2006), 243–265.
- Bhattacharjee, P. Two spaces of minimal primes, J. Alg. and Its Appl.
  11(1) (2012) 1250014 (18 pages).

A (10) A (10) A (10)



# **Question:** When is *Min(L)* a compact space?

- Henriksen, M. and M. Jerison. *The space of minimal prime ideals of a commutative ring*, Trans. Amer. Math. Soc., **115** (1965), 110–130.
- Speed, T. Spaces of Ideals of Distributive Lattices II: Minimal Prime Ideals, J. Austral. Math. Soc., **18** (1974), 54–72.
- Conrad, P. and J. Martinez. Complemented lattice-ordered groups, Indag. Mathem., N.S., 1(3) (1990), 281–298.
- McGovern, W. Wm. *Neat rings*, Journal of Pure and Applied Algebra, **205** (2006), 243–265.
- Bhattacharjee, P. *Two spaces of minimal primes*, J. Alg. and Its Appl. **11(1)** (2012) 1250014 (18 pages).



Define the set-theoretic complement of U(x), called  $V(x) = \{p \in Min(L) : x \le p\}$ . The following holds for the operator  $V(\cdot)$ .

•  $V(x) \cup V(y) = V(x \land y)$  and  $V(x) \cap V(y) = V(x \lor y)$ .

• 
$$V(x) = Min(L) \Leftrightarrow x = 0.$$

The collection  $\{V(k) : k \in \mathfrak{K}(L)\}$  forms a basis for a topology on Min(L), called the *Inverse topology*, and denoted by  $Min(L)^{-1}$ .

#### Lemma

 $Min(L)^{-1}$  is a compact,  $T_1$  space.



Define the set-theoretic complement of U(x), called  $V(x) = \{p \in Min(L) : x \le p\}$ . The following holds for the operator  $V(\cdot)$ .

•  $V(x) \cup V(y) = V(x \land y)$  and  $V(x) \cap V(y) = V(x \lor y)$ .

• 
$$V(x) = Min(L) \Leftrightarrow x = 0.$$

The collection  $\{V(k) : k \in \mathfrak{K}(L)\}$  forms a basis for a topology on Min(L), called the *Inverse topology*, and denoted by  $Min(L)^{-1}$ .

#### Lemma

 $Min(L)^{-1}$  is a compact,  $T_1$  space.



Define the set-theoretic complement of U(x), called  $V(x) = \{p \in Min(L) : x \le p\}$ . The following holds for the operator  $V(\cdot)$ .

•  $V(x) \cup V(y) = V(x \land y)$  and  $V(x) \cap V(y) = V(x \lor y)$ .

• 
$$V(x) = Min(L) \Leftrightarrow x = 0.$$

The collection  $\{V(k) : k \in \mathfrak{K}(L)\}$  forms a basis for a topology on Min(L), called the *Inverse topology*, and denoted by  $Min(L)^{-1}$ .

#### Lemma

 $Min(L)^{-1}$  is a compact,  $T_1$  space.



Define the set-theoretic complement of U(x), called  $V(x) = \{p \in Min(L) : x \le p\}$ . The following holds for the operator  $V(\cdot)$ .

•  $V(x) \cup V(y) = V(x \land y)$  and  $V(x) \cap V(y) = V(x \lor y)$ .

• 
$$V(x) = Min(L) \Leftrightarrow x = 0.$$

The collection { $V(k) : k \in \mathfrak{K}(L)$ } forms a basis for a topology on Min(L), called the *Inverse topology*, and denoted by  $Min(L)^{-1}$ .

#### Lemma

 $Min(L)^{-1}$  is a compact,  $T_1$  space.



Define the set-theoretic complement of U(x), called  $V(x) = \{p \in Min(L) : x \le p\}$ . The following holds for the operator  $V(\cdot)$ .

•  $V(x) \cup V(y) = V(x \land y)$  and  $V(x) \cap V(y) = V(x \lor y)$ .

• 
$$V(x) = Min(L) \Leftrightarrow x = 0.$$

The collection { $V(k) : k \in \mathfrak{K}(L)$ } forms a basis for a topology on Min(L), called the *Inverse topology*, and denoted by  $Min(L)^{-1}$ .

#### Lemma

 $Min(L)^{-1}$  is a compact,  $T_1$  space.

Preliminaries Primes and Minimal Primes Max(dL)The space Max(dL)Ultrafilters of  $\mathcal{R}L^{\perp}$ 

### Theorem

The following are equivalent for an M-frame L.

- The Zariski topology on Min(L) is compact.
- $Min(L) = Min(L)^{-1}$ .
- For each  $x \in \mathfrak{K}(L)$  there exists  $y \in \mathfrak{K}(L)$  such that  $x \wedge y = 0$  and  $x \vee y$  is a unit.

ㅋㅋ イヨト

• L is a complemented frame.



### Lemma on Ultrafilters

For an *M*-frame *L*, Min(L) is in bijective correspondence with  $Ult(\mathfrak{K}(L))$ . In particular,

$$p \in Min(L)$$
 implies  $F_p = \{c \in \mathfrak{K}(L) : c \nleq p\} \in Ult(\mathfrak{K}(L)),$ 

and

$$U \in Ult(\mathfrak{K}(L)) \text{ implies } p(U) = \bigvee \{ c^{\perp} : c \in U \} \in Min(L).$$

Additionally,  $p(F_p) = p$  and  $F_{p(U)} = U$ .

Hence, the map  $\Phi$  :  $Ult(\mathfrak{K}(L)) \to Min(L)$  defined by  $\Phi(U) = p(U)$  is a well-defined bijection with  $\Phi^{-1} = F_p$ .



### Lemma on Ultrafilters

For an *M*-frame *L*, Min(L) is in bijective correspondence with  $Ult(\mathfrak{K}(L))$ . In particular,

$$p \in Min(L)$$
 implies  $F_p = \{c \in \mathfrak{K}(L) : c \nleq p\} \in Ult(\mathfrak{K}(L)),$ 

and

$$U \in Ult(\mathfrak{K}(L)) \text{ implies } p(U) = \bigvee \{ c^{\perp} : c \in U \} \in Min(L).$$

Additionally,  $p(F_p) = p$  and  $F_{p(U)} = U$ .

Hence, the map  $\Phi : Ult(\mathfrak{K}(L)) \to Min(L)$  defined by  $\Phi(U) = p(U)$  is a well-defined bijection with  $\Phi^{-1} = F_p$ .



Given  $c \in \mathfrak{K}L$ , we define  $\mathfrak{U}(c) = \{U \in Ult(\mathfrak{K}L) : c \notin U\}$  and  $\mathcal{V}(c) = \{U \in Ult(\mathfrak{K}L) : c \in U\}$ .

- The Wallman topology on  $Ult(\mathfrak{K}(L))$  is generated by the collection  $\mathcal{B}_{\mathfrak{U}} = {\mathfrak{U}(c) \mid c \in \mathfrak{K}(L)}.$
- The *inverse topology* on Ult(ℜ(L)), denoted Ult(ℜ(L))<sup>-1</sup>, is generated by the collection B<sub>V</sub> = {V(c) | c ∈ ℜ(L)}.

#### Theorem

Let L be an M-frame with a unit. The following holds:

- The topological space Ult(RL) is homeomorphic to Min(L)<sup>-1</sup>.
- <sup>3</sup> The topological space  $Ult(\mathfrak{K}L)^{-1}$  is homeomorphic to Min(L).



Given  $c \in \mathfrak{K}L$ , we define  $\mathfrak{U}(c) = \{U \in Ult(\mathfrak{K}L) : c \notin U\}$  and  $\mathcal{V}(c) = \{U \in Ult(\mathfrak{K}L) : c \in U\}.$ 

- The Wallman topology on  $Ult(\mathfrak{K}(L))$  is generated by the collection  $\mathcal{B}_{\mathfrak{U}} = {\mathfrak{U}(c) \mid c \in \mathfrak{K}(L)}.$
- The *inverse topology* on Ult(𝔅(L)), denoted Ult(𝔅(L))<sup>-1</sup>, is generated by the collection 𝔅<sub>𝒱</sub> = {𝔅(c) | c ∈ 𝔅(L)}.

#### Theorem

Let L be an M-frame with a unit. The following holds:

- The topological space Ult(RL) is homeomorphic to Min(L)<sup>-1</sup>.
- <sup>3</sup> The topological space  $Ult(\mathfrak{K}L)^{-1}$  is homeomorphic to Min(L).

< ロ > < 同 > < 回 > < 回 >



Given  $c \in \mathfrak{K}L$ , we define  $\mathfrak{U}(c) = \{U \in Ult(\mathfrak{K}L) : c \notin U\}$  and  $\mathcal{V}(c) = \{U \in Ult(\mathfrak{K}L) : c \in U\}.$ 

- The Wallman topology on  $Ult(\mathfrak{K}(L))$  is generated by the collection  $\mathcal{B}_{\mathfrak{U}} = {\mathfrak{U}(c) \mid c \in \mathfrak{K}(L)}.$
- The *inverse topology* on *Ult*(ℜ(L)), denoted *Ult*(ℜ(L))<sup>-1</sup>, is generated by the collection B<sub>V</sub> = {V(c) | c ∈ ℜ(L)}.

#### Theorem

Let L be an M-frame with a unit. The following holds:

- The topological space Ult(RL) is homeomorphic to Min(L)<sup>-1</sup>.
- <sup>3</sup> The topological space  $Ult(\mathfrak{K}L)^{-1}$  is homeomorphic to Min(L).

イロト イポト イヨト イヨト



Given  $c \in \mathfrak{K}L$ , we define  $\mathfrak{U}(c) = \{U \in Ult(\mathfrak{K}L) : c \notin U\}$  and  $\mathcal{V}(c) = \{U \in Ult(\mathfrak{K}L) : c \in U\}.$ 

- The Wallman topology on  $Ult(\mathfrak{K}(L))$  is generated by the collection  $\mathcal{B}_{\mathfrak{U}} = {\mathfrak{U}(c) \mid c \in \mathfrak{K}(L)}.$
- The *inverse topology* on *Ult*(ℜ(L)), denoted *Ult*(ℜ(L))<sup>-1</sup>, is generated by the collection B<sub>V</sub> = {V(c) | c ∈ ℜ(L)}.

#### Theorem

Let L be an M-frame with a unit. The following holds:

- The topological space  $Ult(\mathfrak{K}L)$  is homeomorphic to  $Min(L)^{-1}$ .
- 2 The topological space  $Ult(\Re L)^{-1}$  is homeomorphic to Min(L).

イロト イ押ト イヨト イヨト

Preliminaries Primes and Minimal Primes **Max(dL)** The space Max(dL) Ultrafilters of *ℜL*⊥

### Definition

An element *d* ∈ *L* is a *d*-element if *d* = ∨{*c*<sup>⊥⊥</sup> : *c* ∈ ℜ(*L*), *c* ≤ *d*}. The collection of all *d*-elements of *L* is denoted by *dL*.

②  $x \in dL$  if and only if given any  $c \in \Re(L)$ ,  $c \le x \Leftrightarrow c^{\perp \perp} \le x$ .

**③** Given an  $x \in L$ ,  $x_d = \bigvee \{c^{\perp \perp} : c \leq x, c \in \Re L\} \in dL$ . This gives a nucleus *d* : *L* → *dL* such that  $d(x) = x_d$ , and fix(d) = dL. If  $c \in \Re L$ , then  $c_d = c^{\perp \perp}$ , and  $x \leq x_d$  for all  $x \in L$ .

- *dL* is a frame, where meet is same as in *L* and join is given by  $\bigvee^{d} S = d(\bigvee S) = (\bigvee S)_{d}$ .

- If *L* is algebraic, then fix(d) = dL is algebraic. In this case,  $\Re(dL) = d(\Re L) = \{c^{\perp \perp} : c \in \Re L\}.$ 

- When *L* satisfies the FIP, *dL* satisfies the FIP.



- An element *d* ∈ *L* is a *d*-element if *d* = ∨{*c*<sup>⊥⊥</sup> : *c* ∈ ℜ(*L*), *c* ≤ *d*}. The collection of all *d*-elements of *L* is denoted by *dL*.
- 3  $x \in dL$  if and only if given any  $c \in \mathfrak{K}(L)$ ,  $c \leq x \Leftrightarrow c^{\perp \perp} \leq x$ .
- ◎ Given an  $x \in L$ ,  $x_d = \bigvee \{ c^{\perp \perp} : c \leq x, c \in \Re L \} \in dL$ . This gives a nucleus  $d : L \to dL$  such that  $d(x) = x_d$ , and fix(d) = dL. If  $c \in \Re L$ , then  $c_d = c^{\perp \perp}$ , and  $x \leq x_d$  for all  $x \in L$ .

- *dL* is a frame, where meet is same as in *L* and join is given by  $\bigvee^{d} S = d(\bigvee S) = (\bigvee S)_{d}$ .

- If *L* is algebraic, then fix(d) = dL is algebraic. In this case,  $\Re(dL) = d(\Re L) = \{c^{\perp \perp} : c \in \Re L\}.$ 

- When *L* satisfies the FIP, *dL* satisfies the FIP.



- An element *d* ∈ *L* is a *d*-element if *d* = ∨{*c*<sup>⊥⊥</sup> : *c* ∈ ℜ(*L*), *c* ≤ *d*}. The collection of all *d*-elements of *L* is denoted by *dL*.
- 2  $x \in dL$  if and only if given any  $c \in \mathfrak{K}(L)$ ,  $c \leq x \Leftrightarrow c^{\perp \perp} \leq x$ .
- **③** Given an  $x \in L$ ,  $x_d = \bigvee \{c^{\perp \perp} : c \leq x, c \in \Re L\} \in dL$ . This gives a nucleus  $d : L \rightarrow dL$  such that  $d(x) = x_d$ , and fix(d) = dL. If  $c \in \Re L$ , then  $c_d = c^{\perp \perp}$ , and  $x \leq x_d$  for all  $x \in L$ .

- dL is a frame, where meet is same as in L and join is given by  $\bigvee^{d} S = d(\bigvee S) = (\bigvee S)_{d}$ .

- If *L* is algebraic, then fix(d) = dL is algebraic. In this case,  $\Re(dL) = d(\Re L) = \{c^{\perp \perp} : c \in \Re L\}.$ 

- When *L* satisfies the FIP, *dL* satisfies the FIP.



- An element *d* ∈ *L* is a *d*-element if *d* = ∨{*c*<sup>⊥⊥</sup> : *c* ∈ ℜ(*L*), *c* ≤ *d*}. The collection of all *d*-elements of *L* is denoted by *dL*.
- 2  $x \in dL$  if and only if given any  $c \in \mathfrak{K}(L)$ ,  $c \leq x \Leftrightarrow c^{\perp \perp} \leq x$ .
- **③** Given an  $x \in L$ ,  $x_d = \bigvee \{c^{\perp \perp} : c \leq x, c \in \Re L\} \in dL$ . This gives a nucleus  $d : L \rightarrow dL$  such that  $d(x) = x_d$ , and fix(d) = dL. If  $c \in \Re L$ , then  $c_d = c^{\perp \perp}$ , and  $x \leq x_d$  for all  $x \in L$ .

- *dL* is a frame, where meet is same as in *L* and join is given by  $\bigvee^{d} S = d(\bigvee S) = (\bigvee S)_{d}$ .

- If *L* is algebraic, then fix(d) = dL is algebraic. In this case,  $\Re(dL) = d(\Re L) = \{c^{\perp \perp} : c \in \Re L\}.$ 

- When *L* satisfies the FIP, *dL* satisfies the FIP.

< 口 > < 同 > < 回 > < 回 > .



- An element *d* ∈ *L* is a *d*-element if *d* = ∨{*c*<sup>⊥⊥</sup> : *c* ∈ ℜ(*L*), *c* ≤ *d*}. The collection of all *d*-elements of *L* is denoted by *dL*.
- 3  $x \in dL$  if and only if given any  $c \in \mathfrak{K}(L)$ ,  $c \leq x \Leftrightarrow c^{\perp \perp} \leq x$ .
- ③ Given an  $x \in L$ ,  $x_d = \bigvee \{c^{\perp \perp} : c \leq x, c \in \Re L\} \in dL$ . This gives a nucleus  $d : L \rightarrow dL$  such that  $d(x) = x_d$ , and fix(d) = dL. If  $c \in \Re L$ , then  $c_d = c^{\perp \perp}$ , and  $x \leq x_d$  for all  $x \in L$ .

- *dL* is a frame, where meet is same as in *L* and join is given by  $\bigvee^{d} S = d(\bigvee S) = (\bigvee S)_{d}$ .

- If *L* is algebraic, then fix(d) = dL is algebraic. In this case,  $\Re(dL) = d(\Re L) = \{c^{\perp \perp} : c \in \Re L\}.$ 

- When *L* satisfies the FIP, *dL* satisfies the FIP.

< ロ > < 同 > < 三 > < 三 > -



- An element *d* ∈ *L* is a *d*-element if *d* = ∨{*c*<sup>⊥⊥</sup> : *c* ∈ ℜ(*L*), *c* ≤ *d*}. The collection of all *d*-elements of *L* is denoted by *dL*.
- 3  $x \in dL$  if and only if given any  $c \in \mathfrak{K}(L)$ ,  $c \leq x \Leftrightarrow c^{\perp \perp} \leq x$ .
- ③ Given an  $x \in L$ ,  $x_d = \bigvee \{c^{\perp \perp} : c \leq x, c \in \Re L\} \in dL$ . This gives a nucleus  $d : L \rightarrow dL$  such that  $d(x) = x_d$ , and fix(d) = dL. If  $c \in \Re L$ , then  $c_d = c^{\perp \perp}$ , and  $x \leq x_d$  for all  $x \in L$ .

- *dL* is a frame, where meet is same as in *L* and join is given by  $\bigvee^{d} S = d(\bigvee S) = (\bigvee S)_{d}$ .

- If *L* is algebraic, then fix(d) = dL is algebraic. In this case,  $\Re(dL) = d(\Re L) = \{c^{\perp \perp} : c \in \Re L\}.$ 

- When L satisfies the FIP, dL satisfies the FIP.

< ロ > < 同 > < 三 > < 三 > -

# Existence of Max(dL):

- Suppose *L* is an *M*-frame that contains a unit *u*.

- Let  $A = \{x \in dL : x < 1\}$ . Obviously  $0 \in A$ , which means that  $A \neq \emptyset$ .

- Take a chain  $\{x_{\alpha}\}$  in *A* and let  $x = \lor x_{\alpha}$ . Suppose  $c \in \Re L$  and  $c \leq x$ . There exists a finite subcollection from the chain such that  $c \leq x_1 \lor \cdots \lor x_n \leq x$ . Hence  $c \leq x_i \leq x$ , for some *i*. Since  $x_i \in dL$  it follows that  $c^{\perp \perp} \leq x_i \leq x$ . Therefore  $x \in dL$ .

- If possible let x = 1, then  $u \le x$ . As before,  $u \le x_j \in A$  for some j. Since  $x_j \in dL$ ,  $1 = u^{\perp \perp} \le x_j$ , contradicting the fact that  $x_j < 1$ . Hence x < 1, proving that  $x \in A$ .

- By Zorn's Lemma, maximal *d*-elements exist in *L*.

- We use Max(dL) to denote the (proper) maximal *d*-elements of *L*.

. . . . . . .

# Existence of Max(dL):

# - Suppose L is an M-frame that contains a unit u.

- Let  $A = \{x \in dL : x < 1\}$ . Obviously  $0 \in A$ , which means that  $A \neq \emptyset$ .

- Take a chain  $\{x_{\alpha}\}$  in *A* and let  $x = \lor x_{\alpha}$ . Suppose  $c \in \pounds L$  and  $c \leq x$ . There exists a finite subcollection from the chain such that  $c \leq x_1 \lor \cdots \lor x_n \leq x$ . Hence  $c \leq x_i \leq x$ , for some *i*. Since  $x_i \in dL$  it follows that  $c^{\perp \perp} \leq x_i \leq x$ . Therefore  $x \in dL$ .

- If possible let x = 1, then  $u \le x$ . As before,  $u \le x_j \in A$  for some j. Since  $x_j \in dL$ ,  $1 = u^{\perp \perp} \le x_j$ , contradicting the fact that  $x_j < 1$ . Hence x < 1, proving that  $x \in A$ .

- By Zorn's Lemma, maximal *d*-elements exist in *L*.

- We use *Max(dL)* to denote the (proper) maximal *d*-elements of *L*.



Existence of *Max(dL*):

- Suppose L is an M-frame that contains a unit u.
- Let  $A = \{x \in dL : x < 1\}$ . Obviously  $0 \in A$ , which means that  $A \neq \emptyset$ .

- Take a chain  $\{x_{\alpha}\}$  in *A* and let  $x = \lor x_{\alpha}$ . Suppose  $c \in \Re L$  and  $c \le x$ . There exists a finite subcollection from the chain such that  $c \le x_1 \lor \cdots \lor x_n \le x$ . Hence  $c \le x_i \le x$ , for some *i*. Since  $x_i \in dL$  it follows that  $c^{\perp \perp} \le x_i \le x$ . Therefore  $x \in dL$ .

- If possible let x = 1, then  $u \le x$ . As before,  $u \le x_j \in A$  for some j. Since  $x_j \in dL$ ,  $1 = u^{\perp \perp} \le x_j$ , contradicting the fact that  $x_j < 1$ . Hence x < 1, proving that  $x \in A$ .

- By Zorn's Lemma, maximal *d*-elements exist in *L*.
- We use *Max(dL)* to denote the (proper) maximal *d*-elements of *L*.



Existence of *Max(dL*):

- Suppose *L* is an *M*-frame that contains a unit *u*.
- Let  $A = \{x \in dL : x < 1\}$ . Obviously  $0 \in A$ , which means that  $A \neq \emptyset$ .
- Take a chain  $\{x_{\alpha}\}$  in *A* and let  $x = \lor x_{\alpha}$ . Suppose  $c \in \mathfrak{K}L$  and  $c \leq x$ . There exists a finite subcollection from the chain such that  $c \leq x_1 \lor \cdots \lor x_n \leq x$ . Hence  $c \leq x_i \leq x$ , for some *i*. Since  $x_i \in dL$  it follows that  $c^{\perp \perp} \leq x_i \leq x$ . Therefore  $x \in dL$ .

- If possible let x = 1, then  $u \le x$ . As before,  $u \le x_j \in A$  for some j. Since  $x_j \in dL$ ,  $1 = u^{\perp \perp} \le x_j$ , contradicting the fact that  $x_j < 1$ . Hence x < 1, proving that  $x \in A$ .

- By Zorn's Lemma, maximal *d*-elements exist in *L*.
- We use *Max(dL)* to denote the (proper) maximal *d*-elements of *L*.



Existence of *Max(dL*):

- Suppose *L* is an *M*-frame that contains a unit *u*.
- Let  $A = \{x \in dL : x < 1\}$ . Obviously  $0 \in A$ , which means that  $A \neq \emptyset$ .
- Take a chain  $\{x_{\alpha}\}$  in *A* and let  $x = \lor x_{\alpha}$ . Suppose  $c \in \mathfrak{K}L$  and  $c \leq x$ . There exists a finite subcollection from the chain such that  $c \leq x_1 \lor \cdots \lor x_n \leq x$ . Hence  $c \leq x_i \leq x$ , for some *i*. Since  $x_i \in dL$  it follows that  $c^{\perp \perp} \leq x_i \leq x$ . Therefore  $x \in dL$ .

- If possible let x = 1, then  $u \le x$ . As before,  $u \le x_j \in A$  for some j. Since  $x_j \in dL$ ,  $1 = u^{\perp \perp} \le x_j$ , contradicting the fact that  $x_j < 1$ . Hence x < 1, proving that  $x \in A$ .

- By Zorn's Lemma, maximal d-elements exist in L.
- We use Max(dL) to denote the (proper) maximal *d*-elements of *L*.

イロト イポト イヨト イヨト



Existence of *Max(dL*):

- Suppose *L* is an *M*-frame that contains a unit *u*.
- Let  $A = \{x \in dL : x < 1\}$ . Obviously  $0 \in A$ , which means that  $A \neq \emptyset$ .
- Take a chain  $\{x_{\alpha}\}$  in *A* and let  $x = \lor x_{\alpha}$ . Suppose  $c \in \mathfrak{K}L$  and  $c \leq x$ . There exists a finite subcollection from the chain such that  $c \leq x_1 \lor \cdots \lor x_n \leq x$ . Hence  $c \leq x_i \leq x$ , for some *i*. Since  $x_i \in dL$  it follows that  $c^{\perp \perp} \leq x_i \leq x$ . Therefore  $x \in dL$ .
- If possible let x = 1, then  $u \le x$ . As before,  $u \le x_j \in A$  for some j. Since  $x_j \in dL$ ,  $1 = u^{\perp \perp} \le x_j$ , contradicting the fact that  $x_j < 1$ . Hence x < 1, proving that  $x \in A$ .
- By Zorn's Lemma, maximal *d*-elements exist in *L*.
- We use Max(dL) to denote the (proper) maximal *d*-elements of *L*.

< ロ > < 同 > < 三 > < 三 >



Two important results:

# Theorem

Let  $x \in Max(dL)$ , then x is maximal with respect to  $u \nleq x$  for all units u of L. Conversely, if  $y \in L$  is maximal with respect to  $u \nleq x$  for all units u, then  $y \in Max(dL)$ .

#### Theorem

 $Min(L) \subseteq dL$  and  $Max(dL) \subseteq Spec(L)$ .

A B F A B F



Two important results:

# Theorem

Let  $x \in Max(dL)$ , then x is maximal with respect to  $u \nleq x$  for all units u of L. Conversely, if  $y \in L$  is maximal with respect to  $u \nleq x$  for all units u, then  $y \in Max(dL)$ .

# Theorem

 $Min(L) \subseteq dL$  and  $Max(dL) \subseteq Spec(L)$ .

ㅋㅋ イヨト



Define

 $U_d(x) = \{m \in Max(dL) : x \nleq m\}.$ 

The following hold for all  $c, k \in \Re L$ .

•  $U_d(c) = Max(dL)$  if and only if *c* is a unit.

$$\bigcup U_d(c) = U_d(\bigvee c).$$

$$U_d(c) \cap U_d(k) = U_d(c \wedge k).$$

$$U_d(c) = U_d(c^{\perp \perp}).$$

The collection  $\{U_d(c) : c \in \Re L\}$  forms a basis of open sets for the Zariski topology on Max(dL).



Define

$$U_d(x) = \{m \in Max(dL) : x \nleq m\}.$$

The following hold for all  $c, k \in \mathfrak{K}L$ .

- $U_d(c) = Max(dL)$  if and only if c is a unit.
- $\bigcirc \bigcup U_d(c) = U_d(\bigvee c).$

$$U_d(c) \cap U_d(k) = U_d(c \wedge k).$$

$$U_d(c) = U_d(c^{\perp \perp}).$$

The collection  $\{U_d(c) : c \in \Re L\}$  forms a basis of open sets for the Zariski topology on Max(dL).



Define

$$U_d(x) = \{m \in Max(dL) : x \leq m\}.$$

The following hold for all  $c, k \in \mathfrak{K}L$ .

•  $U_d(c) = Max(dL)$  if and only if c is a unit.

$$\bigcirc \bigcup U_d(c) = U_d(\bigvee c).$$

$$U_d(c) \cap U_d(k) = U_d(c \wedge k).$$

$$U_d(c) = U_d(c^{\perp \perp}).$$

The collection  $\{U_d(c) : c \in \Re L\}$  forms a basis of open sets for the Zariski topology on Max(dL).

< ロ > < 同 > < 回 > < 回 >



Define

$$U_d(x) = \{m \in Max(dL) : x \leq m\}.$$

The following hold for all  $c, k \in \mathfrak{K}L$ .

•  $U_d(c) = Max(dL)$  if and only if c is a unit.

$$\bigcirc U_d(c) = U_d(\bigvee c).$$

$$U_d(c) \cap U_d(k) = U_d(c \wedge k).$$

$$U_d(c) = U_d(c^{\perp \perp}).$$

The collection  $\{U_d(c) : c \in \mathfrak{K}L\}$  forms a basis of open sets for the Zariski topology on Max(dL).

イロト イポト イヨト イヨト

## Theorem

Let L be an M-frame that possesses a unit u. The space Max(dL) is a compact topological space.

Important Observation: In case of a W-object (G, u),  $Max_d(G)$ , w.r.t the Zariski topology is a compact, **Hausdorff** space. It so happens that to prove the Hausdorff condition, we require the property of "disjointification" which  $\ell$ -groups possess. This is the first result in frames that seems to NOT be occurring parallel to that of  $\ell$ -groups, since an algebraic frame does not satisfy disjointification always.

**Question**: If *L* is an *M*-frame with a unit, when is *Max(dL)* Hausdorff?

# Theorem

Let L be an M-frame that possesses a unit u. The space Max(dL) is a compact topological space.

Important Observation: In case of a **W**-object (G, u),  $Max_d(G)$ , w.r.t the Zariski topology is a compact, **Hausdorff** space. It so happens that to prove the Hausdorff condition, we require the property of "disjointification" which  $\ell$ -groups possess. This is the first result in frames that seems to NOT be occurring parallel to that of  $\ell$ -groups, since an algebraic frame does not satisfy disjointification always.

**Question**: If *L* is an *M*-frame with a unit, when is *Max(dL)* Hausdorff?

# Theorem

Let L be an M-frame that possesses a unit u. The space Max(dL) is a compact topological space.

Important Observation: In case of a **W**-object (G, u),  $Max_d(G)$ , w.r.t the Zariski topology is a compact, **Hausdorff** space. It so happens that to prove the Hausdorff condition, we require the property of "disjointification" which  $\ell$ -groups possess. This is the first result in frames that seems to NOT be occurring parallel to that of  $\ell$ -groups, since an algebraic frame does not satisfy disjointification always.

**Question**: If L is an M-frame with a unit, when is Max(dL) Hausdorff?

- It is known that

 $Max_d(G) \cong Ult(Z^{\sharp}(G)), \text{ for } \mathbf{W}\text{-objects}$ 

and

 $Max_d(X) \cong Ult(Z^{\sharp}(X))$  for spaces

# where $Z^{\sharp}(X) = \{ cl int Z : Z \in Z(X) \} \subseteq \mathcal{R}(X) \text{ (regular closed subsets of } X) \}$

- In frames,  $\mathfrak{B}(L) = \{x^{\perp} : x \in L\}$  is analogous to  $\mathcal{R}(X)$  for spaces.

**Q:** In frames, what is analogous to  $Z^{\sharp}(X)$ ?

- Let  $\mathfrak{K}L^{\perp} = \{ c^{\perp} : c \in \mathfrak{K}L \} \subseteq \mathfrak{B}(L)$  be a subset.

#### Lemma

 $\Re L^{\perp}$  is a sublattice of  $\mathfrak{B}(L)$ , with meet same as the meet of L and the join is given by  $x^{\perp} \lor' y^{\perp} = (x \land y)^{\perp}$ . Also,  $\Re L^{\perp}$  is a bounded lattice

- Filters and ultrafilters on  $\Re L^{\perp}$  exist.

- It is known that

 $Max_d(G) \cong Ult(Z^{\sharp}(G)), \text{ for } \mathbf{W}\text{-objects}$ 

and

 $Max_d(X) \cong Ult(Z^{\sharp}(X))$  for spaces

where  $Z^{\sharp}(X) = \{ cl int Z : Z \in Z(X) \} \subseteq \mathcal{R}(X) \text{ (regular closed subsets of } X) \}$ 

- In frames,  $\mathfrak{B}(L) = \{x^{\perp} : x \in L\}$  is analogous to  $\mathcal{R}(X)$  for spaces.

**Q:** In frames, what is analogous to  $Z^{\sharp}(X)$ ?

- Let  $\mathfrak{K}L^{\perp} = \{ c^{\perp} : c \in \mathfrak{K}L \} \subseteq \mathfrak{B}(L)$  be a subset.

#### Lemma

 $\Re L^{\perp}$  is a sublattice of  $\mathfrak{B}(L)$ , with meet same as the meet of L and the join is given by  $x^{\perp} \lor' y^{\perp} = (x \land y)^{\perp}$ . Also,  $\Re L^{\perp}$  is a bounded lattice

- Filters and ultrafilters on  $\Re L^{\perp}$  exist.

- It is known that

 $Max_d(G) \cong Ult(Z^{\sharp}(G)), \text{ for } \mathbf{W}\text{-objects}$ 

and

 $Max_d(X) \cong Ult(Z^{\sharp}(X))$  for spaces

where  $Z^{\sharp}(X) = \{ cl int Z : Z \in Z(X) \} \subseteq \mathcal{R}(X) \text{ (regular closed subsets of } X) \}$ 

- In frames,  $\mathfrak{B}(L) = \{x^{\perp} : x \in L\}$  is analogous to  $\mathcal{R}(X)$  for spaces.

**Q:** In frames, what is analogous to  $Z^{\sharp}(X)$ ?

- Let  $\mathfrak{K}L^{\perp} = \{ c^{\perp} : c \in \mathfrak{K}L \} \subseteq \mathfrak{B}(L)$  be a subset.

#### Lemma

 $\Re L^{\perp}$  is a sublattice of  $\mathfrak{B}(L)$ , with meet same as the meet of L and the join is given by  $x^{\perp} \lor' y^{\perp} = (x \land y)^{\perp}$ . Also,  $\Re L^{\perp}$  is a bounded lattice

- Filters and ultrafilters on  $\Re L^{\perp}$  exist.

- It is known that

 $Max_d(G) \cong Ult(Z^{\sharp}(G)), \text{ for } \mathbf{W}\text{-objects}$ 

and

 $Max_d(X) \cong Ult(Z^{\sharp}(X))$  for spaces

where  $Z^{\sharp}(X) = \{ cl int Z : Z \in Z(X) \} \subseteq \mathcal{R}(X) \text{ (regular closed subsets of } X) \}$ 

- In frames,  $\mathfrak{B}(L) = \{x^{\perp} : x \in L\}$  is analogous to  $\mathcal{R}(X)$  for spaces.

**Q:** In frames, what is analogous to  $Z^{\sharp}(X)$ ?

- Let  $\mathfrak{K}L^{\perp} = \{ \boldsymbol{c}^{\perp} : \boldsymbol{c} \in \mathfrak{K}L \} \subseteq \mathfrak{B}(L)$  be a subset.

#### Lemma

 $\Re L^{\perp}$  is a sublattice of  $\mathfrak{B}(L)$ , with meet same as the meet of L and the join is given by  $x^{\perp} \lor' y^{\perp} = (x \land y)^{\perp}$ . Also,  $\Re L^{\perp}$  is a bounded lattice

- Filters and ultrafilters on  $\Re L^{\perp}$  exist.

- It is known that

 $Max_d(G) \cong Ult(Z^{\sharp}(G)), \text{ for } \mathbf{W}\text{-objects}$ 

and

 $Max_d(X) \cong Ult(Z^{\sharp}(X))$  for spaces

where  $Z^{\sharp}(X) = \{ cl int Z : Z \in Z(X) \} \subseteq \mathcal{R}(X) \text{ (regular closed subsets of } X) \}$ 

- In frames,  $\mathfrak{B}(L) = \{x^{\perp} : x \in L\}$  is analogous to  $\mathcal{R}(X)$  for spaces.

**Q:** In frames, what is analogous to  $Z^{\sharp}(X)$ ?

- Let  $\mathfrak{K}L^{\perp} = \{ c^{\perp} : c \in \mathfrak{K}L \} \subseteq \mathfrak{B}(L)$  be a subset.

#### Lemma

 $\Re L^{\perp}$  is a sublattice of  $\mathfrak{B}(L)$ , with meet same as the meet of L and the join is given by  $x^{\perp} \lor' y^{\perp} = (x \land y)^{\perp}$ . Also,  $\Re L^{\perp}$  is a bounded lattice

- Filters and ultrafilters on  $\Re L^{\perp}$  exist.

< 口 > < 同 > < 回 > < 回 > .

- It is known that

 $Max_d(G) \cong Ult(Z^{\sharp}(G)), \text{ for } \mathbf{W}\text{-objects}$ 

and

 $Max_d(X) \cong Ult(Z^{\sharp}(X))$  for spaces

where  $Z^{\sharp}(X) = \{ cl int Z : Z \in Z(X) \} \subseteq \mathcal{R}(X) \text{ (regular closed subsets of } X) \}$ 

- In frames,  $\mathfrak{B}(L) = \{x^{\perp} : x \in L\}$  is analogous to  $\mathcal{R}(X)$  for spaces.

**Q:** In frames, what is analogous to  $Z^{\sharp}(X)$ ?

- Let  $\mathfrak{K}L^{\perp} = \{ c^{\perp} : c \in \mathfrak{K}L \} \subseteq \mathfrak{B}(L)$  be a subset.

#### Lemma

 $\Re L^{\perp}$  is a sublattice of  $\mathfrak{B}(L)$ , with meet same as the meet of L and the join is given by  $x^{\perp} \lor' y^{\perp} = (x \land y)^{\perp}$ . Also,  $\Re L^{\perp}$  is a bounded lattice

- Filters and ultrafilters on  $\Re L^{\perp}$  exist.

# Theorem

Suppose L possesses a unit u.

If F is a filter on ℜL<sup>⊥</sup>, then x(F) = \{c<sup>⊥⊥</sup> : c<sup>⊥</sup> ∈ F} is a proper d-element of L.

2) If  $x \in dL$  is proper, then  $\hat{F}_x = \{c^{\perp} : c \in \mathfrak{K}L, c \leq x\}$  is a filter of  $\mathfrak{K}L^{\perp}$ .

)  $\hat{F}_{x(G)} = G$ , for every filter G of  $\mathfrak{K}L^{\perp}$  and  $x(\hat{F}_y) = y$ , for every  $y \in dL$ .

Let  $\Phi_d$  :  $Ult(\mathfrak{K}L^{\perp}) \to Max(dL)$  be defined by  $\Phi_d(U) = x(U)$ ,

#### Theorem

Let *L* be an *M*-frame with a unit.  $\Phi_d$  is a well-defined bijection with  $\Phi_d^{-1}(m) = \hat{F}_m$ .

# Theorem

Suppose L possesses a unit u.

- If F is a filter on ℜL<sup>⊥</sup>, then x(F) = \{c<sup>⊥⊥</sup> : c<sup>⊥</sup> ∈ F} is a proper d-element of L.
- 2 If  $x \in dL$  is proper, then  $\hat{F}_x = \{c^{\perp} : c \in \mathfrak{K}L, c \leq x\}$  is a filter of  $\mathfrak{K}L^{\perp}$ .

)  $\hat{F}_{\mathsf{x}(G)} = G$ , for every filter G of  $\mathfrak{K}L^{\perp}$  and  $\mathsf{x}(\hat{F}_y) = y$ , for every  $y \in dL$ .

Let  $\Phi_d$  :  $Ult(\mathfrak{K}L^{\perp}) \to Max(dL)$  be defined by  $\Phi_d(U) = x(U)$ ,

#### Theorem

Let *L* be an *M*-frame with a unit.  $\Phi_d$  is a well-defined bijection with  $\Phi_d^{-1}(m) = \hat{F}_m$ .

# Theorem

Suppose L possesses a unit u.

- If F is a filter on ℜL<sup>⊥</sup>, then x(F) = \{c<sup>⊥⊥</sup> : c<sup>⊥</sup> ∈ F} is a proper d-element of L.
- 2 If  $x \in dL$  is proper, then  $\hat{F}_x = \{c^{\perp} : c \in \mathfrak{K}L, c \leq x\}$  is a filter of  $\mathfrak{K}L^{\perp}$ .

③  $\hat{F}_{x(G)} = G$ , for every filter G of ℜL<sup>⊥</sup> and  $x(\hat{F}_y) = y$ , for every  $y \in dL$ .

Let  $\Phi_d$  :  $Ult(\mathfrak{K}L^{\perp}) \to Max(dL)$  be defined by  $\Phi_d(U) = x(U)$ ,

#### Theorem

Let *L* be an *M*-frame with a unit.  $\Phi_d$  is a well-defined bijection with  $\Phi_d^{-1}(m) = \hat{F}_m$ .

# Theorem

Suppose L possesses a unit u.

- If F is a filter on ℜL<sup>⊥</sup>, then x(F) = \{c<sup>⊥⊥</sup> : c<sup>⊥</sup> ∈ F} is a proper d-element of L.
- 2 If  $x \in dL$  is proper, then  $\hat{F}_x = \{c^{\perp} : c \in \mathfrak{K}L, c \leq x\}$  is a filter of  $\mathfrak{K}L^{\perp}$ .

③  $\hat{F}_{x(G)} = G$ , for every filter G of ℜL<sup>⊥</sup> and  $x(\hat{F}_y) = y$ , for every  $y \in dL$ .

Let  $\Phi_d$  :  $Ult(\mathfrak{K}L^{\perp}) \to Max(dL)$  be defined by  $\Phi_d(U) = x(U)$ ,

#### [heorem]

Let *L* be an *M*-frame with a unit.  $\Phi_d$  is a well-defined bijection with  $\Phi_d^{-1}(m) = \hat{F}_m$ .

# Theorem

Suppose L possesses a unit u.

- If F is a filter on ℜL<sup>⊥</sup>, then x(F) = \{c<sup>⊥⊥</sup> : c<sup>⊥</sup> ∈ F} is a proper d-element of L.
- 2 If  $x \in dL$  is proper, then  $\hat{F}_x = \{c^{\perp} : c \in \mathfrak{K}L, c \leq x\}$  is a filter of  $\mathfrak{K}L^{\perp}$ .

③  $\hat{F}_{x(G)} = G$ , for every filter G of ℜL<sup>⊥</sup> and  $x(\hat{F}_y) = y$ , for every  $y \in dL$ .

Let  $\Phi_d$  :  $Ult(\mathfrak{K}L^{\perp}) \to Max(dL)$  be defined by  $\Phi_d(U) = x(U)$ ,

# Theorem

Let L be an M-frame with a unit.  $\Phi_d$  is a well-defined bijection with  $\Phi_d^{-1}(m) = \hat{F}_m$ .

< 口 > < 同 > < 回 > < 回 > .

Next, we topologize  $Ult(\mathfrak{K}L^{\perp})$  with the well-known Wallman topology: basic open sets are  $M(I^{\perp}) = \{U \in Ult(\mathfrak{K}L^{\perp}) : I^{\perp} \notin U\}$ , for  $I \in \mathfrak{K}L$ .

Finally, the main result:

#### Theorem

Let L be an M-frame with a unit u. The map  $\Phi_d$  : Ult( $\Re L^{\perp}$ )  $\rightarrow$  Max(dL) is a homeomorphism between the topological spaces Ult( $\Re L^{\perp}$ ), with respect to the Wallman topology, and Max(dL), endowed with the hull-kernel topology.

 $So, Max(dL) \cong Ult(\mathfrak{K}L^{\perp})$ 

Next, we topologize  $Ult(\mathfrak{K}L^{\perp})$  with the well-known Wallman topology: basic open sets are  $M(I^{\perp}) = \{U \in Ult(\mathfrak{K}L^{\perp}) : I^{\perp} \notin U\}$ , for  $I \in \mathfrak{K}L$ .

Finally, the main result:

# Theorem

Let L be an M-frame with a unit u. The map  $\Phi_d$ : Ult( $\Re L^{\perp}$ )  $\rightarrow$  Max(dL) is a homeomorphism between the topological spaces Ult( $\Re L^{\perp}$ ), with respect to the Wallman topology, and Max(dL), endowed with the hull-kernel topology.

So,  $Max(dL) \cong Ult(\mathfrak{K}L^{\perp})$ 

- If  $U \in Ult(\mathfrak{K}L)$ , then  $U^* = \{c^{\perp} : c \in \mathfrak{K}L \setminus U\}$  is a prime filter of  $\mathfrak{K}L^{\perp}$ .

- If  $V \in Ult(\mathfrak{K}L^{\perp})$ , then  $V_* = \{c \in \mathfrak{K}L : c^{\perp} \in V\}$  is a prime filter of  $\mathfrak{K}L$ .

**Q:** When can we have a well-defined bijection between  $Ult(\mathfrak{K}L)$  and  $Ult(\mathfrak{K}L^{\perp})$ ?

Answer: Complemented frames

#### Theorem

The following are equivalent for an M-frame L that possesses a unit u.

L is a complemented frame.

Min(L) = Max(dL).

Min(L) is homeomorphic to Max(dL).

If  $(\mathfrak{K}L)^{-1} \cong Ult(\mathfrak{K}L^{\perp})$ , a homeomorphism.

. . . . . . .



- If  $U \in Ult(\mathfrak{K}L)$ , then  $U^* = \{c^{\perp} : c \in \mathfrak{K}L \setminus U\}$  is a prime filter of  $\mathfrak{K}L^{\perp}$ .
- If  $V \in Ult(\mathfrak{K}L^{\perp})$ , then  $V_* = \{c \in \mathfrak{K}L : c^{\perp} \in V\}$  is a prime filter of  $\mathfrak{K}L$ .

Answer: Complemented frames

#### Theorem

The following are equivalent for an M-frame L that possesses a unit u.

L is a complemented frame.

Min(L) = Max(dL).

Min(L) is homeomorphic to Max(dL).

If  $(\mathfrak{K}L)^{-1} \cong Ult(\mathfrak{K}L^{\perp})$ , a homeomorphism.

) ( <u>)</u> ( <u>)</u> ( <u>)</u>



- If  $U \in Ult(\mathfrak{K}L)$ , then  $U^* = \{c^{\perp} : c \in \mathfrak{K}L \setminus U\}$  is a prime filter of  $\mathfrak{K}L^{\perp}$ .
- If  $V \in Ult(\mathfrak{K}L^{\perp})$ , then  $V_* = \{c \in \mathfrak{K}L : c^{\perp} \in V\}$  is a prime filter of  $\mathfrak{K}L$ .

Answer: Complemented frames

#### Theorem

The following are equivalent for an M-frame L that possesses a unit u.

L is a complemented frame.

Min(L) = Max(dL).

Min(L) is homeomorphic to Max(dL).

If  $(\mathfrak{K}L)^{-1} \cong Ult(\mathfrak{K}L^{\perp})$ , a homeomorphism.



- If  $U \in Ult(\mathfrak{K}L)$ , then  $U^* = \{c^{\perp} : c \in \mathfrak{K}L \setminus U\}$  is a prime filter of  $\mathfrak{K}L^{\perp}$ .
- If  $V \in Ult(\mathfrak{K}L^{\perp})$ , then  $V_* = \{c \in \mathfrak{K}L : c^{\perp} \in V\}$  is a prime filter of  $\mathfrak{K}L$ .

Answer: Complemented frames

#### Theorem

The following are equivalent for an M-frame L that possesses a unit u.

L is a complemented frame.

Min(L) = Max(dL).

Min(L) is homeomorphic to Max(dL).

If  $(\mathfrak{K}L)^{-1} \cong Ult(\mathfrak{K}L^{\perp})$ , a homeomorphism.

(日)



- If  $U \in Ult(\mathfrak{K}L)$ , then  $U^* = \{c^{\perp} : c \in \mathfrak{K}L \setminus U\}$  is a prime filter of  $\mathfrak{K}L^{\perp}$ .
- If  $V \in Ult(\mathfrak{K}L^{\perp})$ , then  $V_* = \{c \in \mathfrak{K}L : c^{\perp} \in V\}$  is a prime filter of  $\mathfrak{K}L$ .

Answer: Complemented frames

#### Theorem

The following are equivalent for an M-frame L that possesses a unit u.

- L is a complemented frame.
- in(L) = Max(dL).
- Min(L) is homeomorphic to Max(dL).
- $Ult(\mathfrak{K}L)^{-1} \cong Ult(\mathfrak{K}L^{\perp})$ , a homeomorphism.

イロト イ押ト イヨト イヨト



# **Question**: If L is an M-frame with a unit, when is Max(dL) Hausdorff?

We know,

 $Min(L)^{-1}$  Hausdorff  $\Leftrightarrow Ult(\mathfrak{K}L)$  Hausdorff  $\Leftrightarrow \mathfrak{K}L$  normal lattice  $\Leftrightarrow L$  Lamron

Similarly,

Max(dL) Hausdorff  $\Leftrightarrow Ult(\mathfrak{K}L^{\perp})$  Hausdorff  $\Leftrightarrow \mathfrak{K}L^{\perp}$  normal lattice  $\Leftrightarrow L$ ??

THANK YOU



# **Question**: If *L* is an *M*-frame with a unit, when is Max(dL) Hausdorff? We know,

 $Min(L)^{-1}$  Hausdorff  $\Leftrightarrow Ult(\mathfrak{K}L)$  Hausdorff  $\Leftrightarrow \mathfrak{K}L$  normal lattice  $\Leftrightarrow L$  Lamron

Similarly,

Max(dL) Hausdorff  $\Leftrightarrow Ult(\mathfrak{K}L^{\perp})$  Hausdorff  $\Leftrightarrow \mathfrak{K}L^{\perp}$  normal lattice  $\Leftrightarrow L$ ??

THANK YOU



**Question**: If *L* is an *M*-frame with a unit, when is Max(dL) Hausdorff? We know,

 $Min(L)^{-1}$  Hausdorff  $\Leftrightarrow Ult(\pounds L)$  Hausdorff  $\Leftrightarrow \pounds L$  normal lattice  $\Leftrightarrow L$  Lamron

Similarly,

```
Max(dL) Hausdorff \Leftrightarrow Ult(\mathfrak{K}L^{\perp}) Hausdorff \Leftrightarrow \mathfrak{K}L^{\perp} normal lattice \Leftrightarrow L??
```

THANK YOU

**∃** ▶ ∢



**Question**: If *L* is an *M*-frame with a unit, when is Max(dL) Hausdorff? We know,

 $Min(L)^{-1}$  Hausdorff  $\Leftrightarrow Ult(\mathfrak{K}L)$  Hausdorff  $\Leftrightarrow \mathfrak{K}L$  normal lattice  $\Leftrightarrow L$  Lamron

Similarly,

Max(dL) Hausdorff  $\Leftrightarrow Ult(\mathfrak{K}L^{\perp})$  Hausdorff  $\Leftrightarrow \mathfrak{K}L^{\perp}$  normal lattice  $\Leftrightarrow L$ ??

# THANK YOU