Minor Identities and Primitive Positive Constructions

Manuel Bodirsky

Institut für Algebra, TU Dresden

June 12+13, 2021, BLAST, virtual

- Primitive positive constructions
- Minor-preserving maps

- Primitive positive constructions
- Minor-preserving maps
- 2-element structures

- Primitive positive constructions
- Minor-preserving maps
- 2-element structures
- 3-element structures

- Primitive positive constructions
- Minor-preserving maps
- 2-element structures
- 3-element structures
- Finite digraphs

- Primitive positive constructions
- Minor-preserving maps
- 2-element structures
- 3-element structures
- Finite digraphs
- Infinite structures

<u>*B*</u>: structure with finite relational signature τ .

 $\underline{\textit{B}}:$ structure with finite relational signature $\tau.$

 $CSP(\underline{B})$:

Input: Finite τ -structure <u>A</u>.

<u>*B*</u>: structure with finite relational signature τ .

CSP(<u>*B*</u>):

Input: Finite τ -structure <u>A</u>.

Question: Is there a homomorphism from \underline{A} to \underline{B} .

<u>*B*</u>: structure with finite relational signature τ .

 $CSP(\underline{B})$:

Input: Finite τ -structure <u>A</u>.

Question: Is there a homomorphism from \underline{A} to \underline{B} .

Example:

 $\underline{B} := K_3 := (\{0, 1, 2\}; \neq).$ CSP(\underline{B}): 3-colorability problem.

<u>*B*</u>: structure with finite relational signature τ .

 $CSP(\underline{B})$:

Input: Finite τ -structure <u>A</u>.

Question: Is there a homomorphism from \underline{A} to \underline{B} .

Example:

 $\underline{B} := K_3 := (\{0, 1, 2\}; \neq).$ CSP(\underline{B}): 3-colorability problem.

Theorem (Bulatov'17, Zhuk'17).

If <u>*B*</u> has finite relational signature and finite domain, then $CSP(\underline{B})$ is in P or NP-complete.

Theorem (Bulatov'17, Zhuk'17).

If <u>*B*</u> has finite relational signature and finite domain, then $CSP(\underline{B})$ is in P or NP-complete.

Complexity dichotomy (unless P = NP).

Theorem (Bulatov'17, Zhuk'17).

If <u>*B*</u> has finite relational signature and finite domain, then $CSP(\underline{B})$ is in P or NP-complete.

Complexity dichotomy (unless P = NP).

Ladner's theorem: If $P \neq NP$, then $NP \setminus (P \cup NP-c) \neq \emptyset$.

Theorem (Bulatov'17, Zhuk'17).

If <u>*B*</u> has finite relational signature and finite domain, then $CSP(\underline{B})$ is in P or NP-complete.

Complexity dichotomy (unless P = NP).

Ladner's theorem: If $P \neq NP$, then $NP \setminus (P \cup NP-c) \neq \emptyset$.

Theorem (Bulatov'17, Zhuk'17).

If <u>*B*</u> has finite relational signature and finite domain, then $CSP(\underline{B})$ is in P or NP-complete.

Complexity dichotomy (unless P = NP).

Ladner's theorem: If $P \neq NP$, then $NP \setminus (P \cup NP-c) \neq \emptyset$.

Open questions:

- When is CSP(<u>B</u>) in NC?
- When is CSP(<u>B</u>) in NL?
- When is CSP(<u>B</u>) in L?

Both Bulatov and Zhuk use universal-algebraic approach.

Both Bulatov and Zhuk use universal-algebraic approach.

Theorem (Siggers, Barto+Kozik, Barto+Opršal+Pinsker).

If <u>B</u> has finite domain, then exactly one of the following cases applies:

Both Bulatov and Zhuk use universal-algebraic approach.

Theorem (Siggers, Barto+Kozik, Barto+Opršal+Pinsker).

If \underline{B} has finite domain, then exactly one of the following cases applies:

• K_3 has a primitive positive construction in <u>B</u>.

Both Bulatov and Zhuk use universal-algebraic approach.

Theorem (Siggers, Barto+Kozik, Barto+Opršal+Pinsker).

If <u>B</u> has finite domain, then exactly one of the following cases applies:

- K_3 has a primitive positive construction in <u>B</u>.
- <u>*B*</u> has a polymorphism *f* that satisfies the following minor identity:

 $\forall a, r, e: f(a, r, e, a) = f(r, a, r, e).$

Both Bulatov and Zhuk use universal-algebraic approach.

Theorem (Siggers, Barto+Kozik, Barto+Opršal+Pinsker).

If <u>B</u> has finite domain, then exactly one of the following cases applies:

- *K*₃ has a primitive positive construction in <u>*B*</u>.
- <u>*B*</u> has a polymorphism *f* that satisfies the following minor identity:

 $\forall a, r, e: f(a, r, e, a) = f(r, a, r, e).$

Many other important theorems of universal algebra can be phrased in terms of minor-conditions and pp-constructability.

Both Bulatov and Zhuk use universal-algebraic approach.

Theorem (Siggers, Barto+Kozik, Barto+Opršal+Pinsker).

If <u>B</u> has finite domain, then exactly one of the following cases applies:

- *K*₃ has a primitive positive construction in <u>*B*</u>.
- <u>*B*</u> has a polymorphism *f* that satisfies the following minor identity:

 $\forall a, r, e: f(a, r, e, a) = f(r, a, r, e).$

Many other important theorems of universal algebra can be phrased in terms of minor-conditions and pp-constructability.

Challenge:

Study finite structures with respect to primitive positive constructability.

Both Bulatov and Zhuk use universal-algebraic approach.

Theorem (Siggers, Barto+Kozik, Barto+Opršal+Pinsker).

If <u>B</u> has finite domain, then exactly one of the following cases applies:

- *K*₃ has a primitive positive construction in <u>*B*</u>.
- <u>*B*</u> has a polymorphism *f* that satisfies the following minor identity:

 $\forall a, r, e: f(a, r, e, a) = f(r, a, r, e).$

Many other important theorems of universal algebra can be phrased in terms of minor-conditions and pp-constructability.

Challenge:

- Study finite structures with respect to primitive positive constructability.
- Study polymorphism clones over finite sets with respect to minor-preserving maps.

Three posets on finite structures:

Three posets on finite structures:

1 Primitive positive (pp) definability: $\underline{B} \leq_{def} \underline{A}$ if A = B and every relation in \underline{A} has a primitive positive definition in \underline{B} .

 $\exists x_1,\ldots,x_n(\psi_1\wedge\cdots\wedge\psi_m)$

Three posets on finite structures:

1 Primitive positive (pp) definability: $\underline{B} \leq_{def} \underline{A}$ if A = B and every relation in \underline{A} has a primitive positive definition in \underline{B} .

 $\exists x_1,\ldots,x_n(\psi_1\wedge\cdots\wedge\psi_m)$

2 Primitive positive interpretations: $\underline{B} \leq_{int} \underline{A}$ if there exists $d \in \mathbb{N}$ and partial surjection $f: B^d \to A$ such that preimages of A, of =, and of the relations of \underline{A} are pp-definable in \underline{B} .

Three posets on finite structures:

1 Primitive positive (pp) definability: $\underline{B} \leq_{def} \underline{A}$ if A = B and every relation in \underline{A} has a primitive positive definition in \underline{B} .

 $\exists x_1,\ldots,x_n(\psi_1\wedge\cdots\wedge\psi_m)$

- **2** Primitive positive interpretations: $\underline{B} \leq_{int} \underline{A}$ if there exists $d \in \mathbb{N}$ and partial surjection $f: B^d \to A$ such that preimages of A, of =, and of the relations of \underline{A} are pp-definable in \underline{B} .
- 3 Primitive positive constructions (Barto+Opršal+Pinsker): $\underline{B} \leq_{\text{con}} \underline{A}$ if \underline{A} is homomorphically equivalent to \underline{A}' and $\underline{B} \leq_{\text{int}} \underline{A}'$.

Three posets on finite structures:

1 Primitive positive (pp) definability: $\underline{B} \leq_{def} \underline{A}$ if A = B and every relation in \underline{A} has a primitive positive definition in \underline{B} .

 $\exists x_1,\ldots,x_n(\psi_1\wedge\cdots\wedge\psi_m)$

- **2** Primitive positive interpretations: $\underline{B} \leq_{int} \underline{A}$ if there exists $d \in \mathbb{N}$ and partial surjection $f: B^d \to A$ such that preimages of A, of =, and of the relations of \underline{A} are pp-definable in \underline{B} .
- 3 Primitive positive constructions (Barto+Opršal+Pinsker): $\underline{B} \leq_{\text{con}} \underline{A}$ if \underline{A} is homomorphically equivalent to \underline{A}' and $\underline{B} \leq_{\text{int}} \underline{A}'$.

Motivation:

■ \leq_{def} , \leq_{int} , \leq_{con} transitive, preserve the complexity of CSPs.

Three posets on finite structures:

1 Primitive positive (pp) definability: $\underline{B} \leq_{def} \underline{A}$ if A = B and every relation in \underline{A} has a primitive positive definition in \underline{B} .

 $\exists x_1,\ldots,x_n(\psi_1\wedge\cdots\wedge\psi_m)$

- **2** Primitive positive interpretations: $\underline{B} \leq_{int} \underline{A}$ if there exists $d \in \mathbb{N}$ and partial surjection $f: B^d \to A$ such that preimages of A, of =, and of the relations of \underline{A} are pp-definable in \underline{B} .
- 3 Primitive positive constructions (Barto+Opršal+Pinsker): $\underline{B} \leq_{\text{con}} \underline{A}$ if \underline{A} is homomorphically equivalent to \underline{A}' and $\underline{B} \leq_{\text{int}} \underline{A}'$.

Motivation:

- \leq_{def} , \leq_{int} , \leq_{con} transitive, preserve the complexity of CSPs.
- Bulatov'2017, Zhuk'2017:

 $CSP(\underline{B})$ is in P if $\underline{B} \not\leq_{con} K_3$, and is NP-hard otherwise.

Three posets on finite structures:

1 Primitive positive (pp) definability: $\underline{B} \leq_{def} \underline{A}$ if A = B and every relation in \underline{A} has a primitive positive definition in \underline{B} .

 $\exists x_1,\ldots,x_n(\psi_1\wedge\cdots\wedge\psi_m)$

- **2** Primitive positive interpretations: $\underline{B} \leq_{int} \underline{A}$ if there exists $d \in \mathbb{N}$ and partial surjection $f: B^d \to A$ such that preimages of A, of =, and of the relations of \underline{A} are pp-definable in \underline{B} .
- 3 Primitive positive constructions (Barto+Opršal+Pinsker): $\underline{B} \leq_{\text{con}} \underline{A}$ if \underline{A} is homomorphically equivalent to \underline{A}' and $\underline{B} \leq_{\text{int}} \underline{A}'$.

Motivation:

- \leq_{def} , \leq_{int} , \leq_{con} transitive, preserve the complexity of CSPs.
- Bulatov'2017, Zhuk'2017: $CSP(\underline{B})$ is in P if $\underline{B} \not\leq_{con} K_3$, and is NP-hard otherwise.
- Relevant not only for CSPs

 $ec{C}_3 := ig(\{0,1,2\} \,|\, \{(0,1),(1,2),(2,0)\}ig)$

$$ec{C}_3 := ig(\{0,1,2\} \,|\, \{(0,1),(1,2),(2,0)\}ig)$$

has a pp construction in

$$ec{\mathcal{C}}_6 := ig(\{0,1,2,\dots,5\} \,|\, \{(x,y) \mid y = x+1 modes 0\}ig):$$

$$ec{C}_3 := ig(\{0,1,2\} \,|\, \{(0,1),(1,2),(2,0)\}ig)$$

has a pp construction in

$$ec{\mathcal{C}}_6 := ig(\{0,1,2,\dots,5\} \,|\, \{(x,y) \mid y = x+1 modes 0\}ig):$$

 $\exists u (E(x, u) \land E(u, y))$

$$ec{C}_3 := ig(\{0,1,2\} \,|\, \{(0,1),(1,2),(2,0)\}ig)$$

has a pp construction in

$$ec{\mathcal{C}}_6 \coloneqq ig(\{0,1,2,\dots,5\} \,|\, \{(x,y) \mid y = x+1 mode{0} 0\}ig):$$

 $\exists u (E(x, u) \land E(u, y))$

 \vec{C}_9 has a pp construction in \vec{C}_3 :
Primitive Positive Constructions: Example 2

 \vec{C}_9 has a pp construction in \vec{C}_3 :

 $E(x_1, y_3) \wedge y_1 = x_2 \wedge y_2 = x_3$

Primitive Positive Constructions: Example 2

 \vec{C}_9 has a pp construction in \vec{C}_3 :

 $E(x_1, y_3) \wedge y_1 = x_2 \wedge y_2 = x_3$

Homomorphisms from \underline{A}^k to \underline{A} are called polymorphisms of \underline{A} .

Homomorphisms from \underline{A}^k to \underline{A} are called polymorphisms of \underline{A} .

 $Pol(\underline{A}) := set of all polymorphisms of \underline{A}$

Homomorphisms from \underline{A}^k to \underline{A} are called polymorphisms of \underline{A} .

 $Pol(\underline{A}) := set of all polymorphisms of \underline{A}$

 $Pol(\underline{A})$ is a clone: closed under composition, contains the projections.

- Homomorphisms from \underline{A}^k to \underline{A} are called polymorphisms of \underline{A} .
- $Pol(\underline{A}) := set of all polymorphisms of \underline{A}$
- $Pol(\underline{A})$ is a clone: closed under composition, contains the projections.
- Every clone over a finite set equals $Pol(\underline{A})$ for some relational structure \underline{A} .

- Homomorphisms from \underline{A}^k to \underline{A} are called polymorphisms of \underline{A} .
- $Pol(\underline{A}) := set of all polymorphisms of \underline{A}$
- $Pol(\underline{A})$ is a clone: closed under composition, contains the projections.
- Every clone over a finite set equals $Pol(\underline{A})$ for some relational structure \underline{A} .
 - 1 $\underline{B} \leq_{def} \underline{A}$ iff $Pol(\underline{B}) \subseteq Pol(\underline{A})$ (Geiger'67; Bodnarcuk+Kaluznin+Kotov+Romov'68).

- Homomorphisms from \underline{A}^k to \underline{A} are called polymorphisms of \underline{A} .
- $Pol(\underline{A}) := set of all polymorphisms of \underline{A}$
- $Pol(\underline{A})$ is a clone: closed under composition, contains the projections.

Every clone over a finite set equals $Pol(\underline{A})$ for some relational structure \underline{A} .

- **1** $\underline{B} \leq_{def} \underline{A}$ iff $Pol(\underline{B}) \subseteq Pol(\underline{A})$ (Geiger'67; Bodnarcuk+Kaluznin+Kotov+Romov'68).
- **2** $\underline{B} \leq_{int} \underline{A}$ iff there is a clone homomorphism ξ : $Pol(\underline{B}) \rightarrow Pol(\underline{A})$.

$$\xi(f(g_1,\ldots,g_n)) = \xi(f)(\xi(g_1),\ldots,\xi(g_n))$$
$$\xi(\pi_i^n) = \pi_i^n$$

(Bulatov, Jeavons, Krokhin'03; Birkhoff'35)

- Homomorphisms from \underline{A}^k to \underline{A} are called polymorphisms of \underline{A} .
- $Pol(\underline{A}) := set of all polymorphisms of \underline{A}$
- $Pol(\underline{A})$ is a clone: closed under composition, contains the projections.

Every clone over a finite set equals $Pol(\underline{A})$ for some relational structure \underline{A} .

1 $\underline{B} \leq_{def} \underline{A}$ iff $Pol(\underline{B}) \subseteq Pol(\underline{A})$ (Geiger'67; Bodnarcuk+Kaluznin+Kotov+Romov'68).

2 $\underline{B} \leq_{int} \underline{A}$ iff there is a clone homomorphism ξ : $Pol(\underline{B}) \rightarrow Pol(\underline{A})$.

$$\xi(f(g_1,\ldots,g_n)) = \xi(f)(\xi(g_1),\ldots,\xi(g_n))$$
$$\xi(\pi_i^n) = \pi_i^n$$

(Bulatov, Jeavons, Krokhin'03; Birkhoff'35)

3 $\underline{B} \leq_{con} \underline{A}$ iff there is a minor-preserving map ξ : $Pol(\underline{B}) \rightarrow Pol(\underline{A})$.

$$\xi(f(\pi_{i_1}^k,\ldots,\pi_{i_k}^k))=\xi(f)(\pi_{i_1}^k,\ldots,\pi_{i_k}^k)$$

<u>*B*</u>: relational structure. Pol(<u>*B*</u>): polymorphism clone of <u>*B*</u>.

<u>*B*</u>: relational structure. Pol(<u>*B*</u>): polymorphism clone of <u>*B*</u>.

<u>*B*</u>: relational structure. Pol(<u>*B*</u>): polymorphism clone of <u>*B*</u>.

 $A \subseteq B$ is subalgebra of $Pol(\underline{B})$:iff $f(a_1, \ldots, a_n) \in A$ for all $f \in Pol(\underline{B})$ of arity n and $a_1, \ldots, a_n \in A$.

<u>*B*</u>: relational structure. Pol(<u>*B*</u>): polymorphism clone of <u>*B*</u>.

 $A \subseteq B$ is subalgebra of $Pol(\underline{B})$:iff $f(a_1, \ldots, a_n) \in A$ for all $f \in Pol(\underline{B})$ of arity n and $a_1, \ldots, a_n \in A$.

Example: $\{0, 1\}$ is a subalgebra of <u>B</u>.

<u>*B*</u>: relational structure. Pol(<u>*B*</u>): polymorphism clone of <u>*B*</u>.

 $A \subseteq B$ is subalgebra of $Pol(\underline{B})$:iff $f(a_1, \ldots, a_n) \in A$ for all $f \in Pol(\underline{B})$ of arity n and $a_1, \ldots, a_n \in A$.

Example: $\{0, 1\}$ is a subalgebra of <u>B</u>.

 $\{0, 1\}$ has the following primitive positive definition in <u>B</u>:

 $\phi(x) := \exists u \big(E(x, u) \land E(u, x) \big)$

<u>*B*</u>: relational structure. Pol(<u>*B*</u>): polymorphism clone of <u>*B*</u>.

 $A \subseteq B$ is subalgebra of $Pol(\underline{B})$:iff $f(a_1, \ldots, a_n) \in A$ for all $f \in Pol(\underline{B})$ of arity n and $a_1, \ldots, a_n \in A$.

Example: $\{0, 1\}$ is a subalgebra of <u>B</u>.

 $\{0, 1\}$ has the following primitive positive definition in <u>B</u>:

 $\phi(x) := \exists u \big(E(x, u) \land E(u, x) \big)$

Fact for finite B:

 $A \subseteq B$ is subalgebra of $Pol(\underline{B})$ if and only if

A is primitively positively definable in \underline{B} .

<u>A</u>: relational structure. $Pol(\underline{A})^{d}$: clone with domain A^{d} and the operation

 $((a_1^1,\ldots,a_1^d),\ldots,(a_k^1,\ldots,a_k^d))\mapsto (f(a_1^1,\ldots,a_k^1),\ldots,f(a_1^d,\ldots,a_k^d))$

for each $f \in Pol(\underline{A})$.

<u>A</u>: relational structure. Pol(<u>A</u>)^d: clone with domain A^d and the operation

$$\left((a_1^1,\ldots,a_1^d),\ldots,(a_k^1,\ldots,a_k^d)\right)\mapsto \left(f(a_1^1,\ldots,a_k^1),\ldots,f(a_1^d,\ldots,a_k^d)\right)$$

for each $f \in Pol(\underline{A})$.

Fact.

$$\mathsf{Pol}(\underline{A})^d = \mathsf{Pol}(\underline{A}^d; E_{1,2}, \dots, E_{d-1,d})$$

where $E_{i,j} := \{(s, t) \in A^d \mid s_i = t_j\}.$

<u>A</u>, <u>B</u>: relational structures.

<u>A</u>, <u>B</u>: relational structures.

<u>A</u>, <u>B</u>: relational structures.

 $Pol(\underline{A})$ is homomorphic image of $Pol(\underline{B})$

B

Α

<u>A</u>, <u>B</u>: relational structures.

 $Pol(\underline{A})$ is homomorphic image of $Pol(\underline{B})$:iff there exists surjection $h: B \to A$ such that for every $f \in Pol(\underline{B})$ of arity kthere exists $g \in Pol(\underline{A})$ of arity k such that $g(h(b_1), \ldots, h(b_k)) = h(f(b_1, \ldots, b_k))$ for all $b_1, \ldots, b_k \in B$.

B

Α

<u>A</u>, <u>B</u>: relational structures.

Pol(\underline{A}) is homomorphic image of Pol(\underline{B}) :iff there exists surjection $h: B \to A$ such that for every $f \in Pol(\underline{B})$ of arity kthere exists $g \in Pol(\underline{A})$ of arity k such that $g(h(b_1), \ldots, h(b_k)) = h(f(b_1, \ldots, b_k))$ for all $b_1, \ldots, b_k \in B$.

B

А

Example: $h: B \rightarrow A$ with

$$h(0) = h(1) = h(2) = a$$

 $h(3) = h(4) = h(5) = b$
 $h(6) = h(7) = h(8) = c$

is a homomorphism.

<u>A</u>, <u>B</u>: relational structures.

Pol(\underline{A}) is homomorphic image of Pol(\underline{B}) :iff there exists surjection $h: B \to A$ such that for every $f \in Pol(\underline{B})$ of arity kthere exists $g \in Pol(\underline{A})$ of arity k such that $g(h(b_1), \ldots, h(b_k)) = h(f(b_1, \ldots, b_k))$ for all $b_1, \ldots, b_k \in B$.

B

А

Example: $h: B \rightarrow A$ with

$$h(0) = h(1) = h(2) = a$$

 $h(3) = h(4) = h(5) = b$
 $h(6) = h(7) = h(8) = c$

is a homomorphism.

•
$$h^{-1}(=)$$
 has pp definition $\psi(x, y) := \exists u(E(x, u) \land E(u, y))$

• $h^{-1}(\underline{E^{\underline{A}}})$ has pp definition $\exists u, v(\psi(x, u) \land E(u, v) \land \psi(v, y))$.

 $\underline{A} \leq_{int} \underline{B}$

 $\underline{A} \leq_{int} \underline{B} \iff \exists \text{ primitive positive interpretation } f: A^d \to B$

How about this connection for primitive positive constructions?

 $\underline{A}, \underline{B}: \tau$ -structures with homomorphisms $h: \underline{A} \rightarrow \underline{B}$ and $g: \underline{B} \rightarrow \underline{A}$.

 $\begin{array}{l} \underline{A}, \underline{B}: \tau \text{-structures} \\ \text{with homomorphisms} \\ h: \underline{A} \to \underline{B} \text{ and } g: \underline{B} \to \underline{A}. \\ f: B^n \to B. \end{array}$

 $\begin{array}{l} \underline{A}, \underline{B}: \tau \text{-structures} \\ \text{with homomorphisms} \\ h: \underline{A} \to \underline{B} \text{ and } g: \underline{B} \to \underline{A}. \\ f: B^n \to B. \end{array}$

 $\begin{array}{l} \underline{A}, \underline{B}: \tau \text{-structures} \\ \text{with homomorphisms} \\ h: \underline{A} \to \underline{B} \text{ and } g: \underline{B} \to \underline{A}. \\ f: B^n \to B. \end{array}$

 $f^*: A^n \to A$ defined by

 $f^*(x_1,\ldots,x_n):=g(f(h(x_1),\ldots,h(x_n)))$

 $\underline{A}, \underline{B}: \tau$ -structures with homomorphisms $h: \underline{A} \to \underline{B} \text{ and } g: \underline{B} \to \underline{A}.$ $f: B^n \to B.$

 $f^*: A^n \to A$ defined by

$$f^*(x_1,\ldots,x_n):=g(f(h(x_1),\ldots,h(x_n)))$$

 $Pol(\underline{A})$ contains
Reflections

 $\underline{A}, \underline{B}: \tau$ -structures with homomorphisms $h: \underline{A} \to \underline{B} \text{ and } g: \underline{B} \to \underline{A}.$ $f: B^n \to B.$

 $f^*: A^n \to A$ defined by

$$f^*(x_1,\ldots,x_n):=g(f(h(x_1),\ldots,h(x_n)))$$

 $Pol(\underline{A})$ contains

 $\mathsf{Refl}(\mathsf{Pol}(\underline{B})) := \{f^* \mid f \in \mathsf{Pol}(\underline{B})\}$

Reflections

 $\underline{A}, \underline{B}: \tau$ -structures with homomorphisms $h: \underline{A} \to \underline{B}$ and $g: \underline{B} \to \underline{A}$. $f: B^n \to B$. h A g f

 $f^*: A^n \to A$ defined by

$$f^*(x_1,\ldots,x_n):=g(f(h(x_1),\ldots,h(x_n)))$$

 $Pol(\underline{A})$ contains

 $\mathsf{Refl}(\mathsf{Pol}(\underline{B})) := \{f^* \mid f \in \mathsf{Pol}(\underline{B})\}$

Observations.

■ $f \mapsto f^*$ is a minor-preserving map from $Pol(\underline{B})$ to $Pol(\underline{A})$.

Reflections

 $\underline{A}, \underline{B}: \tau$ -structures with homomorphisms $h: \underline{A} \to \underline{B}$ and $g: \underline{B} \to \underline{A}$. $f: B^n \to B$. h A g f

 $f^*: A^n \to A$ defined by

$$f^*(x_1,\ldots,x_n):=g(f(h(x_1),\ldots,h(x_n)))$$

 $Pol(\underline{A})$ contains

 $\mathsf{Refl}(\mathsf{Pol}(\underline{B})) := \{f^* \mid f \in \mathsf{Pol}(\underline{B})\}$

Observations.

- $f \mapsto f^*$ is a minor-preserving map from $Pol(\underline{B})$ to $Pol(\underline{A})$.
- $Refl(Pol(\underline{B}))$ is in general not a clone.

Theorem ('Wonderland of reflections', Barto+Opršal+Pinsker'15).

Theorem ('Wonderland of reflections', Barto+Opršal+Pinsker'15). <u>*A*</u>, <u>*B*</u>: finite structures. Then:

 $\underbrace{\underline{B} \leq_{\mathsf{con}} \underline{A}}_{\Leftrightarrow}$

Manuel Bodirsky

Theorem ('Wonderland of reflections', Barto+Opršal+Pinsker'15). <u>*A*</u>, <u>*B*</u>: finite structures. Then:

 $\begin{array}{l} \underline{B} \leq_{\text{con}} \underline{A} \\ \Leftrightarrow \\ \text{Pol}(\underline{A}) \in \text{Exp}\big(\, \text{Refl}(\text{Pfin}(\text{Pol}(\underline{B}))) \big). \end{array}$

Manuel Bodirsky

Theorem ('Wonderland of reflections', Barto+Opršal+Pinsker'15). <u>*A*</u>, <u>*B*</u>: finite structures. Then:

 $\begin{array}{l} \underline{B} \leq_{\mathsf{con}} \underline{A} \\ \Leftrightarrow \\ \mathsf{Pol}(\underline{A}) \in \mathsf{Exp}\big(\, \mathsf{Refl}(\mathsf{P^{fin}}(\mathsf{Pol}(\underline{B})) \big). \end{array}$

Note. $Exp(Refl(P^{fin}(Pol(\underline{B}))))$ contains $HSP^{fin}(Pol(\underline{B}))$.

Aka: sets of height-one identities

Aka: sets of height-one identities

Examples:

 $f(x,y) \approx f(y,x)$

Aka: sets of height-one identities

Examples:

- $f(x,y) \approx f(y,x)$
- $\bullet f(x, x, y) \approx f(x, y, x) \approx f(y, x, x)$

Aka: sets of height-one identities

Examples:

- $f(x,y) \approx f(y,x)$
- $f(x, x, y) \approx f(x, y, x) \approx f(y, x, x)$
- $f(x, x, x, y) \approx f(x, x, y, x) \approx f(x, y, x, x) \approx f(y, x, x, x) \\ \approx g(x, x, y) \approx g(x, y, x) \approx g(y, x, x)$

Aka: sets of height-one identities

Examples:

 $f(x, y) \approx f(y, x)$ $f(x, x, y) \approx f(x, y, x) \approx f(y, x, x)$ $f(x, x, x, y) \approx f(x, x, y, x) \approx f(x, y, x, x) \approx f(y, x, x, x)$ $\approx g(x, x, y) \approx g(x, y, x) \approx g(y, x, x)$

Non-examples:

$$\bullet f(x, f(y, z)) \approx f(f(x, y), z)$$

Aka: sets of height-one identities

Examples:

 $f(x, y) \approx f(y, x)$ $f(x, x, y) \approx f(x, y, x) \approx f(y, x, x)$ $f(x, x, x, y) \approx f(x, x, y, x) \approx f(x, y, x, x) \approx f(y, x, x, x)$ $\approx g(x, x, y) \approx g(x, y, x) \approx g(y, x, x)$

Non-examples:

- $\bullet f(x, f(y, z)) \approx f(f(x, y), z)$
- $f(x, x, y) \approx f(x, y, x) \approx f(y, x, x) \approx x$

Aka: sets of height-one identities

Examples:

 $f(x, y) \approx f(y, x)$ $f(x, x, y) \approx f(x, y, x) \approx f(y, x, x)$ $f(x, x, x, y) \approx f(x, x, y, x) \approx f(x, y, x, x) \approx f(y, x, x, x)$ $\approx g(x, x, y) \approx g(x, y, x) \approx g(y, x, x)$

Non-examples:

- $\bullet f(x, f(y, z)) \approx f(f(x, y), z)$
- $f(x, x, y) \approx f(x, y, x) \approx f(y, x, x) \approx x$

 Σ : minor condition { f_1 (variables) $\approx f_2$ (variables),...}.

Aka: sets of height-one identities

Examples:

 $f(x, y) \approx f(y, x)$ $f(x, x, y) \approx f(x, y, x) \approx f(y, x, x)$ $f(x, x, x, y) \approx f(x, x, y, x) \approx f(x, y, x, x) \approx f(y, x, x, x)$ $\approx g(x, x, y) \approx g(x, y, x) \approx g(y, x, x)$

Non-examples:

- $\bullet f(x, f(y, z)) \approx f(f(x, y), z)$
- $f(x, x, y) \approx f(x, y, x) \approx f(y, x, x) \approx x$

$$\begin{split} \Sigma: \mbox{ minor condition } \{f_1(\mbox{variables}) \approx f_2(\mbox{variables}), \ldots\}. \\ \mathcal{C}: \mbox{ set of operations.} \end{split}$$

Aka: sets of height-one identities

Examples:

 $f(x, y) \approx f(y, x)$ $f(x, x, y) \approx f(x, y, x) \approx f(y, x, x)$ $f(x, x, x, y) \approx f(x, x, y, x) \approx f(x, y, x, x) \approx f(y, x, x, x)$ $\approx g(x, x, y) \approx g(x, y, x) \approx g(y, x, x)$

Non-examples:

- $\bullet f(x, f(y, z)) \approx f(f(x, y), z)$
- $f(x, x, y) \approx f(x, y, x) \approx f(y, x, x) \approx x$

Σ: minor condition { f_1 (variables) $\approx f_2$ (variables),...}. C: set of operations.

Write $C \models \Sigma$ if Σ is satisfied by some operations in $Pol(\underline{B})$ for the function symbols $f_1, f_2, ...$ in Σ .

 Σ : minor condition.

 Σ : minor condition. If $\mathsf{Pol}(\underline{B}) \models \Sigma$ and ξ : $\mathsf{Pol}(\underline{B}) \rightarrow \mathsf{Pol}(\underline{A})$ is minor-preserving,

 $\begin{array}{l} \Sigma : \mbox{ minor condition.} \\ \mbox{If } \mbox{Pol}(\underline{\textit{B}}) \models \Sigma \mbox{ and } \xi : \mbox{ Pol}(\underline{\textit{B}}) \rightarrow \mbox{Pol}(\underline{\textit{A}}) \mbox{ is minor-preserving,} \\ \mbox{then } \mbox{Pol}(\underline{\textit{B}}) \models \Sigma. \end{array}$

 $\begin{array}{l} \Sigma : \mbox{ minor condition.} \\ \mbox{ If } \mbox{Pol}(\underline{\textit{B}}) \models \Sigma \mbox{ and } \xi \colon \mbox{Pol}(\underline{\textit{B}}) \rightarrow \mbox{Pol}(\underline{\textit{A}}) \mbox{ is minor-preserving,} \\ \mbox{ then } \mbox{Pol}(\underline{\textit{B}}) \models \Sigma. \end{array}$

Theorem (Barto+Opršal+Pinsker).

Let <u>A</u> be finite.

 $\begin{array}{l} \Sigma : \mbox{ minor condition.} \\ \mbox{ If } \mbox{Pol}(\underline{\textit{B}}) \models \Sigma \mbox{ and } \xi \colon \mbox{Pol}(\underline{\textit{B}}) \rightarrow \mbox{Pol}(\underline{\textit{A}}) \mbox{ is minor-preserving,} \\ \mbox{ then } \mbox{Pol}(\underline{\textit{B}}) \models \Sigma. \end{array}$

Theorem (Barto+Opršal+Pinsker).

 $\begin{array}{l} \Sigma : \mbox{ minor condition.} \\ \mbox{ If } \mbox{Pol}(\underline{\textit{B}}) \models \Sigma \mbox{ and } \xi \colon \mbox{Pol}(\underline{\textit{B}}) \rightarrow \mbox{Pol}(\underline{\textit{A}}) \mbox{ is minor-preserving,} \\ \mbox{ then } \mbox{Pol}(\underline{\textit{B}}) \models \Sigma. \end{array}$

Theorem (Barto+Opršal+Pinsker).

$$\blacksquare \underline{B} \leq_{\mathsf{con}} \underline{A}.$$

 $\begin{array}{l} \Sigma : \mbox{ minor condition.} \\ \mbox{If } \mbox{Pol}(\underline{\textit{B}}) \models \Sigma \mbox{ and } \xi \colon \mbox{Pol}(\underline{\textit{B}}) \rightarrow \mbox{Pol}(\underline{\textit{A}}) \mbox{ is minor-preserving,} \\ \mbox{then } \mbox{Pol}(\underline{\textit{B}}) \models \Sigma. \end{array}$

Theorem (Barto+Opršal+Pinsker).

1
$$\underline{B} \leq_{\text{con}} \underline{A}$$
.

2
$$Pol(\underline{A}) \in Exp(Refl(\underline{P}^{fin}(\underline{B}))).$$

 Σ : minor condition. If $Pol(\underline{B}) \models \Sigma$ and ξ : $Pol(\underline{B}) \rightarrow Pol(\underline{A})$ is minor-preserving, then $Pol(\underline{B}) \models \Sigma$.

Theorem (Barto+Opršal+Pinsker).

- $\underline{\mathbf{1}} \ \underline{B} \leq_{\mathsf{con}} \underline{A}.$
- **2** $Pol(\underline{A}) \in Exp(Refl(\underline{P}^{fin}(\underline{B}))).$
- **3** Every minor condition that holds in $Pol(\underline{B})$ also holds in $Pol(\underline{A})$.

 Σ : minor condition. If $Pol(\underline{B}) \models \Sigma$ and ξ : $Pol(\underline{B}) \rightarrow Pol(\underline{A})$ is minor-preserving, then $Pol(\underline{B}) \models \Sigma$.

Theorem (Barto+Opršal+Pinsker).

- $\underline{\mathbf{1}} \ \underline{B} \leq_{\mathsf{con}} \underline{A}.$
- **2** $Pol(\underline{A}) \in Exp(Refl(\underline{P}^{fin}(\underline{B}))).$
- **3** Every minor condition that holds in $Pol(\underline{B})$ also holds in $Pol(\underline{A})$.
- 4 There exists a minor-preserving map from $Pol(\underline{B})$ to $Pol(\underline{A})$.

 $\begin{array}{l} \Sigma: \mbox{ minor condition.} \\ \mbox{ If } \mbox{Pol}(\underline{\textit{B}}) \models \Sigma \mbox{ and } \xi: \mbox{ Pol}(\underline{\textit{B}}) \rightarrow \mbox{Pol}(\underline{\textit{A}}) \mbox{ is minor-preserving,} \\ \mbox{ then } \mbox{Pol}(\underline{\textit{B}}) \models \Sigma. \end{array}$

Theorem (Barto+Opršal+Pinsker).

- $\underline{1} \ \underline{B} \leq_{\mathsf{con}} \underline{A}.$
- **2** $Pol(\underline{A}) \in Exp(Refl(\underline{P}^{fin}(\underline{B}))).$
- **3** Every minor condition that holds in $Pol(\underline{B})$ also holds in $Pol(\underline{A})$.
- 4 There exists a minor-preserving map from $Pol(\underline{B})$ to $Pol(\underline{A})$.
- $1 \Leftrightarrow 2$: already done.

 Σ : minor condition. If $Pol(\underline{B}) \models \Sigma$ and ξ : $Pol(\underline{B}) \rightarrow Pol(\underline{A})$ is minor-preserving, then $Pol(\underline{B}) \models \Sigma$.

Theorem (Barto+Opršal+Pinsker).

Let <u>A</u> be finite. And let <u>B</u> be finite, too. Then TFAE:

- $\underline{\mathbf{1}} \ \underline{\mathbf{B}} \leq_{\mathsf{con}} \underline{\mathbf{A}}.$
- **2** $Pol(\underline{A}) \in Exp(Refl(\underline{P}^{fin}(\underline{B}))).$
- **3** Every minor condition that holds in $Pol(\underline{B})$ also holds in $Pol(\underline{A})$.

4 There exists a minor-preserving map from $Pol(\underline{B})$ to $Pol(\underline{A})$.

1 \Leftrightarrow 2: already done. 2 \Rightarrow 3 \Rightarrow 4: observations.

 $\begin{array}{l} \Sigma: \mbox{ minor condition.} \\ \mbox{ If } \mbox{Pol}(\underline{\textit{B}}) \models \Sigma \mbox{ and } \xi: \mbox{ Pol}(\underline{\textit{B}}) \rightarrow \mbox{Pol}(\underline{\textit{A}}) \mbox{ is minor-preserving,} \\ \mbox{ then } \mbox{Pol}(\underline{\textit{B}}) \models \Sigma. \end{array}$

Theorem (Barto+Opršal+Pinsker).

Let <u>A</u> be finite. And let <u>B</u> be finite, too. Then TFAE:

- $\underline{\mathbf{1}} \ \underline{B} \leq_{\mathsf{con}} \underline{A}.$
- **2** $Pol(\underline{A}) \in Exp(Refl(\underline{P}^{fin}(\underline{B}))).$
- **3** Every minor condition that holds in $Pol(\underline{B})$ also holds in $Pol(\underline{A})$.

4 There exists a minor-preserving map from $Pol(\underline{B})$ to $Pol(\underline{A})$.

- 1 \Leftrightarrow 2: already done. 2 \Rightarrow 3 \Rightarrow 4: observations.
- $4 \Rightarrow 2$: interesting: "Height-one Birkhoff"

Suppose that every minor condition that holds in $Pol(\underline{B})$ also holds in $Pol(\underline{A})$.

Suppose that every minor condition that holds in $Pol(\underline{B})$ also holds in $Pol(\underline{A})$. **Goal:** prove that

 $\mathsf{Pol}(\underline{A}) \in \mathsf{Exp}(\mathsf{Refl}(\mathsf{Pol}(\underline{B})^{B^A}))$

Suppose that every minor condition that holds in $Pol(\underline{B})$ also holds in $Pol(\underline{A})$. **Goal:** prove that

 $\mathsf{Pol}(\underline{A}) \in \mathsf{Exp}(\mathsf{Refl}(\mathsf{Pol}(\underline{B})^{B^A}))$

 $\pi_a: B^A \to B$: function that maps $t \in B^A$ to t(a).

Suppose that every minor condition that holds in $Pol(\underline{B})$ also holds in $Pol(\underline{A})$. **Goal:** prove that

 $\mathsf{Pol}(\underline{A}) \in \mathsf{Exp}(\mathsf{Refl}(\mathsf{Pol}(\underline{B})^{B^{A}}))$

 $\pi_a: B^A \to B$: function that maps $t \in B^A$ to t(a). S: subalgebra of $Pol(\underline{B})^{B^A}$ generated by $\{\pi_a \mid a \in A\}$.
Suppose that every minor condition that holds in $Pol(\underline{B})$ also holds in $Pol(\underline{A})$. **Goal:** prove that

 $\mathsf{Pol}(\underline{A}) \in \mathsf{Exp}(\mathsf{Refl}(\mathsf{Pol}(\underline{B})^{B^{A}}))$

 $\pi_a: B^A \to B$: function that maps $t \in B^A$ to t(a). S: subalgebra of $Pol(\underline{B})^{B^A}$ generated by $\{\pi_a \mid a \in A\}$.

Suppose that every minor condition that holds in $Pol(\underline{B})$ also holds in $Pol(\underline{A})$. **Goal:** prove that

 $\mathsf{Pol}(\underline{A}) \in \mathsf{Exp}(\mathsf{Refl}(\mathsf{Pol}(\underline{B})^{B^A}))$

 $\pi_a: B^A \to B$: function that maps $t \in B^A$ to t(a). *S*: subalgebra of Pol(\underline{B})^{B^A} generated by { $\pi_a \mid a \in A$ }.

 $h: S \rightarrow A:$

Suppose that every minor condition that holds in $Pol(\underline{B})$ also holds in $Pol(\underline{A})$. **Goal:** prove that

 $\mathsf{Pol}(\underline{A}) \in \mathsf{Exp}(\mathsf{Refl}(\mathsf{Pol}(\underline{B})^{B^{A}}))$

 $\pi_a: B^A \to B$: function that maps $t \in B^A$ to t(a). S: subalgebra of $Pol(\underline{B})^{B^A}$ generated by $\{\pi_a \mid a \in A\}$.

Well-defined by assumption!

h: $S \rightarrow A$:

Suppose that every minor condition that holds in $Pol(\underline{B})$ also holds in $Pol(\underline{A})$. **Goal:** prove that

 $\mathsf{Pol}(\underline{A}) \in \mathsf{Exp}(\mathsf{Refl}(\mathsf{Pol}(\underline{B})^{B^{A}}))$

 $\pi_a: B^A \to B$: function that maps $t \in B^A$ to t(a). S: subalgebra of $Pol(\underline{B})^{B^A}$ generated by $\{\pi_a \mid a \in A\}$.

 $h: S \rightarrow A:$

$$h(f^{\underline{B}}(\pi_{a_1},\ldots,\pi_{a_n})):=f^{\underline{A}}(a_1,\ldots,a_n)$$

Well-defined by assumption! *h* and $a \mapsto \pi_a$ show that $Pol(\underline{A}) \in Exp(Refl(S))$.

Suppose that every minor condition that holds in $Pol(\underline{B})$ also holds in $Pol(\underline{A})$. **Goal:** prove that

 $\mathsf{Pol}(\underline{A}) \in \mathsf{Exp}(\mathsf{Refl}(\mathsf{Pol}(\underline{B})^{B^{A}}))$

 $\pi_a: B^A \to B$: function that maps $t \in B^A$ to t(a). S: subalgebra of $Pol(\underline{B})^{B^A}$ generated by $\{\pi_a \mid a \in A\}$.

 $h: S \rightarrow A:$

$$h(f^{\underline{B}}(\pi_{a_1},\ldots,\pi_{a_n})):=f^{\underline{A}}(a_1,\ldots,a_n)$$

Well-defined by assumption! *h* and $a \mapsto \pi_a$ show that $Pol(\underline{A}) \in Exp(Refl(S))$.

Summary

Summary

Proved: $\underline{B} \leq_{con} \underline{A}$ iff there is a minor-preserving map ξ : $Pol(\underline{B}) \rightarrow Pol(\underline{A})$.

Summary

Proved: $\underline{B} \leq_{con} \underline{A}$ iff there is a minor-preserving map ξ : $Pol(\underline{B}) \rightarrow Pol(\underline{A})$.

General Goal:

Describe the pp construction poset on the class of finite structures

General Goal:

Describe the pp construction poset on the class of finite structures obtained from \leq_{con} by factoring with \equiv :

General Goal:

Describe the pp construction poset on the class of finite structures obtained from \leq_{con} by factoring with \equiv : $A \equiv B$ iff $A \leq_{con} B \land B \leq_{con} A$).

General Goal:

Describe the pp construction poset on the class of finite structures obtained from \leq_{con} by factoring with \equiv : $\underline{A} \equiv \underline{B}$ iff $\underline{A} \leq_{con} \underline{B} \land \underline{B} \leq_{con} \underline{A}$).

General Goal:

Describe the pp construction poset on the class of finite structures obtained from \leq_{con} by factoring with \equiv : $\underline{A} \equiv \underline{B}$ iff $\underline{A} \leq_{con} \underline{B} \land \underline{B} \leq_{con} \underline{A}$).

■ Cardinality? \aleph_0 , 2^{\aleph_0} ?

General Goal:

Describe the pp construction poset on the class of finite structures obtained from \leq_{con} by factoring with \equiv : $\underline{A} \equiv \underline{B}$ iff $\underline{A} \leq_{con} \underline{B} \land \underline{B} \leq_{con} \underline{A}$).

- Cardinality? 🕅, 2^{ℵ₀}?
- Is it a lattice?

General Goal:

Describe the pp construction poset on the class of finite structures obtained from \leq_{con} by factoring with \equiv : $\underline{A} \equiv \underline{B}$ iff $\underline{A} \leq_{con} \underline{B} \land \underline{B} \leq_{con} \underline{A}$).

- Is it a lattice?
- Are there infinite ascending chains?

 $\mathsf{Pol}(P_1) \models f(x) \approx f(y).$

 $Pol(P_1) \models f(x) \approx f(y).$ $P_2 := (\{0, 1\}; \{(0, 1)\}).$

 $\begin{array}{l} \mathsf{Pol}(P_1) \models f(x) \approx f(y). \\ P_2 := (\{0, 1\}; \{(0, 1)\}). \\ \mathsf{Pol}(P_2) \not\models f(x) \approx f(y). \end{array}$

 $\begin{array}{l} \mathsf{Pol}(P_1) \models f(x) \approx f(y). \\ P_2 := (\{0, 1\}; \{(0, 1)\}). \\ \mathsf{Pol}(P_2) \not\models f(x) \approx f(y). \end{array}$

 $\begin{array}{l} \mathsf{Pol}(P_1) \models f(x) \approx f(y). \\ P_2 := (\{0, 1\}; \{(0, 1)\}). \\ \mathsf{Pol}(P_2) \not\models f(x) \approx f(y). \end{array}$

Claim. For every finite structure A,

 $\begin{array}{l} \mathsf{Pol}(P_1) \models f(x) \approx f(y). \\ P_2 := (\{0, 1\}; \{(0, 1)\}). \\ \mathsf{Pol}(P_2) \not\models f(x) \approx f(y). \end{array}$

Claim. For every finite structure A,

• $P_1 \leq_{\operatorname{con}} \underline{A}$, or

 $\begin{array}{l} \mathsf{Pol}(P_1) \models f(x) \approx f(y). \\ P_2 := (\{0, 1\}; \{(0, 1)\}). \\ \mathsf{Pol}(P_2) \not\models f(x) \approx f(y). \end{array}$

Claim. For every finite structure A,

- $P_1 \leq_{con} \underline{A}$, or
- $\underline{A} \leq_{\text{con}} P_2$.

 $\begin{array}{l} \mathsf{Pol}(P_1) \models f(x) \approx f(y). \\ P_2 := (\{0, 1\}; \{(0, 1)\}). \\ \mathsf{Pol}(P_2) \not\models f(x) \approx f(y). \end{array}$

Claim. For every finite structure A,

- $P_1 \leq_{con} \underline{A}$, or
- $\blacksquare \underline{A} \leq_{\mathsf{con}} P_2.$

Proof.

 $\begin{array}{l} \mathsf{Pol}(P_1) \models f(x) \approx f(y). \\ P_2 := (\{0, 1\}; \{(0, 1)\}). \\ \mathsf{Pol}(P_2) \not\models f(x) \approx f(y). \end{array}$

Claim. For every finite structure A,

- $P_1 \leq_{con} \underline{A}$, or
- $\blacksquare \underline{A} \leq_{\mathsf{con}} P_2.$

Proof. Let $f \in Pol(\underline{A})$ be with smallest image *B*.

 $\begin{array}{l} \mathsf{Pol}(P_1) \models f(x) \approx f(y). \\ P_2 := (\{0, 1\}; \{(0, 1)\}). \\ \mathsf{Pol}(P_2) \not\models f(x) \approx f(y). \end{array}$

Claim. For every finite structure A,

- $P_1 \leq_{con} \underline{A}$, or
- $\blacksquare \underline{A} \leq_{\mathsf{con}} P_2.$

Proof. Let $f \in Pol(\underline{A})$ be with smallest image *B*. Note: $\underline{A} \equiv_{con} \underline{B}$.

 $\begin{array}{l} {\sf Pol}({\cal P}_1) \models f(x) \approx f(y). \\ {\cal P}_2 := (\{0,1\}; \{(0,1)\}). \\ {\sf Pol}({\cal P}_2) \not\models f(x) \approx f(y). \end{array}$

Claim. For every finite structure A,

- $P_1 \leq_{con} \underline{A}$, or
- $\blacksquare \underline{A} \leq_{\mathsf{con}} P_2.$

Proof. Let $f \in Pol(\underline{A})$ be with smallest image *B*. Note: $\underline{A} \equiv_{con} \underline{B}$.

Every endomorphism of <u>B</u> is automorphism.

 $\begin{array}{l} \mathsf{Pol}(P_1) \models f(x) \approx f(y). \\ P_2 := (\{0, 1\}; \{(0, 1)\}). \\ \mathsf{Pol}(P_2) \not\models f(x) \approx f(y). \end{array}$

Claim. For every finite structure A,

- $P_1 \leq_{con} \underline{A}$, or
- $\blacksquare \underline{A} \leq_{\mathsf{con}} P_2.$

Proof. Let $f \in Pol(\underline{A})$ be with smallest image B. Note: $\underline{A} \equiv_{con} \underline{B}$. Every endomorphism of \underline{B} is automorphism. $\underline{B} \equiv_{con} \underline{B}' := (\underline{B}, \{b_1\}, \{b_2\}, \dots)$.

 $\begin{array}{l} \mathsf{Pol}(P_1) \models f(x) \approx f(y). \\ P_2 := (\{0, 1\}; \{(0, 1)\}). \\ \mathsf{Pol}(P_2) \not\models f(x) \approx f(y). \end{array}$

Claim. For every finite structure A,

• $P_1 \leq_{con} \underline{A}$, or

 $\blacksquare \underline{A} \leq_{\mathsf{con}} P_2.$

Proof. Let $f \in Pol(\underline{A})$ be with smallest image *B*. Note: $\underline{A} \equiv_{con} \underline{B}$. Every endomorphism of \underline{B} is automorphism. $\underline{B} \equiv_{con} \underline{B}' := (\underline{B}, \{b_1\}, \{b_2\}, \dots)$. If |B| = 1 then $P_1 \leq_{con} \underline{A}$.

 $\begin{array}{l} \mathsf{Pol}(P_1) \models f(x) \approx f(y). \\ P_2 := (\{0, 1\}; \{(0, 1)\}). \\ \mathsf{Pol}(P_2) \not\models f(x) \approx f(y). \end{array}$

Claim. For every finite structure A,

• $P_1 \leq_{con} \underline{A}$, or

 $\blacksquare \underline{A} \leq_{\mathsf{con}} P_2.$

Proof. Let $f \in Pol(\underline{A})$ be with smallest image *B*. Note: $\underline{A} \equiv_{con} \underline{B}$. Every endomorphism of \underline{B} is automorphism. $\underline{B} \equiv_{con} \underline{B}' := (\underline{B}, \{b_1\}, \{b_2\}, \dots)$. If |B| = 1 then $P_1 \leq_{con} \underline{A}$. If |B| > 1 then $\underline{B}' \leq_{con} P_2$.

 $\begin{array}{l} \mathsf{Pol}(P_1) \models f(x) \approx f(y). \\ P_2 := (\{0, 1\}; \{(0, 1)\}). \\ \mathsf{Pol}(P_2) \not\models f(x) \approx f(y). \end{array}$

Claim. For every finite structure A,

• $P_1 \leq_{con} \underline{A}$, or

 $\blacksquare \underline{A} \leq_{\mathsf{con}} P_2.$

Proof. Let $f \in Pol(\underline{A})$ be with smallest image *B*. Note: $\underline{A} \equiv_{con} \underline{B}$. Every endomorphism of \underline{B} is automorphism. $\underline{B} \equiv_{con} \underline{B}' := (\underline{B}, \{b_1\}, \{b_2\}, \dots)$. If |B| = 1 then $P_1 \leq_{con} \underline{A}$. If |B| > 1 then $\underline{B}' \leq_{con} P_2$.

 $\begin{array}{l} \mathsf{Pol}(P_1) \models f(x) \approx f(y). \\ P_2 := (\{0, 1\}; \{(0, 1)\}). \\ \mathsf{Pol}(P_2) \not\models f(x) \approx f(y). \end{array}$

Claim. For every finite structure A,

• $P_1 \leq_{con} \underline{A}$, or

 $\blacksquare \underline{A} \leq_{\mathsf{con}} P_2.$

Proof. Let $f \in Pol(\underline{A})$ be with smallest image *B*. Note: $\underline{A} \equiv_{con} \underline{B}$. Every endomorphism of \underline{B} is automorphism. $\underline{B} \equiv_{con} \underline{B}' := (\underline{B}, \{b_1\}, \{b_2\}, \dots)$. If |B| = 1 then $P_1 \leq_{con} \underline{A}$. If |B| > 1 then $\underline{B}' \leq_{con} P_2$. **Consequence:** Can focus on idempotent clones *C*, i.e., $f(x, \dots, x) = x$ for all $f \in C$.

Structures over {0, 1}

Structures over $\{0, 1\}$

 \leq_{def} on structures with domain $\{0, 1\}$.

Structures over $\{0, 1\}$

 \leq_{def} on structures with domain $\{0, 1\}$.

clones over $\{0, 1\}$ with respect to containment.
Structures over $\{0, 1\}$

 \leq_{def} on structures with domain $\{0, 1\}$.

clones over $\{0, 1\}$ with respect to containment.

Post's lattice

Pieces:

Pieces:

 \bigcirc \mathbb{C} collapses with $\mathbb{C}^* := \{\neg f(\neg x_1, \ldots, \neg x_n) \mid f \in \mathbb{C}\}.$

Pieces:

$$\bigcirc$$
 C collapses with $\mathbb{C}^* := \{\neg f(\neg x_1, \ldots, \neg x_n) \mid f \in \mathbb{C}\}.$

f(x,x,y) = f(x,y,x) = f(y,x,x) = x

~4

$$\bigcirc$$
 C collapses with $\mathbb{C}^* := \{\neg f(\neg x_1, \ldots, \neg x_n) \mid f \in \mathbb{C}\}.$

$$f(x,x,y) = f(x,y,x) = f(y,x,x) = x$$

 $\begin{array}{c} \fbox{} \\ \blacksquare \\ (\{0,1\};\leq,\{0\},\{1\},\{(0,1),(1,0),(1,1)\}) \\ \text{and} \ (\{0,1\};\leq,\{0\},\{1\}) \ \text{collapse} \ (2D) \end{array}$

Jonsson(3) 👻

 $\begin{array}{c} \blacksquare \\ (\{0,1\};\leq,\{0\},\{1\},\{(0,1),(1,0),(1,1)\}) \\ \text{and} \ (\{0,1\};\leq,\{0\},\{1\}) \ \text{collapse} \ (2D) \end{array}$

- QNU(5)
- QNU(6)

QNU(5) A QNU(6) A

 \leq_{con} on {0, 1}: outcome (B. + Vucaj 2020)

Strictly above black: CSP in P (Schaefer'78).

Strictly above black: CSP in P (Schaefer'78). Above yellow or red iff CSP in Datalog.

Strictly above black: CSP in P (Schaefer'78). Above yellow or red iff CSP in Datalog.

Strictly above black: CSP in P (Schaefer'78). Above yellow or red iff CSP in Datalog.

Strictly above black: CSP in P (Schaefer'78). Above yellow or red iff CSP in Datalog.

Above blue or yellow: CSP is in NC. Above yellow or deep orange: CSP in NL. Above yellow or deep purple: CSP in L.

Clones over three elements

 \leq_{def} on $\{0,1,2\}$:

Clones over three elements

 \leq_{def} on $\{0,1,2\}$:

Yanov-Muchnik: 2^w

Clones over three elements

 \leq_{def} on $\{0, 1, 2\}$:

Yanov-Muchnik: 2^w

How about \leq_{int} ?

 \leq_{int} on $\{0, 1, 2\}$:

 \leq_{int} on $\{0, 1, 2\}$:

$$C_3 := \{(0,1), (1,2), (2,0)\}$$

$$B_2 := \{(1,0), (0,1), (1,1)\}$$

$$R_3^{=} := \{(x,y,z) \mid x \in \{0,1\} \land x = 0 \Rightarrow y = z\}$$

 $\leq_{int} on \left\{0,1,2\right\}:$

$$C_3 := \{(0,1), (1,2), (2,0)\}$$

$$B_2 := \{(1,0), (0,1), (1,1)\}$$

$$R_3^{=} := \{(x,y,z) \mid x \in \{0,1\} \land x = 0 \Rightarrow y = z\}$$

Zhuk'15: 2^{ω} many clones between

and
$$Pol(\{0, 1, 2\}; C_3, R_3^{=})$$

 $Pol(\{0, 1, 2\}; C_3, B_2)$

 \leq_{int} on $\{0, 1, 2\}$:

$$C_3 := \{(0,1), (1,2), (2,0)\}$$

$$B_2 := \{(1,0), (0,1), (1,1)\}$$

$$R_3^{=} := \{(x,y,z) \mid x \in \{0,1\} \land x = 0 \Rightarrow y = z\}$$

Zhuk'15: 2^w many clones between

$$\begin{array}{ll} & \mbox{Pol}(\{0,1,2\}; \textit{C}_3,\textit{R}_3^{=}) \\ \mbox{and} & \mbox{Pol}(\{0,1,2\};\textit{C}_3,\textit{B}_2) \end{array}$$

Clones below $Pol(\{0, 1, 2\}; C_3)$: 'self-dual'

 \leq_{int} on $\{0, 1, 2\}$:

$$C_3 := \{(0,1), (1,2), (2,0)\}$$

$$B_2 := \{(1,0), (0,1), (1,1)\}$$

$$R_3^{=} := \{(x,y,z) \mid x \in \{0,1\} \land x = 0 \Rightarrow y = z\}$$

Zhuk'15: 2^{ω} many clones between

$$\begin{array}{ll} & \mbox{Pol}(\{0,1,2\}; \textit{C}_3,\textit{R}_3^{=}) \\ \mbox{and} & \mbox{Pol}(\{0,1,2\};\textit{C}_3,\textit{B}_2) \end{array}$$

- Clones below $Pol(\{0, 1, 2\}; C_3)$: 'self-dual'
- Pol({0, 1, 2}; C₃, R₃⁼) contains binary 'paper-scissor-stone operation'

Theorem (Zhuk). Let <u>A</u> and <u>B</u> be structures s.t.

$$\begin{array}{l} (\{0,1,2\}; \textit{C}_3,\textit{R}_3^{=}) \leq_{\mathsf{def}} \mathsf{Pol}(\underline{\textit{A}}), \mathsf{Pol}(\underline{\textit{B}}) \\ \leq_{\mathsf{def}} (\{0,1,2\}; \textit{C}_3,\textit{B}_2) \end{array}$$

If $\underline{B} \leq_{int} \underline{A}$ then $\underline{B} \leq_{def} \underline{A}$.

Theorem (Zhuk). Let <u>A</u> and <u>B</u> be structures s.t.

$$\begin{array}{l} (\{0,1,2\}; \textit{C}_3,\textit{R}_3^{=}) \leq_{\mathsf{def}} \mathsf{Pol}(\underline{\textit{A}}), \mathsf{Pol}(\underline{\textit{B}}) \\ \leq_{\mathsf{def}} (\{0,1,2\}; \textit{C}_3,\textit{B}_2) \end{array}$$

If $\underline{B} \leq_{int} \underline{A}$ then $\underline{B} \leq_{def} \underline{A}$.

Corollary: 2^{ω} clones over $\{0, 1, 2\}$ even when considered up to clone homomorphism equivalence!

Theorem (Zhuk). Let \underline{A} and \underline{B} be structures s.t.

$$\begin{array}{l} (\{0,1,2\}; \textit{C}_3,\textit{R}_3^{=}) \leq_{\mathsf{def}} \mathsf{Pol}(\underline{\textit{A}}), \mathsf{Pol}(\underline{\textit{B}}) \\ \leq_{\mathsf{def}} (\{0,1,2\}; \textit{C}_3,\textit{B}_2) \end{array}$$

If $\underline{B} \leq_{int} \underline{A}$ then $\underline{B} \leq_{def} \underline{A}$.

Corollary: 2^{ω} clones over $\{0, 1, 2\}$ even when considered up to clone homomorphism equivalence!

Conclusion: Need stronger weapon.

Theorem (Zhuk). Let \underline{A} and \underline{B} be structures s.t.

$$\begin{array}{l} (\{0,1,2\}; \textit{C}_3,\textit{R}_3^{=}) \leq_{\mathsf{def}} \mathsf{Pol}(\underline{\textit{A}}), \mathsf{Pol}(\underline{\textit{B}}) \\ \leq_{\mathsf{def}} (\{0,1,2\};\textit{C}_3,\textit{B}_2) \end{array}$$

If $\underline{B} \leq_{int} \underline{A}$ then $\underline{B} \leq_{def} \underline{A}$.

Corollary: 2^{ω} clones over $\{0, 1, 2\}$ even when considered up to clone homomorphism equivalence!

Conclusion: Need stronger weapon.

pp constructions!
$W := (\{0, 1, 2\}; C_3, R_3^{=})$

 $W := (\{0, 1, 2\}; C_3, R_3^{=})$

3-4 weak near unanimity

$$g(x, x, y) = g(x, y, x) = g(y, x, x) =$$

f(x, x, x, y) = f(x, x, y, x) = f(x, y, x, x) = f(y, x, x, x)

$$W := (\{0, 1, 2\}; C_3, R_3^{=})$$
3-4 weak near unanimity
$$g(x, x, y) = g(x, y, x) = g(y, x, x) =$$

$$f(x, x, x, y) = f(x, x, y, x) = f(x, y, x, x) = f(y, x, x, x)$$

 $Q := (\{0, 1, 2\}; C_3, \{(x, y, z) \mid x \in \{0, 1\} \land x = 0 \Rightarrow y = z \in \{0, 1\})$

2

$$\begin{split} W &:= (\{0,1,2\}; C_3, R_3^{=}) \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\$$

 $f(x, x, x, y) = x, f(x_1, x_2, x_3, y) = f(x_2, x_3, x_1, y)$

2

$$W := (\{0, 1, 2\}; C_3, R_3^{=})$$
3-4 weak near unanimity
$$g(x, x, y) = g(x, y, x) = g(y, x, x) = f(x, x, x, y) = f(x, x, x, y) = f(x, y, x, x) = f(y, x, x, x)$$

$$Q := (\{0, 1, 2\}; C_3, \{(x, y, z) \mid x \in \{0, 1\} \land x = 0 \Rightarrow y = z \in \{0, 1\})$$

$$(guarded 3-cyclic': f(x, x, x, y) = x, f(x_1, x_2, x_3, y) = f(x_2, x_3, x_1, y)$$

$$W = Q = P := (\{0, 1, 2\}; C_3, \{(x, y, z) \mid x, y \in \{0, 1\} \land x = y = 0 \Rightarrow z = 0)$$

٩.

$$W := (\{0, 1, 2\}; C_3, R_3^{=})$$
3-4 weak near unanimity
$$g(x, x, y) = g(x, y, x) = g(y, x, x) = f(x, x, x, y) = f(x, x, x, y) = f(x, x, x, y) = f(x, y, x, x) = f(y, x, x, x)$$

$$Q := (\{0, 1, 2\}; C_3, \{(x, y, z) \mid x \in \{0, 1\} \land x = 0 \Rightarrow y = z \in \{0, 1\})$$

$$(guarded 3-cyclic': f(x, x, x, y) = x, f(x_1, x_2, x_3, y) = f(x_2, x_3, x_1, y)$$

$$W := (\{0, 1, 2\}; C_3, \{(x, y, z) \mid x, y \in \{0, 1\} \land x = y = 0 \Rightarrow z = 0\}$$

$$(Infinitely many clones between Q and P.)$$

.

$$W := (\{0, 1, 2\}; C_3, R_3^{=})$$
3-4 weak near unanimity
$$g(x, x, y) = g(x, y, x) = g(y, x, x) = f(x, x, x, y) = f(x, x, x, y) = f(x, y, x, x) = f(y, x, x, x)$$

$$Q := (\{0, 1, 2\}; C_3, \{(x, y, z) \mid x \in \{0, 1\} \land x = 0 \Rightarrow y = z \in \{0, 1\})$$
'guarded 3-cyclic':
$$f(x, x, x, y) = x, f(x_1, x_2, x_3, y) = f(x_2, x_3, x_1, y)$$

$$W = Q = P := (\{0, 1, 2\}; C_3, \{(x, y, z) \mid x, y \in \{0, 1\} \land x = y = 0 \Rightarrow z = 0)$$
(Infinitely many clones between Q and P.)
Further collapses ...

.

 \leq_{con} for self-dual clones on {0, 1, 2}: outcome (Zhuk+Vucaj+B.'21)

 \leq_{con} for self-dual clones on {0, 1, 2}: outcome (Zhuk+Vucaj+B.'21)

Digraphs

Digraphs

Digraphs

• K3

 \bigcirc $P_2 \leq_{con} D$ for every digraph D with a Mal'cev polymorphism and cyclic polymorphisms of all prime arities

$$f(y,y,x) = f(x,y,y) = y 2$$

 $P_2 \leq_{con} D$ for every digraph D with a Mal'cev polymorphism and cyclic polymorphisms of all prime arities

 \bigcirc $P_2 \leq_{con} D$ for every digraph D with a Mal'cev polymorphism and cyclic polymorphisms of all prime arities

$$f(y, y, x) = f(x, y, y) = y$$

 $f(x_1, x_2) = f(x_2, x_1)$

1

 \bigcirc $P_2 \leq_{con} D$ for every digraph D with a Mal'cev polymorphism and cyclic polymorphisms of all prime arities

$$f(y, y, x) = f(x, y, y) = y$$

$$f(x_1, x_2) = f(x_2, x_1)$$

 \bigcirc $P_2 \leq_{con} D$ for every digraph D with a Mal'cev polymorphism and cyclic polymorphisms of all prime arities

$$f(y, y, x) = f(x, y, y) = y$$

$$f(x_1, x_2) = f(x_2, x_1)$$

$$f(x_1, x_2, x_3) = f(x_2, x_3, x_1)$$

$$f(x_1, x_2, x_3, x_4) = f(x_2, x_3, x_4, x_1)$$

 \bigcirc $P_2 \leq_{con} D$ for every digraph D with a Mal'cev polymorphism and cyclic polymorphisms of all prime arities

$$f(y, y, x) = f(x, y, y) = y$$

$$f(x_1, x_2) = f(x_2, x_1)$$

$$f(x_1, x_2, x_3) = f(x_2, x_3, x_1)$$

$$f(x_1, x_2, x_3, x_4) = f(x_2, x_3, x_4, x_1)$$

 $D \leq_{con} T_3 \text{ for every digraph } D$ without a Mal'cev polymorphism

 \bigcirc $P_2 \leq_{con} D$ for every digraph D with a Mal'cev polymorphism and cyclic polymorphisms of all prime arities

$$f(y, y, x) = f(x, y, y) = y$$

$$f(x_1, x_2) = f(x_2, x_1)$$

$$f(x_1, x_2, x_3) = f(x_2, x_3, x_1)$$

$$f(x_1, x_2, x_3, x_4) = f(x_2, x_3, x_4, x_1)$$

 $\begin{array}{c|c} \blacksquare & D \leq_{con} T_3 \text{ for every digraph } D \\ \text{without a Mal'cev polymorphism} \\ \blacksquare & D \leq_{con} C_p \text{ for every finite digraph } D \\ \text{without } p\text{-cyclic polymorphism} \end{array}$

 \bigcirc $P_2 \leq_{con} D$ for every digraph D with a Mal'cev polymorphism and cyclic polymorphisms of all prime arities

$$f(y, y, x) = f(x, y, y) = y$$

$$f(x_1, x_2) = f(x_2, x_1)$$

$$f(x_1, x_2, x_3) = f(x_2, x_3, x_1)$$

$$f(x_1, x_2, x_3, x_4) = f(x_2, x_3, x_4, x_1)$$

 $\begin{array}{c|c} \blacksquare & D \leq_{\operatorname{con}} T_3 \text{ for every digraph } D \\ \text{without a Mal'cev polymorphism} \\ \blacksquare & D \leq_{\operatorname{con}} C_p \text{ for every finite digraph } D \\ \text{without } p\text{-cyclic polymorphism} \end{array}$

Joint work with F. Starke

Digraphs: current state

Open Problems

1 What is the cardinality of \leq_{con} ?

- **1** What is the cardinality of \leq_{con} ?
- 2 Are there infinite ascending chains?

- **1** What is the cardinality of \leq_{con} ?
- 2 Are there infinite ascending chains?
- 3 Is \leq_{con} a lattice?

- **1** What is the cardinality of \leq_{con} ?
- 2 Are there infinite ascending chains?
- 3 Is \leq_{con} a lattice?
- 4 What are the maximal elements below P₂ for general finite structures?

- **1** What is the cardinality of \leq_{con} ?
- 2 Are there infinite ascending chains?
- 3 Is \leq_{con} a lattice?
- 4 What are the maximal elements below P₂ for general finite structures?
- 5 What are the maximal digraphs below T_3 ?

Algebraic Dichotomy, Pictorially

The Barto+Kozik Theorem

PP Obstruction Theorem 3

ENC: Hobby & Mc Kenzie ≤ HORN SAT P-hard

PP Obstruction Theorem 4

E Linear Datalog ENL?, Keomen X Kiss = HORN SAT 3LIN(A)

PP Constructions over Infinite Structures

PP Constructions over Infinite Structures

CSP(<u>B</u>) also defined for infinite structures <u>B</u> with finite relational signature.

PP Constructions over Infinite Structures

- CSP(<u>B</u>) also defined for infinite structures <u>B</u> with finite relational signature.
- If <u>B</u> ≤_{con} <u>C</u> then there exists a polynomial-time many-one reduction from CSP(<u>C</u>) to CSP(<u>B</u>).
- CSP(<u>B</u>) also defined for infinite structures <u>B</u> with finite relational signature.
- If <u>B</u> ≤_{con} <u>C</u> then there exists a polynomial-time many-one reduction from CSP(<u>C</u>) to CSP(<u>B</u>).
- If $\underline{B} \leq K_3$ then $CSP(\underline{B})$ is NP-hard.

- CSP(<u>B</u>) also defined for infinite structures <u>B</u> with finite relational signature.
- If <u>B</u> ≤_{con} <u>C</u> then there exists a polynomial-time many-one reduction from CSP(<u>C</u>) to CSP(<u>B</u>).
- If $\underline{B} \leq K_3$ then $CSP(\underline{B})$ is NP-hard.

- CSP(<u>B</u>) also defined for infinite structures <u>B</u> with finite relational signature.
- If <u>B</u> ≤_{con} <u>C</u> then there exists a polynomial-time many-one reduction from CSP(<u>C</u>) to CSP(<u>B</u>).
- If $\underline{B} \leq K_3$ then $CSP(\underline{B})$ is NP-hard.

A structure is called ω -categorical if all countable models of its first-order theory are isomorphic.

If <u>B</u> is ω -categorical then <u>B</u> $\leq_{def} \underline{C}$ if and only if $Pol(\underline{B}) \subseteq Pol(\underline{C})$.

- CSP(<u>B</u>) also defined for infinite structures <u>B</u> with finite relational signature.
- If <u>B</u> ≤_{con} <u>C</u> then there exists a polynomial-time many-one reduction from CSP(<u>C</u>) to CSP(<u>B</u>).
- If $\underline{B} \leq K_3$ then $CSP(\underline{B})$ is NP-hard.

- If <u>B</u> is ω -categorical then <u>B</u> $\leq_{def} \underline{C}$ if and only if $Pol(\underline{B}) \subseteq Pol(\underline{C})$.
- If <u>B</u>, <u>C</u> are ω -categorical then <u>B</u> \leq_{int} <u>C</u> if and only if

- CSP(<u>B</u>) also defined for infinite structures <u>B</u> with finite relational signature.
- If <u>B</u> ≤_{con} <u>C</u> then there exists a polynomial-time many-one reduction from CSP(<u>C</u>) to CSP(<u>B</u>).
- If $\underline{B} \leq K_3$ then $CSP(\underline{B})$ is NP-hard.

- If <u>B</u> is ω -categorical then <u>B</u> $\leq_{def} \underline{C}$ if and only if $Pol(\underline{B}) \subseteq Pol(\underline{C})$.
- If <u>B</u>, <u>C</u> are ω -categorical then <u>B</u> $\leq_{int} \underline{C}$ if and only if Pol(<u>B</u>) has a continuous homomorphism whose image lies dense in Pol(<u>C</u>) (B+Pinsker'12).

- CSP(<u>B</u>) also defined for infinite structures <u>B</u> with finite relational signature.
- If <u>B</u> ≤_{con} <u>C</u> then there exists a polynomial-time many-one reduction from CSP(<u>C</u>) to CSP(<u>B</u>).
- If $\underline{B} \leq K_3$ then $CSP(\underline{B})$ is NP-hard.

- If <u>B</u> is ω -categorical then <u>B</u> $\leq_{def} \underline{C}$ if and only if $Pol(\underline{B}) \subseteq Pol(\underline{C})$.
- If <u>B</u>, <u>C</u> are ω -categorical then <u>B</u> $\leq_{int} \underline{C}$ if and only if Pol(<u>B</u>) has a continuous homomorphism whose image lies dense in Pol(<u>C</u>) (B+Pinsker'12).
- If <u>B</u> is ω -categorical and <u>C</u> is finite then <u>B</u> \leq_{con} <u>C</u> if and only if

- CSP(<u>B</u>) also defined for infinite structures <u>B</u> with finite relational signature.
- If <u>B</u> ≤_{con} <u>C</u> then there exists a polynomial-time many-one reduction from CSP(<u>C</u>) to CSP(<u>B</u>).
- If $\underline{B} \leq K_3$ then $CSP(\underline{B})$ is NP-hard.

- If <u>B</u> is ω -categorical then <u>B</u> $\leq_{def} \underline{C}$ if and only if $Pol(\underline{B}) \subseteq Pol(\underline{C})$.
- If <u>B</u>, <u>C</u> are ω -categorical then <u>B</u> $\leq_{int} \underline{C}$ if and only if Pol(<u>B</u>) has a continuous homomorphism whose image lies dense in Pol(<u>C</u>) (B+Pinsker'12).
- If <u>B</u> is ω-categorical and <u>C</u> is finite then <u>B</u> ≤_{con} <u>C</u> if and only if Pol(<u>B</u>) has a uniformly continuous minor-preserving map to Pol(<u>C</u>) (Barto+Opršal+Pinsker'15).

There are ω -categorical digraphs with undecidable CSPs.

There are ω -categorical digraphs with undecidable CSPs.

A structure is called homogeneous if every isomorphism between finite substructures can be extended to an automorphism.

There are ω -categorical digraphs with undecidable CSPs.

- A structure is called homogeneous if every isomorphism between finite substructures can be extended to an automorphism.
- a structure is called finitely bounded if there are F_1, \ldots, F_n such that $\underline{A} \hookrightarrow \underline{B}$ if and only $\underline{F}_i \nleftrightarrow \underline{A}$ for all $i \in \{1, \ldots, n\}$.

There are ω -categorical digraphs with undecidable CSPs.

- A structure is called homogeneous if every isomorphism between finite substructures can be extended to an automorphism.
- a structure is called finitely bounded if there are F_1, \ldots, F_n such that $\underline{A} \hookrightarrow \underline{B}$ if and only $\underline{F}_i \nleftrightarrow \underline{A}$ for all $i \in \{1, \ldots, n\}$.

Observation. If \underline{B} is finitely bounded then $CSP(\underline{B})$ is in NP.

There are ω -categorical digraphs with undecidable CSPs.

- A structure is called homogeneous if every isomorphism between finite substructures can be extended to an automorphism.
- a structure is called finitely bounded if there are F_1, \ldots, F_n such that $\underline{A} \hookrightarrow \underline{B}$ if and only $\underline{F}_i \nleftrightarrow \underline{A}$ for all $i \in \{1, \ldots, n\}$.

Observation. If \underline{B} is finitely bounded then $CSP(\underline{B})$ is in NP.

Conjecture (B.+Pinsker'11).

Let <u>B</u> be a reduct of a finitely bounded homogeneous structure. If <u>B</u> $\leq_{con} K_3$ then CSP(<u>B</u>) is in P.