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Example:
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Complexity Dichotomy

Theorem (Bulatov’17,Zhuk’17).

If B has finite relational signature and finite domain,

then CSP(B) is in P or NP-complete.

Complexity dichotomy (unless P = NP).
Ladner’s theorem: If P £ NP, then
NP \ (P U NP-c) # (.
Open questions:
m When is CSP(B) in NC?
m Whenis CSP(B) in NL?
m When is CSP(B) in L?
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Algebraic Dichotomy

Both Bulatov and Zhuk use universal-algebraic approach.

Theorem (Siggers, Barto+Kozik, Barto+Oprsal+Pinsker).

If B has finite domain, then exactly one of the following cases applies:
m K3 has a primitive positive construction in B.

m B has a polymorphism f that satisfies the following minor identity:

va,r,e: f(ar,ea)=f(r,ar,e).

Many other important theorems of universal algebra can be phrased in terms
of minor-conditions and pp-constructability.

Challenge:

m Study finite structures with respect to primitive positive constructability.

m Study polymorphism clones over finite sets with respect to
minor-preserving maps.
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Primitive Positive Constructions

Three posets on finite structures:

HE Primitive positive (pp) definability: B <4t A if A= B and every relation in
A has a primitive positive definition in B.

Xty .y Xn(P1r A Ab)

A Primitive positive interpretations: B <j A if there exists d € N and partial
surjection f: B4 — A such that preimages of A, of =, and of the relations
of A are pp-definable in B.

B Primitive positive constructions (Barto+Oprsal+Pinsker):
B <con Aif Ais homomorphically equivalentto A’ and B <i;; A'.

Motivation:
B <qgef, <int, <con transitive, preserve the complexity of CSPs.

m Bulatov’'2017, Zhuk’2017:
CSP(B) isin P if B £¢on K3, and is NP-hard otherwise.

m Relevant not only for CSPs
Manuel Bodirsky
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Primitive Positive Constructions: Example 1

Cs = ({0,1,2}1{(0,1), (1,2),(2,0)))
has a pp construction in

Cs = (10,1,2,...,5} | {(x,y) | y = x + 1 mod 6}) :

Ju(E(x,u) NE(u,y))
AR S GGy 5
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59 has a pp construction in 53:

E(x1,y3) Ny1 =Xo /\ Yo = X3
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Primitive Positive Constructions: Example 2

59 has a pp construction in 53:

) o

E(x1,y3) Ny1 =Xo /\ Yo = X3 \/\
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Homomorphisms from A¥ to A are called polymorphisms of A.
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Pol(A) is a clone: closed under composition, contains the projections.
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Universal Algebraic Characterisation

Homomorphisms from A¥ to A are called polymorphisms of A.
Pol(A) := set of all polymorphisms of A
Pol(A) is a clone: closed under composition, contains the projections.

Every clone over a finite set equals Pol(A) for some relational structure A.
B B <qer Aiff Pol(B) C Pol(A)
(Geiger'67; Bodnarcuk+Kaluznin+Kotov+Romov’'68).
B B < Aiff there is a clone homomorphism &: Pol(B) — Pol(A).

E(f(Gty--rgn)) = E(OE(GH), -+, E(Gn))
&(nf) =mf

T

(Bulatov,Jeavons,Krokhin’03; Birkhoff’35)
H B <o Aiff there is a minor-preserving map &: Pol(B) — Pol(A).

5(“”;:)---)“’()) :‘Z—v(f)(ﬂﬁ»ank)

li ik
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PP-Definitions and Subalgebras

B: relational structure.
Pol(B): polymorphism clone of B.

A C B is subalgebra of Pol(B) :iff \
f(ay,...,an) € Aforall f € Pol(B) h
of arity nand ay,...,a, € A

Example: {0, 1} is a subalgebra of B.

{0, 1} has the following primitive positive definition in B:
$(x) == 3u(E(x,u) A\ E(u,x))

Fact for finite B:
A C Bis subalgebra of Pol(B) if and only if
A is primitively positively definable in B.
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PP-Definitions and Powers

A: relational structure.
Pol(A)?: clone with domain A9 and the operation
((af,...,a)),...,(a%...,a])) — (f(al,...,ak),..., f(&],...

for each f € Pol(A).
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PP-Definitions and Powers

A: relational structure.
Pol(A)?: clone with domain A9 and the operation

((af,...,a)),...,(a%...,a])) — (f(al,...,ak),..., f(&],...

for each f € Pol(A).

Fact.
Pol(A)? = Pol(A% Ey 2,..., Eq_1.4)

where E; j :=={(s,t) € A9 | s; = t;}.
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Pol(A) is homomorphic image of Pol(B)
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PP-Definitions and Homomorphic Images

A, B: relational structures. B A
Pol(A) is homomorphic image of Pol(B) @
:iff there exists surjection h: B — A

such that for every f € Pol(B) of arity k (®
there exists g € Pol(A) of arity k such that

g(h(by),...,h(bk)) = h(f(bi,..., b)) o

for all by,...,bx € B.
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PP-Definitions and Homomorphic Images

A, B: relational structures. =

Pol(A) is homomorphic image of Pol(B) @
:iff there exists surjection h: B — A

such that for every f € Pol(B) of arity k (®
there exists g € Pol(A) of arity k such that

g(h(b1),...,h(bk)) = h(f(bi,..., b)) o

for all by,...,bx € B.
Example: h: B — A with

h(0)=h(1)=h(2)=a
h(3)=h(4)=h(5)=0>b
(6)=h(7)=h(8)=c

is a homomorphism.
m h'(=) has pp definition \(x, y) := 3u(E(x,u) N E(u,y))
m h~'(EA) has pp definition Ju, v((x, u) A E(u, v) Ap(v, y).
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PP-Interpretations and Clone Homomorphisms
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A< B 3 primitive positive interpretation f: A 5B
Pol(B) € H(S(Pol(A)?))
Identities(Pol(A)) C Identities(Pol(B)) (Birkhoff)

3 clone homomorphism &: Pol(A) — Pol(B)
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PP-Interpretations and Clone Homomorphisms

Primitive positive .
. . Clone homomorphisms
interpretations

"\ /

Pseudo-varieties +<— Varieties «<— |dentities

A< B 3 primitive positive interpretation f: A 5B
Pol(B) € H(S(Pol(A)?))
Identities(Pol(A)) C Identities(Pol(B)) (Birkhoff)

3 clone homomorphism &: Pol(A) — Pol(B)

reee

How about this connection for primitive positive constructions?
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A, B: t-structures
with homomorphisms
h:A— Bandg: B— A
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Reflections

A, B: t-structures

with homomorphisms
h:A— Bandg: B— A
f: B" — B.

f*: A" — A defined by

(X1, Xp) 2

Pol(A) contains
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Reflections

A, B: t-structures

with homomorphisms
h:A— Bandg: B— A
f: B" — B.

f*: A" — A defined by

(X1, Xp) 2

Pol(A) contains

Refl(Pol(B)) :={f* | f € Pol(B)}
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Reflections

A, B: t-structures
with homomorphisms
h:A— Bandg: B— A.
f: B" — B.
f*: A" — A defined by

f*(X1yeuey Xn) i=
Pol(A) contains

Refl(Pol(B)) := {f* | f € Pol(B)}

Observations.

m f— f* is a minor-preserving map from Pol(B) to Pol(A).
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Reflections

A, B: t-structures

with homomorphisms
h:A— Bandg: B— A.
f: B" — B.

f*: A" — A defined by

(Xt Xp) =

Pol(A) contains

Refl(Pol(B)) :={f* | f € Pol(B)}

Observations.
m f— f* is a minor-preserving map from Pol(B) to Pol(A).
m Refl(Pol(B)) is in general not a clone.

Minor Identities Manuel Bodirsky 14
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Wonderland

Theorem (‘Wonderland of reflections’,
Barto+OprSal+Pinsker’15).
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Wonderland

Theorem (‘Wonderland of reflections’,
Barto+OprSal+Pinsker’15).
A, B: finite structures. Then:

B<cn A
@ .
Pol(A) € Exp(RefI(Pf'”(Pol(Q))).
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Wonderland

Theorem (‘Wonderland of reflections’,
Barto+OprSal+Pinsker’15).
A, B: finite structures. Then:

B<cn A
@ .
Pol(A) € Exp(RefI(Pf'”(Pol(ﬁ))).

Note. Exp( Refl(P™"(Pol(B))))
contains HSPfi"(Pol(B)).
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Minor Conditions

Aka: sets of height-one identities
Examples:

m f(x,y) = f(y,x)
m f(x,x,y) = f(x,y,x) = f(y,x,x)
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Minor Conditions

Aka: sets of height-one identities
Examples:
m f(x,y) = fly,X)
mf(x,x,y) = f(x,y,x) =~ f(y, x,x)
[ fx, x, X, y) = f(x,x,y,X) ~ f(x,y,x,x) ~ f(y, X, x, X)
~gx,x,y) = glx,y,Xx) = gy, X, x)
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Minor Conditions

Aka: sets of height-one identities
Examples:
m f(x,y) ~ f(y,x)
mf(x,x,y) = f(x,y,x) = fly,x,x)
] fx,x, %, ¥) = f(x, %, y,x) = f(x, ¥, X, x) = f(y, X, X, X)
~ g(x,x,y) =~ g(x,y,x) =~ gy, X, x)
Non-examples:
m f(x,fy,z)) = f(f(x,y),2)
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Minor Conditions

Aka: sets of height-one identities
Examples:
m f(x,y) = fly,X)
mf(x,x,y) = f(x,y,x) =~ f(y, x,x)
[ fx, x, X, y) = f(x,x,y,X) ~ f(x,y,x,x) ~ f(y, X, x, X)
~ glx, x,y) = g(x,y,x) = g(y, X, X)
Non-examples:
m f(x,fy,z)) = f(f(x,y),2)
mfxxy) ~flxyx) ~flyxx) ~x
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Examples:
m f(x,y) ~ f(y,x)
mf(x,x,y) = f(x,y,x) = fly,x,x)
] fx,x, %, ¥) = f(x, %, y,x) = f(x, ¥, X, x) = f(y, X, X, X)
~ g(x,x,y) =~ g(x,y,x) =~ gy, X, x)
Non-examples:
m f(x,fy,z)) = f(f(x,y),2)

m (X, xy) = f(x,y,Xx) = fly,x,x) = x

X: minor condition {f; (variables) =~ f(variables),...}.
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Minor Conditions

Aka: sets of height-one identities
Examples:

m f(x,y) ~ f(y,X)

m (X, X,¥) = f(x,y,X) = {(y, X, x)

B0 X, ) & (X, Y, X) & F(X, Y, X, X) = F(Y, X, X, X)

~ g(x,x,y) =~ g(x,y,x) =~ gy, X, x)

Non-examples:

m f(x,f(y,2)) =~ f(f(x,y), 2)

mf(x,x,y) = f(x,y,x) = f(y,x,X) = X
X: minor condition {f; (variables) =~ f(variables),...}.
C: set of operations.

Write C | X if £ is satisfied by some operations in Pol(B)
for the function symbols fi, f,... in X.
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Theorem (Barto+Oprsal+Pinsker).
Let A be finite.
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Minor Conditions and Reflections

2: minor condition.
If Pol(B) = X and &: Pol(B) — Pol(A) is minor-preserving,

then Pol(B) E .
Theorem (Barto+Oprsal+Pinsker).
Let A be finite. And let B be finite, too. Then TFAE:
n B §con A
B Pol(A) € Exp(Refl(P"(B))).
H Every minor condition that holds in Pol(B) also holds in Pol(A).
B There exists a minor-preserving map from Pol(B) to Pol(A).

1 & 2: already done. 2 = 3 = 4: observations.
4 = 2: interesting: “Height-one Birkhoff”
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Height-one Birkhoff

Suppose that every minor condition that holds in Pol(B) also holds in Pol(A).
Goal: prove that

Pol(A) € Exp(Refl(Pol(B)? ))

m,: BA — B: function that maps t € BAto t(a).
S: subalgebra of Pol(B)& generated by {m, | a € Al
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Height-one Birkhoff

Suppose that every minor condition that holds in Pol(B) also holds in Pol(A).

Goal: prove that
Pol(A) € Exp(Refl(Pol(B)? ))

m,: BA — B: function that maps t € BAto t(a).
S: subalgebra of Pol(B)& generated by {m, | a € Al

3
a

Pol(B)

BA

Minor Identities Manuel Bodirsky



Height-one Birkhoff

Suppose that every minor condition that holds in Pol(B) also holds in Pol(A).

Goal: prove that
Pol(A) € Exp(Refl(Pol(B)? ))

mia: BA — B: function that maps t € BAto t(a).
S: subalgebra of Pol(B)& generated by {m, | a € Al

3
a

A
s Pol®)°

h: S — A:
h(f8(ma,,...,ma,)) == Aa,...,an)
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Height-one Birkhoff

Suppose that every minor condition that holds in Pol(B) also holds in Pol(A).
Goal: prove that
Pol(A) € Exp(Refl(Pol(B)? ))

mia: BA — B: function that maps t € BAto t(a).
S: subalgebra of Pol(B)& generated by {m, | a € Al

3
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A
s Pol®)°

h: S — A:
h(f8(ma,,...,ma,)) == Aa,...,an)

Well-defined by assumption!
h and a — 7, show that Pol(A) € Exp(Refl(S)).
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Height-one Birkhoff

Suppose that every minor condition that holds in Pol(B) also holds in Pol(A).

Goal: prove that
Pol(A) € Exp(Refl(Pol(B)? ))

mia: BA — B: function that maps t € BAto t(a).
S: subalgebra of Pol(B)& generated by {m, | a € Al

3
a

A
s Pol®)°

h: S — A:
h(f8(ma,,...,ma,)) == Aa,...,an)

Well-defined by assumption!
h and a — 7, show that Pol(A) € Exp(Refl(S)). O
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Summary

Proved: B <.on A iff there is a minor-preserving map &: Pol(B) — Pol(A).
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Summary

Proved: B <.on A iff there is a minor-preserving map &: Pol(B) — Pol(A).

Reflection Reflection Height one
pseudo-varieties Varieties identities

- \

Primitive positive

. Minor-preserving maps
constructions P g map

Primitive positive :
. . Clone homomorphisms
interpretations

. /

Pseudo-varieties +<—> Varieties +<— |dentities
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General Goal:
Describe the pp construction poset on the class of finite structures
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obtained from <con
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PP-Construction Poset

General Goal:

Describe the pp construction poset on the class of finite structures
obtained from <con

by factoring with =: P=zc, - 2
A= Biff A<con BAB <con A). *

m Cardinality? g, 2%0? o
m Is it a lattice? PP S
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PP-Construction Poset

General Goal:

Describe the pp construction poset on the class of finite structures
obtained from <con

by factoring with =: P=zc, - 2
A= Biff A<con BAB <con A). *

m Cardinality? Xy, 2%0? °
m Is it a lattice? o>
m Are there infinite ascending chains? K3
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The Unique Co-atom

Pol(Py) |= f(x) = f(y).
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The Unique Co-atom

Pol(Py) = f(x) = f(y).
Pz := ({0, 15{(0, 1)}).
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Claim. For every finite structure A,
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Claim. For every finite structure A,
B Py <con A, Or
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The Unique Co-atom

Pol(Py) k= f(x) ~ f(y).
Pz = ({0, 15{(0, 1))
Pol(Py) b f(x) = f(y).

Claim. For every finite structure A,
m Py <con A, or
A <con P2.

Proof.
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The Unique Co-atom

Pol(Py) k= f(x) ~ f(y).
Pz = ({0, 15{(0, 1))
Pol(Py) b f(x) = f(y).

Claim. For every finite structure A,
m Py <con A, or
A <con P2.
Proof. Let f € Pol(A) be with smallest image B.
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The Unique Co-atom

Pol(Py) k= f(x) ~ f(y).
Pz = ({0, 15{(0, 1))
Pol(Py) b f(x) = f(y).

Claim. For every finite structure A,
B Py <con A, Or
| A Scon P2-

Proof. Let f € Pol(A) be with smallest image B.
Note: A =con B.
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The Unique Co-atom

Pol(Py) = (x) = f(y) Rzc, - 4
Pz = ({0, 1};{(0,1)}).
Pol(P2)  f(x) ~ f(y). .}

Claim. For every finite structure A,
B Py <con A, Or

m A<con Po.
Proof. Let f € Pol(A) be with smallest image B.
Note: A =con B. /o,&
Every endomorphism of B is automorphism. PPN S
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The Unique Co-atom

Pol(Py) = f(x) = f(y). fzc, - “
Py = ({0, 1;{(0, 1)).
Pol(P2) 1 f(x) ~ (). o}

Claim. For every finite structure A,
B Py <con A, Or

u A Scon P2-
Proof. Let f € Pol(A) be with smallest image B.
Note: A =¢on B. /o,&
Every endomorphism of B is automorphism. . PPN S
B=con B := (B, {b1},{ba},...). K3
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The Unique Co-atom

Pol(Py) = f(x) ~ f(y). P=c, - 4
P, := ({0, 1}{(0, 1)}).
Pol(Py) 1 f(x) ~ f(y). (S

Claim. For every finite structure A,
B Py <con A, Or

m A<con Po.
Proof. Let f € Pol(A) be with smallest image B.
Note: A =con B. /.\
Every endomorphism of B is automorphism. . PPN S
B =con B := (B,{b1},{ba},...). K3

If |Bl =1 then Py <¢on A.
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P, := ({0, 1}{(0, 1)}).
Pol(Py) 1 f(x) ~ f(y). (S

Claim. For every finite structure A,
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m A<con Po.
Proof. Let f € Pol(A) be with smallest image B.
Note: A =con B. /.\
Every endomorphism of B is automorphism. . PPN S
B =con B := (B,{b1},{ba},...). K3
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The Unique Co-atom

Pol(Py) = f(x) ~ f(y). P=c, - 4
P, := ({0, 1}{(0, 1)}).
Pol(Py) 1 f(x) ~ f(y). (S

Claim. For every finite structure A,
B Py <con A, Or

m A<con Po.
Proof. Let f € Pol(A) be with smallest image B.
Note: A =con B. /.\
Every endomorphism of B is automorphism. . PPN S
B =con B := (B,{b1},{ba},...). K3

If |Bl =1 then Py <¢on A.

If |B] > 1 then B’ <con Po. O
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The Unique Co-atom

Pol(Py) = f(x) = f(y). P=c, - 4
).

P, := ({0, 13;{(0, 1)}
Pol(Py) 1 f(x) ~ f(y). (S

Claim. For every finite structure A,

m Py <con A, or

m A<con Po.
Proof. Let f € Pol(A) be with smallest image B.
Note: A =con B. /.\
Every endomorphism of B is automorphism. PPN S
B =con B := (B,{b1},{ba},...). K3
If [B =1 then Py <con A.
If [B] > 1 then B" <con P2. O
Consequence: Can focus on idempotent clones C,
ie., f(x,...,x)=xforall f eC.

Minor Identities Manuel Bodirsky 21



Structures over {0, 1}

Minor Identities

Manuel Bodirsky

22



Structures over {0, 1}

<gef ON structures with domain {0, 1}.
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Structures over {0, 1}

<gef ON structures with domain {0, 1}.
clones over {0, 1} with respect to containment.
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Structures over {0, 1}

<gef ON structures with domain {0, 1}.
clones over {0, 1} with respect to containment.

Post’s lattice
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The constructability poset on {0, 1}

Pieces:
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The constructability poset on {0, 1}

Pieces:

@ C collapses with C* := {—f(—xq,...,—xp) | f € CL.
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Pieces:

@ C collapses with C* := {=f(—xq,...,—X,) | f € C}.
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The constructability poset on {0, 1}

Pieces:
@ C collapses with C* := {=f(—xq,...,—X,) | f € C}.
f(x,x,y) = f(x,y,x) = f(y,x,x) = x

f(X1X’Y) = f(le1X) = f(y,X,X) =Yy
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The constructability poset on {0, 1}

Pieces:
@ C collapses with C* := {=f(—xq,...,—X,) | f € C}.
f(x,x,y) = f(x,y,x) = f(y,x, x)

f(x,x,y) = f(x,y,x) = f(y,x,x) =

y

f(x,y) = f(y.x)
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The constructability poset on {0, 1}

Pieces:

@ C collapses with C* := {=f(—xq,...,—X,) | f € C}.

f(X1X’Y) = f(X,y,X) = f(y,X,X) =Yy

L ||g

f(x,y) = f(y.x)

=t ({0, 1} <, {0}, {1},{(0, 1), (1,0), (1, 1)})
and ({0, 1}; <,{0},{1}) collapse (2D)

Manuel Bodirsky
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The constructability poset on {0, 1}

Pieces:

@ C collapses with C* := {=f(—xq,...,—X,) | f € C}.
f(x,x,y) = f(x,y,x) = f(yk x) Mx g
f(x,xy) = f(x,y,x) = f(y,x,x) =y i
i

f(x,y) = f(y.x)

Jonsson(3) '@

=t ({0, 1} <, {0}, {1},{(0, 1), (1,0), (1, 1)})
and ({0, 1}; <,{0},{1}) collapse (2D)

Manuel Bodirsky
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The constructability poset on {0, 1}

Pieces:

@ C collapses with C* := {—=f(—xy,...

= ({0, 1} <,{0}, {1},{(0, 1), (1,0), (1, 1)})

and ({0, 1}; <,{0},{1}) collapse (2D)
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The constructability poset on {0, 1}

Pieces:

@ C collapses with C* := {=f(—xq,...,—X,) | f € C}. 54
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f(X1X’Y) = f(X,y,X) = f(y,X,X) =Yy
f(x.y) = f(y.x)
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The Constructability Poset

<con 0N {0, 1}: outcome (B. + Vucaj 2020)
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The Constructability Poset

o
i,
V"‘G

!'»

CSPisin NC.

Above yellow or deep orange:

CSP in NL.

Strictly above black: CSP in P (Schaefer'78).  Above yellow or deep purple:
Above yellow or red iff CSP in Datalog. CSPin L.
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Clones over three elements

<def ON {O) 1 ) 2}
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<def ON {O) 1 ) 2}

Yanov-Muchnik: 2%
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Clones over three elements

<def ON {O) 1 ) 2}

Yanov-Muchnik: 2%

How about <;?
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The interpretability poset on {0, 1, 2}

N\

Sint on {0) 1) 2}
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The interpretability poset on {0, 1, 2}

N

Cs:
Bs:

Sint on {0) 1) 2}

,20)}

{(,
{, ), (1,1)}

Ry :{xy, |X€{0 NAXx=0=y=2z}
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The interpretability poset on {0, 1, 2}

N\

CS = {(0)1)) (1)2))(2)0)}
B> ::{(1) )»(0)1))(1»1)}
Ry ={(x,y,2) | xe{0,}Ax=0=y =2z}

Sint on {0) 1) 2}

Zhuk’15: 2 many clones between

Pol({0,1,2}; C3, Ry)
and Pol({0,1,2}; C3, B>)
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The interpretability poset on {0, 1, 2}

Sint on {0) 1) 2}
Cs == {(0, ),(2,0)}
BZ { ) 1 1)}
Ry ;_{x,y, |xe{o,1}Ax=0;xy=z}

Zhuk’15: 2 many clones between

Pol({0,1,2}; C3, Ry)
and Pol({0,1,2}; C3, B>)

m Clones below Pol({0, 1, 2}; C3): ‘self-dual’
m Pol({0, 1, 2}; C3, A3’ ) contains binary ‘paper-scissor-stone operation’
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Non-collapse

Theorem (Zhuk). Let A and B be structures s.t.

({0,1,2}; Cs, R3) <qer Pol(A), Pol(B)
<det ({0,1,2}; Cs, B2). N

Minor Identities Manuel Bodirsky

27



Non-collapse

Theorem (Zhuk). Let A and B be structures s.t.

({0,1,2}; Cs, R3) <qer Pol(A), Pol(B)
<qet ({0,1,2}; C3, Bz). N

If B <int Athen B <ger A.

Minor Identities Manuel Bodirsky

27



Non-collapse

Theorem (Zhuk). Let A and B be structures s.t.

({0,1,2}; Cs, R3) <qer Pol(A), Pol(B)
<qet ({0,1,2}; C3, Bz). N
If B <int Athen B <ger A.

Corollary: 2< clones over {0, 1, 2}
even when considered up to
clone homomorphism equivalence!

Minor Identities Manuel Bodirsky

27



Non-collapse

Theorem (Zhuk). Let A and B be structures s.t.

({0,1,2}; Cs, R3) <qer Pol(A), Pol(B)
<qet ({0,1,2}; C3, Bz). N

If B <int Athen B <ger A.

Corollary: 2< clones over {0, 1, 2}
even when considered up to
clone homomorphism equivalence!

Conclusion: Need stronger weapon.

Minor Identities Manuel Bodirsky

27



Non-collapse

Theorem (Zhuk). Let A and B be structures s.t.

({0,1,2}; Cs, R3) <qer Pol(A), Pol(B)
<det ({0,1,2}; Cs, B2). N

If B <int Athen B <ger A.

Corollary: 2< clones over {0, 1, 2}
even when considered up to
clone homomorphism equivalence!

Conclusion: Need stronger weapon. pp constructions!

Minor Identities Manuel Bodirsky 27



The constructability poset on {0, 1, 2}

Manuel Bodirsky

28



The constructability poset on {0, 1, 2}

W= ({0) 1»2}; C3’ R?):)
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The constructability poset on {0, 1, 2}

W= ({0) 1»2}; C3> RSZ)

3-4 weak near unanimity «

Q(X)X»Y) :Q(X»Y»X) ZQU’»X>X) =
f(X)X)X)y) :f(X)X)Y>X) :f(X)y>X»X) :f(y,X,X,X)
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The constructability poset on {0, 1, 2}

W= ({0) 1»2}; C3> RSZ)

3-4 weak near unanimity

Q(X)X»Y) :Q(X»Y»X) ZQU’»X>X) =
f(X)X)X)y) :f(X)X)Y>X) :f(X)y>X»X) :f(y,X,X,X)

Q:=({0,1,2}Cs,{(x,5,2) [ x€ {0, 1} Ax=0=y=2z€{0,1}) w

‘guarded 3-cyclic’:
f(X)X>X,Y) =X,f(X1»X2>X3»}’) = f(Xz»Xs)XhY)

@ Q=P :=({0,1,25Cs,{(x,y,2) | X,y € {0, 1} AXx =y =0=z=0)
(Infinitely many clones between Q and P.)

% Further collapses ...
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The constructability poset on {0, 1, 2}

<con for self-dual clones on {0, 1, 2}: outcome (Zhuk+Vucaj+B.21)
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Digraphs: pieces

@ P> <con D for every digraph D
with a Mal’cev polymorphism

and cyclic polymorphisms

of all prime arities
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Digraphs: pieces

@ P> <con D for every digraph D
with a Mal’cev polymorphism

and cyclic polymorphisms

of all prime arities

Minor Identities

fly,y,x) =f(x,y,y) =y
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Digraphs: pieces

@ P> <con D for every digraph D
with a Mal’cev polymorphism

and cyclic polymorphisms

of all prime arities

Minor Identities

fly,y,x) =f(x,y,y) =y

f(x1, x2) = f(x2, X1

f(x1, X2, X3) = f(X2, X3, X1
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Digraphs: pieces

@ P> <con D for every digraph D
with a Mal’cev polymorphism

and cyclic polymorphisms

of all prime arities

Minor Identities

f(y,y,X):f(X,y,y) =

<

[pie Jpie [rie

f(x1, x2) = f(x2, X1)
f(x1, X2, X3) = f(X2, X3, X1)

f(X1, X2, X3, Xa) = f(X2, X3, Xa, X1)
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Digraphs: pieces

@ P> <con D for every digraph D
with a Mal’cev polymorphism

and cyclic polymorphisms

of all prime arities

«z D <con T3 for every digraph D
without a Mal’cev polymorphism
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Digraphs: pieces

@ P> <con D for every digraph D
with a Mal’cev polymorphism

and cyclic polymorphisms

of all prime arities

z D <con T3 for every digraph D
without a Mal’cev polymorphism

ﬁ. D <con Cp for every finite digraph D
without p-cyclic polymorphism

Minor Identities

f(y,y,X):f(X,y,y) =

<

[pie nio |pie

f(x1, x2) = f(x2, X1)
f(x1, X2, X3) = f(X2, X3, X1)

f(X1, X2, X3, Xa) = f(X2, X3, Xa, X1)
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Digraphs: pieces

2

fy,y,x) =fx,y,y) =y -

@ P, <con D for every digraph D fxi, %) = flxe, x1) &
with a Mal’cev polymorphism B s
and cyclic polymorphisms fxa, Xe, X3) = F(Xe, X3, %1) ry
of all prime arities f(x1, Xo, X3, X4) = f(Xo, X3, X4, X1) a2

z D <con T3 for every digraph D
without a Mal’cev polymorphism

ﬁ. D <con Cp for every finite digraph D
without p-cyclic polymorphism

Joint work with F. Starke
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Open Problems

<con ON finite structures:
E What is the cardinality of <¢on?
B Are there infinite ascending chains?

H Is <. a lattice?
B What are the maximal elements below P; for general finite structures?

H What are the maximal digraphs below T3?
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Algebraic Dichotomy, Pictorially
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The Barto+Kozik Theorem

éD&qu

Not \m
LFP
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PP Obstruction Theorem 3

eNcY

T-hoid

Manuel Bodirsky
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PP Obstruction Theorem 4
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PP Constructions over Infinite Structures
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PP Constructions over Infinite Structures

m CSP(B) also defined for infinite structures B with finite relational
signature.

Minor Identities Manuel Bodirsky

38



PP Constructions over Infinite Structures

m CSP(B) also defined for infinite structures B with finite relational
signature.

m If B <.on C then there exists a polynomial-time many-one reduction from
CSP(C) to CSP(B).

Minor Identities Manuel Bodirsky

38



PP Constructions over Infinite Structures

m CSP(B) also defined for infinite structures B with finite relational
signature.

m If B <.on C then there exists a polynomial-time many-one reduction from
CSP(C) to CSP(B).

m If B < K3 then CSP(B) is NP-hard.

Minor Identities Manuel Bodirsky 38



PP Constructions over Infinite Structures

m CSP(B) also defined for infinite structures B with finite relational
signature.

m If B <.on C then there exists a polynomial-time many-one reduction from
CSP(C) to CSP(B).

m If B < K3 then CSP(B) is NP-hard.

A structure is called w-categorical if all countable models of its first-order
theory are isomorphic.

Minor Identities Manuel Bodirsky 38



PP Constructions over Infinite Structures

m CSP(B) also defined for infinite structures B with finite relational
signature.

m If B <.on C then there exists a polynomial-time many-one reduction from
CSP(C) to CSP(B).

m If B < K3 then CSP(B) is NP-hard.

A structure is called w-categorical if all countable models of its first-order
theory are isomorphic.

m If Bis w-categorical then B <4¢ C if and only if Pol(B) C Pol(C).

Minor Identities Manuel Bodirsky 38



PP Constructions over Infinite Structures

m CSP(B) also defined for infinite structures B with finite relational
signature.

m If B <.on C then there exists a polynomial-time many-one reduction from
CSP(C) to CSP(B).

m If B < K3 then CSP(B) is NP-hard.

A structure is called w-categorical if all countable models of its first-order
theory are isomorphic.

m If Bis w-categorical then B <4¢ C if and only if Pol(B) C Pol(C).
m If B, C are w-categorical then B <;,; C if and only if

Minor Identities Manuel Bodirsky 38



PP Constructions over Infinite Structures

m CSP(B) also defined for infinite structures B with finite relational
signature.

m If B <.on C then there exists a polynomial-time many-one reduction from
CSP(C) to CSP(B).

m If B < K3 then CSP(B) is NP-hard.

A structure is called w-categorical if all countable models of its first-order
theory are isomorphic.

m If Bis w-categorical then B <4¢ C if and only if Pol(B) C Pol(C).

m If B, C are w-categorical then B <;,; C if and only if Pol(B)
has a continuous homomorphism whose image lies dense in Pol(C)
(B+Pinsker’12).

Minor Identities Manuel Bodirsky 38



PP Constructions over Infinite Structures

m CSP(B) also defined for infinite structures B with finite relational
signature.

m If B <.on C then there exists a polynomial-time many-one reduction from
CSP(C) to CSP(B).

m If B < K3 then CSP(B) is NP-hard.

A structure is called w-categorical if all countable models of its first-order
theory are isomorphic.

m If Bis w-categorical then B <4¢ C if and only if Pol(B) C Pol(C).

m If B, C are w-categorical then B <;,; C if and only if Pol(B)
has a continuous homomorphism whose image lies dense in Pol(C)
(B+Pinsker’12).

m If Bis w-categorical and C is finite then B <o, C if and only if

Minor Identities Manuel Bodirsky 38



PP Constructions over Infinite Structures

m CSP(B) also defined for infinite structures B with finite relational
signature.
m If B <.on C then there exists a polynomial-time many-one reduction from
CSP(C) to CSP(B).
m If B < K3 then CSP(B) is NP-hard.
A structure is called w-categorical if all countable models of its first-order
theory are isomorphic.
m If Bis w-categorical then B <4¢ C if and only if Pol(B) C Pol(C).
m If B, C are w-categorical then B <;,; C if and only if Pol(B)

has a continuous homomorphism whose image lies dense in Pol(C)
(B+Pinsker’12).

m If Bis w-categorical and C is finite then B <o, C if and only if
Pol(B) has a uniformly continuous minor-preserving map to Pol(C)
(Barto+Oprsal+Pinsker’15).
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The Infinite-Domain Tractability Conjecture
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The Infinite-Domain Tractability Conjecture

There are w-categorical digraphs with undecidable CSPs.

m A structure is called homogeneous if every isomorphism between finite
substructures can be extended to an automorphism.

m a structure is called finitely bounded if there are F,..., F, such that
A— Bifandonly F; & Aforallie{1,...,n}.

Observation. If B is finitely bounded then CSP(B) is in NP.

Conjecture (B.+Pinsker'11).

Let B be a reduct of a finitely bounded homogeneous structure.
If B £con K3 then CSP(B) is in P.
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