
Minor Identities and
Primitive Positive Constructions

Manuel Bodirsky

Institut für Algebra, TU Dresden

June 12+13, 2021,
BLAST, virtual

Minor Identities Manuel Bodirsky 1



Outline

Primitive positive constructions

Minor-preserving maps

2-element structures

3-element structures

Finite digraphs

Infinite structures

Minor Identities Manuel Bodirsky 2



Outline

Primitive positive constructions

Minor-preserving maps

2-element structures

3-element structures

Finite digraphs

Infinite structures

Minor Identities Manuel Bodirsky 2



Outline

Primitive positive constructions

Minor-preserving maps

2-element structures

3-element structures

Finite digraphs

Infinite structures

Minor Identities Manuel Bodirsky 2



Outline

Primitive positive constructions

Minor-preserving maps

2-element structures

3-element structures

Finite digraphs

Infinite structures

Minor Identities Manuel Bodirsky 2



Outline

Primitive positive constructions

Minor-preserving maps

2-element structures

3-element structures

Finite digraphs

Infinite structures

Minor Identities Manuel Bodirsky 2



Outline

Primitive positive constructions

Minor-preserving maps

2-element structures

3-element structures

Finite digraphs

Infinite structures

Minor Identities Manuel Bodirsky 2



Constraint Satisfaction Problems
B: structure with finite relational signature τ.

CSP(B):
Input: Finite τ-structure A.
Question: Is there a homomorphism from A to B.

Example:
B := K3 := ({0,1,2}; 6=).
CSP(B): 3-colorability problem.
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Complexity Dichotomy

Theorem (Bulatov’17,Zhuk’17).

If B has finite relational signature and finite domain,
then CSP(B) is in P or NP-complete.

Complexity dichotomy (unless P = NP).

Ladner’s theorem: If P 6= NP, then
NP \ (P ∪ NP-c) 6= ∅.

NPNP-c

Ladner

P

NC

NL

L

Open questions:

When is CSP(B) in NC?

When is CSP(B) in NL?

When is CSP(B) in L?
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Algebraic Dichotomy

Both Bulatov and Zhuk use universal-algebraic approach.

Theorem (Siggers, Barto+Kozik, Barto+Opršal+Pinsker).

If B has finite domain, then exactly one of the following cases applies:

K3 has a primitive positive construction in B.

B has a polymorphism f that satisfies the following minor identity:

∀a, r ,e : f (a, r ,e,a) = f (r ,a, r ,e).

Many other important theorems of universal algebra can be phrased in terms
of minor-conditions and pp-constructability.

Challenge:

Study finite structures with respect to primitive positive constructability.

Study polymorphism clones over finite sets with respect to
minor-preserving maps.
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Primitive Positive Constructions

Three posets on finite structures:

1 Primitive positive (pp) definability: B ≤def A if A = B and every relation in
A has a primitive positive definition in B.

∃x1, . . . , xn(ψ1 ∧ · · ·∧ψm)

2 Primitive positive interpretations: B ≤int A if there exists d ∈ N and partial
surjection f : Bd → A such that preimages of A, of =, and of the relations
of A are pp-definable in B.

3 Primitive positive constructions (Barto+Opršal+Pinsker):
B ≤con A if A is homomorphically equivalent to A ′ and B ≤int A ′.

Motivation:

≤def, ≤int, ≤con transitive, preserve the complexity of CSPs.

Bulatov’2017, Zhuk’2017:
CSP(B) is in P if B 6≤con K3, and is NP-hard otherwise.

Relevant not only for CSPs
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B ≤con A if A is homomorphically equivalent to A ′ and B ≤int A ′.

Motivation:

≤def, ≤int, ≤con transitive, preserve the complexity of CSPs.

Bulatov’2017, Zhuk’2017:
CSP(B) is in P if B 6≤con K3, and is NP-hard otherwise.

Relevant not only for CSPs

Minor Identities Manuel Bodirsky 6



Primitive Positive Constructions

Three posets on finite structures:

1 Primitive positive (pp) definability: B ≤def A if A = B and every relation in
A has a primitive positive definition in B.

∃x1, . . . , xn(ψ1 ∧ · · ·∧ψm)

2 Primitive positive interpretations: B ≤int A if there exists d ∈ N and partial
surjection f : Bd → A such that preimages of A, of =, and of the relations
of A are pp-definable in B.

3 Primitive positive constructions (Barto+Opršal+Pinsker):
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Primitive Positive Constructions: Example 1

~C3 :=
(
{0,1,2} | {(0,1), (1,2), (2,0)}

)

has a pp construction in

~C6 :=
(
{0,1,2, . . . ,5} | {(x , y) | y = x + 1 mod 6}

)
:

∃u
(
E(x ,u)∧ E(u, y)

)

C6 C3C3+C3
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Primitive Positive Constructions: Example 2

~C9 has a pp construction in ~C3:

y1 y2 y3

x1 x2 x3

E(x1, y3)∧ y1 = x2 ∧ y2 = x3

C3 C9C9+C9+C9

0

1

2

000
001

011

111

112 122

222

220

200

Minor Identities Manuel Bodirsky 8



Primitive Positive Constructions: Example 2

~C9 has a pp construction in ~C3:
y1 y2 y3

x1 x2 x3

E(x1, y3)∧ y1 = x2 ∧ y2 = x3

C3 C9C9+C9+C9

0

1

2

000
001

011

111

112 122

222

220

200

Minor Identities Manuel Bodirsky 8



Primitive Positive Constructions: Example 2

~C9 has a pp construction in ~C3:
y1 y2 y3

x1 x2 x3

E(x1, y3)∧ y1 = x2 ∧ y2 = x3

C3 C9C9+C9+C9

0

1

2

000
001

011

111

112 122

222

220

200

Minor Identities Manuel Bodirsky 8



Universal Algebraic Characterisation

Homomorphisms from Ak to A are called polymorphisms of A.

Pol(A) := set of all polymorphisms of A

Pol(A) is a clone: closed under composition, contains the projections.

Every clone over a finite set equals Pol(A) for some relational structure A.

1 B ≤def A iff Pol(B) ⊆ Pol(A)
(Geiger’67; Bodnarcuk+Kaluznin+Kotov+Romov’68).

2 B ≤int A iff there is a clone homomorphism ξ : Pol(B)→ Pol(A).

ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn))

ξ(πn
i ) = π

n
i

(Bulatov,Jeavons,Krokhin’03; Birkhoff’35)

3 B ≤con A iff there is a minor-preserving map ξ : Pol(B)→ Pol(A).

ξ(f (πk
i1 , . . . , π

k
ik )) = ξ(f )(π

k
i1 , . . . , π

k
ik )

Minor Identities Manuel Bodirsky 9



Universal Algebraic Characterisation

Homomorphisms from Ak to A are called polymorphisms of A.

Pol(A) := set of all polymorphisms of A

Pol(A) is a clone: closed under composition, contains the projections.

Every clone over a finite set equals Pol(A) for some relational structure A.

1 B ≤def A iff Pol(B) ⊆ Pol(A)
(Geiger’67; Bodnarcuk+Kaluznin+Kotov+Romov’68).

2 B ≤int A iff there is a clone homomorphism ξ : Pol(B)→ Pol(A).

ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn))

ξ(πn
i ) = π

n
i

(Bulatov,Jeavons,Krokhin’03; Birkhoff’35)

3 B ≤con A iff there is a minor-preserving map ξ : Pol(B)→ Pol(A).

ξ(f (πk
i1 , . . . , π

k
ik )) = ξ(f )(π

k
i1 , . . . , π

k
ik )

Minor Identities Manuel Bodirsky 9



Universal Algebraic Characterisation

Homomorphisms from Ak to A are called polymorphisms of A.

Pol(A) := set of all polymorphisms of A

Pol(A) is a clone: closed under composition, contains the projections.

Every clone over a finite set equals Pol(A) for some relational structure A.

1 B ≤def A iff Pol(B) ⊆ Pol(A)
(Geiger’67; Bodnarcuk+Kaluznin+Kotov+Romov’68).

2 B ≤int A iff there is a clone homomorphism ξ : Pol(B)→ Pol(A).

ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn))

ξ(πn
i ) = π

n
i

(Bulatov,Jeavons,Krokhin’03; Birkhoff’35)

3 B ≤con A iff there is a minor-preserving map ξ : Pol(B)→ Pol(A).

ξ(f (πk
i1 , . . . , π

k
ik )) = ξ(f )(π

k
i1 , . . . , π

k
ik )

Minor Identities Manuel Bodirsky 9



Universal Algebraic Characterisation

Homomorphisms from Ak to A are called polymorphisms of A.

Pol(A) := set of all polymorphisms of A

Pol(A) is a clone: closed under composition, contains the projections.

Every clone over a finite set equals Pol(A) for some relational structure A.

1 B ≤def A iff Pol(B) ⊆ Pol(A)
(Geiger’67; Bodnarcuk+Kaluznin+Kotov+Romov’68).

2 B ≤int A iff there is a clone homomorphism ξ : Pol(B)→ Pol(A).

ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn))

ξ(πn
i ) = π

n
i

(Bulatov,Jeavons,Krokhin’03; Birkhoff’35)

3 B ≤con A iff there is a minor-preserving map ξ : Pol(B)→ Pol(A).

ξ(f (πk
i1 , . . . , π

k
ik )) = ξ(f )(π

k
i1 , . . . , π

k
ik )

Minor Identities Manuel Bodirsky 9



Universal Algebraic Characterisation

Homomorphisms from Ak to A are called polymorphisms of A.

Pol(A) := set of all polymorphisms of A

Pol(A) is a clone: closed under composition, contains the projections.

Every clone over a finite set equals Pol(A) for some relational structure A.

1 B ≤def A iff Pol(B) ⊆ Pol(A)
(Geiger’67; Bodnarcuk+Kaluznin+Kotov+Romov’68).

2 B ≤int A iff there is a clone homomorphism ξ : Pol(B)→ Pol(A).

ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn))

ξ(πn
i ) = π

n
i

(Bulatov,Jeavons,Krokhin’03; Birkhoff’35)

3 B ≤con A iff there is a minor-preserving map ξ : Pol(B)→ Pol(A).

ξ(f (πk
i1 , . . . , π

k
ik )) = ξ(f )(π

k
i1 , . . . , π

k
ik )

Minor Identities Manuel Bodirsky 9



Universal Algebraic Characterisation

Homomorphisms from Ak to A are called polymorphisms of A.

Pol(A) := set of all polymorphisms of A

Pol(A) is a clone: closed under composition, contains the projections.

Every clone over a finite set equals Pol(A) for some relational structure A.

1 B ≤def A iff Pol(B) ⊆ Pol(A)
(Geiger’67; Bodnarcuk+Kaluznin+Kotov+Romov’68).

2 B ≤int A iff there is a clone homomorphism ξ : Pol(B)→ Pol(A).

ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn))

ξ(πn
i ) = π

n
i

(Bulatov,Jeavons,Krokhin’03; Birkhoff’35)

3 B ≤con A iff there is a minor-preserving map ξ : Pol(B)→ Pol(A).

ξ(f (πk
i1 , . . . , π

k
ik )) = ξ(f )(π

k
i1 , . . . , π

k
ik )

Minor Identities Manuel Bodirsky 9



Universal Algebraic Characterisation

Homomorphisms from Ak to A are called polymorphisms of A.

Pol(A) := set of all polymorphisms of A

Pol(A) is a clone: closed under composition, contains the projections.

Every clone over a finite set equals Pol(A) for some relational structure A.

1 B ≤def A iff Pol(B) ⊆ Pol(A)
(Geiger’67; Bodnarcuk+Kaluznin+Kotov+Romov’68).

2 B ≤int A iff there is a clone homomorphism ξ : Pol(B)→ Pol(A).

ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn))

ξ(πn
i ) = π

n
i

(Bulatov,Jeavons,Krokhin’03; Birkhoff’35)

3 B ≤con A iff there is a minor-preserving map ξ : Pol(B)→ Pol(A).

ξ(f (πk
i1 , . . . , π

k
ik )) = ξ(f )(π

k
i1 , . . . , π

k
ik )

Minor Identities Manuel Bodirsky 9



PP-Definitions and Subalgebras

B: relational structure.
Pol(B): polymorphism clone of B.

1

2

3

4

5

0

B

A

A ⊆ B is subalgebra of Pol(B) :iff
f (a1, . . . ,an) ∈ A for all f ∈ Pol(B)

of arity n and a1, . . . ,an ∈ A.

Example: {0,1} is a subalgebra of B.

{0,1} has the following primitive positive definition in B:

φ(x) := ∃u
(
E(x ,u)∧ E(u, x)

)
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PP-Definitions and Powers

A: relational structure.
Pol(A)d : clone with domain Ad and the operation(

(a1
1, . . . ,a

d
1 ), . . . , (a

1
k , . . . ,a

d
k )
)
7→ (

f (a1
1, . . . ,a

1
k ), . . . , f (a

d
1 , . . . ,a

d
k )
)

for each f ∈ Pol(A).

Fact.
Pol(A)d = Pol(Ad ;E1,2, . . . ,Ed−1,d )

where Ei,j := {(s, t) ∈ Ad | si = tj }.
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PP-Definitions and Homomorphic Images

A,B: relational structures.

2

5

86

3

0

B

c

b

a

A

1

4

7

Pol(A) is homomorphic image of Pol(B)

:iff there exists surjection h : B → A
such that for every f ∈ Pol(B) of arity k
there exists g ∈ Pol(A) of arity k such that
g(h(b1), . . . ,h(bk )) = h(f (b1, . . . ,bk ))

for all b1, . . . ,bk ∈ B.

Example: h : B → A with
h(0) = h(1) = h(2) = a

h(3) = h(4) = h(5) = b

h(6) = h(7) = h(8) = c
is a homomorphism.

h−1(=) has pp definition ψ(x , y) := ∃u(E(x ,u)∧ E(u, y))

h−1(EA) has pp definition ∃u, v(ψ(x ,u)∧ E(u, v)∧ψ(v , y).
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PP-Interpretations and Clone Homomorphisms

Primitive positive
interpretations

Pseudo-varieties Varieties Identities

Clone homomorphisms

A ≤int B ⇔ ∃ primitive positive interpretation f : Ad → B⇔ Pol(B) ∈ H
(
S
(

Pol(A)d))
⇔ Identities(Pol(A)) ⊆ Identities(Pol(B)) (Birkhoff)⇔ ∃ clone homomorphism ξ : Pol(A)→ Pol(B)

How about this connection for primitive positive constructions?
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Reflections

A,B: τ-structures
with homomorphisms
h : A→ B and g : B → A.

f : Bn → B. A B

h

g f

f ∗ : An → A defined by

f ∗(x1, . . . , xn) := g(f (h(x1), . . . ,h(xn)))

Pol(A) contains

Refl(Pol(B)) := {f ∗ | f ∈ Pol(B)}

Observations.

f 7→ f ∗ is a minor-preserving map from Pol(B) to Pol(A).

Refl(Pol(B)) is in general not a clone.
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Wonderland

Theorem (‘Wonderland of reflections’,
Barto+Opršal+Pinsker’15).
A, B: finite structures. Then:

B ≤con A⇔
Pol(A) ∈ Exp

(
Refl(Pfin(Pol(B))

)
.

Note. Exp
(

Refl(Pfin(Pol(B)))
)

contains HSPfin(Pol(B)).
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Minor Conditions

Aka: sets of height-one identities

Examples:

f (x , y) ≈ f (y , x)

f (x , x , y) ≈ f (x , y , x) ≈ f (y , x , x)

f (x , x , x , y) ≈ f (x , x , y , x) ≈ f (x , y , x , x) ≈ f (y , x , x , x)
≈ g(x , x , y) ≈ g(x , y , x) ≈ g(y , x , x)

Non-examples:

f (x , f (y , z)) ≈ f (f (x , y), z)

f (x , x , y) ≈ f (x , y , x) ≈ f (y , x , x) ≈ x

Σ: minor condition {f1(variables) ≈ f2(variables), . . . }.
C: set of operations.
Write C |= Σ if Σ is satisfied by some operations in Pol(B)

for the function symbols f1, f2, . . . in Σ.
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C: set of operations.
Write C |= Σ if Σ is satisfied by some operations in Pol(B)
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Minor Conditions and Reflections

Σ: minor condition.
If Pol(B) |= Σ and ξ : Pol(B)→ Pol(A) is minor-preserving,
then Pol(B) |= Σ.

Theorem (Barto+Opršal+Pinsker).

Let A be finite. And let B be finite, too. Then TFAE:

1 B ≤con A.

2 Pol(A) ∈ Exp(Refl(Pfin(B))).

3 Every minor condition that holds in Pol(B) also holds in Pol(A).

4 There exists a minor-preserving map from Pol(B) to Pol(A).

1⇔ 2: already done. 2⇒ 3⇒ 4: observations.
4⇒ 2: interesting: “Height-one Birkhoff”
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Height-one Birkhoff

Suppose that every minor condition that holds in Pol(B) also holds in Pol(A).
Goal: prove that

Pol(A) ∈ Exp(Refl(Pol(B)BA
))

πa : BA → B: function that maps t ∈ BA to t(a).
S: subalgebra of Pol(B)BA

generated by {πa | a ∈ A}.

Pol(B)
BA

S

!a

h : S → A:
h(f B(πa1 , . . . , πan)) := f A(a1, . . . ,an)

Well-defined by assumption!
h and a 7→ πa show that Pol(A) ∈ Exp(Refl(S)). �
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Summary

Proved: B ≤con A iff there is a minor-preserving map ξ : Pol(B)→ Pol(A).

Primitive positive
interpretations

Pseudo-varieties Varieties Identities

Clone homomorphisms

Primitive positive
constructions

Reflection
pseudo-varieties

Reflection
Varieties

Height one 
identities

Minor-preserving maps
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PP-Construction Poset

General Goal:
Describe the pp construction poset on the class of finite structures
obtained from ≤con

by factoring with ≡:
A ≡ B iff A ≤con B ∧ B ≤con A).

"

×,

•
ÏÏ!

Cardinality? ℵ0, 2ℵ0?

Is it a lattice?

Are there infinite ascending chains?
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The Unique Co-atom

Pol(P1) |= f (x) ≈ f (y).
P2 := ({0,1}; {(0,1)}).
Pol(P2) 6|= f (x) ≈ f (y).

Pj ± Ca • R

→¥ .
:

U
×,

•
ÏÏ!

Claim. For every finite structure A,

P1 ≤con A, or

A ≤con P2.

Proof. Let f ∈ Pol(A) be with smallest image B.
Note: A ≡con B.
Every endomorphism of B is automorphism.
B ≡con B ′ := (B, {b1}, {b2}, . . . ).
If |B| = 1 then P1 ≤con A.
If |B| > 1 then B ′ ≤con P2. �
Consequence: Can focus on idempotent clones C,
i.e., f (x , . . . , x) = x for all f ∈ C.
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B ≡con B ′ := (B, {b1}, {b2}, . . . ).
If |B| = 1 then P1 ≤con A.
If |B| > 1 then B ′ ≤con P2. �
Consequence: Can focus on idempotent clones C,
i.e., f (x , . . . , x) = x for all f ∈ C.

Minor Identities Manuel Bodirsky 21



The Unique Co-atom

Pol(P1) |= f (x) ≈ f (y).
P2 := ({0,1}; {(0,1)}).

Pol(P2) 6|= f (x) ≈ f (y).

Pj ± Ca • R

→¥ .
:

U
×,

•
ÏÏ!

Claim. For every finite structure A,

P1 ≤con A, or

A ≤con P2.

Proof. Let f ∈ Pol(A) be with smallest image B.
Note: A ≡con B.
Every endomorphism of B is automorphism.
B ≡con B ′ := (B, {b1}, {b2}, . . . ).
If |B| = 1 then P1 ≤con A.
If |B| > 1 then B ′ ≤con P2. �
Consequence: Can focus on idempotent clones C,
i.e., f (x , . . . , x) = x for all f ∈ C.

Minor Identities Manuel Bodirsky 21



The Unique Co-atom

Pol(P1) |= f (x) ≈ f (y).
P2 := ({0,1}; {(0,1)}).
Pol(P2) 6|= f (x) ≈ f (y).

Pj ± Ca • R

→¥ .
:

U
×,

•
ÏÏ!

Claim. For every finite structure A,

P1 ≤con A, or

A ≤con P2.

Proof. Let f ∈ Pol(A) be with smallest image B.
Note: A ≡con B.
Every endomorphism of B is automorphism.
B ≡con B ′ := (B, {b1}, {b2}, . . . ).
If |B| = 1 then P1 ≤con A.
If |B| > 1 then B ′ ≤con P2. �
Consequence: Can focus on idempotent clones C,
i.e., f (x , . . . , x) = x for all f ∈ C.

Minor Identities Manuel Bodirsky 21



The Unique Co-atom

Pol(P1) |= f (x) ≈ f (y).
P2 := ({0,1}; {(0,1)}).
Pol(P2) 6|= f (x) ≈ f (y).

Pj ± Ca • R

→¥ .
:

U
×,

•
ÏÏ!

Claim. For every finite structure A,

P1 ≤con A, or

A ≤con P2.

Proof. Let f ∈ Pol(A) be with smallest image B.
Note: A ≡con B.
Every endomorphism of B is automorphism.
B ≡con B ′ := (B, {b1}, {b2}, . . . ).
If |B| = 1 then P1 ≤con A.
If |B| > 1 then B ′ ≤con P2. �
Consequence: Can focus on idempotent clones C,
i.e., f (x , . . . , x) = x for all f ∈ C.

Minor Identities Manuel Bodirsky 21



The Unique Co-atom

Pol(P1) |= f (x) ≈ f (y).
P2 := ({0,1}; {(0,1)}).
Pol(P2) 6|= f (x) ≈ f (y).

Pj ± Ca • R

→¥ .
:

U
×,

•
ÏÏ!

Claim. For every finite structure A,

P1 ≤con A, or

A ≤con P2.

Proof. Let f ∈ Pol(A) be with smallest image B.
Note: A ≡con B.
Every endomorphism of B is automorphism.
B ≡con B ′ := (B, {b1}, {b2}, . . . ).
If |B| = 1 then P1 ≤con A.
If |B| > 1 then B ′ ≤con P2. �
Consequence: Can focus on idempotent clones C,
i.e., f (x , . . . , x) = x for all f ∈ C.

Minor Identities Manuel Bodirsky 21



The Unique Co-atom

Pol(P1) |= f (x) ≈ f (y).
P2 := ({0,1}; {(0,1)}).
Pol(P2) 6|= f (x) ≈ f (y).

Pj ± Ca • R

→¥ .
:

U
×,

•
ÏÏ!

Claim. For every finite structure A,

P1 ≤con A, or

A ≤con P2.

Proof. Let f ∈ Pol(A) be with smallest image B.
Note: A ≡con B.
Every endomorphism of B is automorphism.
B ≡con B ′ := (B, {b1}, {b2}, . . . ).
If |B| = 1 then P1 ≤con A.
If |B| > 1 then B ′ ≤con P2. �
Consequence: Can focus on idempotent clones C,
i.e., f (x , . . . , x) = x for all f ∈ C.

Minor Identities Manuel Bodirsky 21



The Unique Co-atom

Pol(P1) |= f (x) ≈ f (y).
P2 := ({0,1}; {(0,1)}).
Pol(P2) 6|= f (x) ≈ f (y).

Pj ± Ca • R

→¥ .
:

U
×,

•
ÏÏ!

Claim. For every finite structure A,

P1 ≤con A, or

A ≤con P2.

Proof. Let f ∈ Pol(A) be with smallest image B.
Note: A ≡con B.
Every endomorphism of B is automorphism.
B ≡con B ′ := (B, {b1}, {b2}, . . . ).
If |B| = 1 then P1 ≤con A.
If |B| > 1 then B ′ ≤con P2. �
Consequence: Can focus on idempotent clones C,
i.e., f (x , . . . , x) = x for all f ∈ C.

Minor Identities Manuel Bodirsky 21



The Unique Co-atom

Pol(P1) |= f (x) ≈ f (y).
P2 := ({0,1}; {(0,1)}).
Pol(P2) 6|= f (x) ≈ f (y).

Pj ± Ca • R

→¥ .
:

U
×,

•
ÏÏ!

Claim. For every finite structure A,

P1 ≤con A, or

A ≤con P2.

Proof.

Let f ∈ Pol(A) be with smallest image B.
Note: A ≡con B.
Every endomorphism of B is automorphism.
B ≡con B ′ := (B, {b1}, {b2}, . . . ).
If |B| = 1 then P1 ≤con A.
If |B| > 1 then B ′ ≤con P2. �
Consequence: Can focus on idempotent clones C,
i.e., f (x , . . . , x) = x for all f ∈ C.

Minor Identities Manuel Bodirsky 21



The Unique Co-atom

Pol(P1) |= f (x) ≈ f (y).
P2 := ({0,1}; {(0,1)}).
Pol(P2) 6|= f (x) ≈ f (y).

Pj ± Ca • R

→¥ .
:

U
×,

•
ÏÏ!

Claim. For every finite structure A,

P1 ≤con A, or

A ≤con P2.

Proof. Let f ∈ Pol(A) be with smallest image B.

Note: A ≡con B.
Every endomorphism of B is automorphism.
B ≡con B ′ := (B, {b1}, {b2}, . . . ).
If |B| = 1 then P1 ≤con A.
If |B| > 1 then B ′ ≤con P2. �
Consequence: Can focus on idempotent clones C,
i.e., f (x , . . . , x) = x for all f ∈ C.

Minor Identities Manuel Bodirsky 21



The Unique Co-atom

Pol(P1) |= f (x) ≈ f (y).
P2 := ({0,1}; {(0,1)}).
Pol(P2) 6|= f (x) ≈ f (y).

Pj ± Ca • R

→¥ .
:

U
×,

•
ÏÏ!

Claim. For every finite structure A,

P1 ≤con A, or

A ≤con P2.

Proof. Let f ∈ Pol(A) be with smallest image B.
Note: A ≡con B.

Every endomorphism of B is automorphism.
B ≡con B ′ := (B, {b1}, {b2}, . . . ).
If |B| = 1 then P1 ≤con A.
If |B| > 1 then B ′ ≤con P2. �
Consequence: Can focus on idempotent clones C,
i.e., f (x , . . . , x) = x for all f ∈ C.

Minor Identities Manuel Bodirsky 21



The Unique Co-atom

Pol(P1) |= f (x) ≈ f (y).
P2 := ({0,1}; {(0,1)}).
Pol(P2) 6|= f (x) ≈ f (y).

Pj ± Ca • R

→¥ .
:

U
×,

•
ÏÏ!

Claim. For every finite structure A,

P1 ≤con A, or

A ≤con P2.

Proof. Let f ∈ Pol(A) be with smallest image B.
Note: A ≡con B.
Every endomorphism of B is automorphism.

B ≡con B ′ := (B, {b1}, {b2}, . . . ).
If |B| = 1 then P1 ≤con A.
If |B| > 1 then B ′ ≤con P2. �
Consequence: Can focus on idempotent clones C,
i.e., f (x , . . . , x) = x for all f ∈ C.

Minor Identities Manuel Bodirsky 21



The Unique Co-atom

Pol(P1) |= f (x) ≈ f (y).
P2 := ({0,1}; {(0,1)}).
Pol(P2) 6|= f (x) ≈ f (y).

Pj ± Ca • R

→¥ .
:

U
×,

•
ÏÏ!

Claim. For every finite structure A,

P1 ≤con A, or

A ≤con P2.

Proof. Let f ∈ Pol(A) be with smallest image B.
Note: A ≡con B.
Every endomorphism of B is automorphism.
B ≡con B ′ := (B, {b1}, {b2}, . . . ).

If |B| = 1 then P1 ≤con A.
If |B| > 1 then B ′ ≤con P2. �
Consequence: Can focus on idempotent clones C,
i.e., f (x , . . . , x) = x for all f ∈ C.

Minor Identities Manuel Bodirsky 21



The Unique Co-atom

Pol(P1) |= f (x) ≈ f (y).
P2 := ({0,1}; {(0,1)}).
Pol(P2) 6|= f (x) ≈ f (y).

Pj ± Ca • R

→¥ .
:

U
×,

•
ÏÏ!

Claim. For every finite structure A,

P1 ≤con A, or

A ≤con P2.

Proof. Let f ∈ Pol(A) be with smallest image B.
Note: A ≡con B.
Every endomorphism of B is automorphism.
B ≡con B ′ := (B, {b1}, {b2}, . . . ).
If |B| = 1 then P1 ≤con A.

If |B| > 1 then B ′ ≤con P2. �
Consequence: Can focus on idempotent clones C,
i.e., f (x , . . . , x) = x for all f ∈ C.

Minor Identities Manuel Bodirsky 21



The Unique Co-atom

Pol(P1) |= f (x) ≈ f (y).
P2 := ({0,1}; {(0,1)}).
Pol(P2) 6|= f (x) ≈ f (y).

Pj ± Ca • R

→¥ .
:

U
×,

•
ÏÏ!

Claim. For every finite structure A,

P1 ≤con A, or

A ≤con P2.

Proof. Let f ∈ Pol(A) be with smallest image B.
Note: A ≡con B.
Every endomorphism of B is automorphism.
B ≡con B ′ := (B, {b1}, {b2}, . . . ).
If |B| = 1 then P1 ≤con A.
If |B| > 1 then B ′ ≤con P2.

�
Consequence: Can focus on idempotent clones C,
i.e., f (x , . . . , x) = x for all f ∈ C.

Minor Identities Manuel Bodirsky 21



The Unique Co-atom

Pol(P1) |= f (x) ≈ f (y).
P2 := ({0,1}; {(0,1)}).
Pol(P2) 6|= f (x) ≈ f (y).

Pj ± Ca • R

→¥ .
:

U
×,

•
ÏÏ!

Claim. For every finite structure A,

P1 ≤con A, or

A ≤con P2.

Proof. Let f ∈ Pol(A) be with smallest image B.
Note: A ≡con B.
Every endomorphism of B is automorphism.
B ≡con B ′ := (B, {b1}, {b2}, . . . ).
If |B| = 1 then P1 ≤con A.
If |B| > 1 then B ′ ≤con P2. �

Consequence: Can focus on idempotent clones C,
i.e., f (x , . . . , x) = x for all f ∈ C.

Minor Identities Manuel Bodirsky 21



The Unique Co-atom

Pol(P1) |= f (x) ≈ f (y).
P2 := ({0,1}; {(0,1)}).
Pol(P2) 6|= f (x) ≈ f (y).

Pj ± Ca • R

→¥ .
:

U
×,

•
ÏÏ!

Claim. For every finite structure A,

P1 ≤con A, or

A ≤con P2.

Proof. Let f ∈ Pol(A) be with smallest image B.
Note: A ≡con B.
Every endomorphism of B is automorphism.
B ≡con B ′ := (B, {b1}, {b2}, . . . ).
If |B| = 1 then P1 ≤con A.
If |B| > 1 then B ′ ≤con P2. �
Consequence: Can focus on idempotent clones C,
i.e., f (x , . . . , x) = x for all f ∈ C.

Minor Identities Manuel Bodirsky 21



Structures over {0,1}

≤def on structures with domain {0,1}.

clones over {0,1} with respect to containment.
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Structures over {0,1}
≤def on structures with domain {0,1}.

clones over {0,1} with respect to containment.

Post’s lattice

 [∨ ,  ]

 

[∨ , c]

[∧ , →]

[∨ , q]

[∨,∧,0,1]

[∨,∧,0][∨,∧,1]

[∨,∧]
[d , →]

[d , →]

[∅]

[1] [0][c]

[0,1]

[c,0,1][∨]

[∨ , 1]

 [∨ , 0]

[∨,0,1]  [⊕][⊕']

[⊕,c]

[p]

 [q]

[∧,0,1]

[∧ , 1]

[∧ , 0]

   [∧]

 [ ]

[p , 0]

[→]

[q ]

 [p ]

 [p , 1]

[d ]

[m]

[m , c]

[d ,m]
 [d ]

Δ

Δ

Δ
3

3

3

4
Δ

Δ
4

[d , 1]3

[d , q ]4
Δ Δ

 [d , 1]Δ
4

[d , q ]3
Δ

[d , p ]3
Δ

 [d , c]3

[d , 0]3
  [d ,  ]3

 [d , q]3

[d , p]3
[d ,  ]4

[d ]4

 [d , q]4

*

*

*

*
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The constructability poset on {0,1}  [∨ ,  ]
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Δ
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[d , q ]4
Δ Δ

 [d , 1]Δ
4

[d , q ]3
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[d , p ]3
Δ

 [d , c]3

[d , 0]3
  [d ,  ]3

 [d , q]3

[d , p]3
[d ,  ]4

[d ]4

 [d , q]4

*

*

*

*

Pieces:

C collapses with C∗ := {¬f (¬x1, . . . ,¬xn) | f ∈ C}.

f(x,x,y) = f(x,y,x) = f(y,x,x) = x

f(x,x,y) = f(x,y,x) = f(y,x,x) = y

f(x,y) = f(y,x)

({0,1};≤, {0}, {1}, {(0,1), (1,0), (1,1)})
and ({0,1};≤, {0}, {1}) collapse (2D)

Jonsson(3)

Hagemann-Mitschke(3)
QNU(4)
QNU(5)
QNU(6)

. . .
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The Constructability Poset

≤con on {0,1}: outcome (B. + Vucaj 2020)
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Above yellow or red iff CSP in Datalog.

Above blue or yellow:
CSP is in NC.

Above yellow or deep orange:
CSP in NL.

Above yellow or deep purple:
CSP in L.
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The Constructability Poset

≤con on {0,1}: outcome (B. + Vucaj 2020)
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Clones over three elements
≤def on {0,1,2}:
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Clones over three elements
≤def on {0,1,2}:

Yanov-Muchnik: 2ω
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Clones over three elements
≤def on {0,1,2}:

Yanov-Muchnik: 2ω

How about ≤int?
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The interpretability poset on {0,1,2}

≤int on {0,1,2}:

C3 :=
{
(0,1), (1,2), (2,0)

}
B2 :=

{
(1,0), (0,1), (1,1)

}
R=

3 :=
{
(x , y , z) | x ∈ {0,1} ∧ x = 0⇒ y = z

}
Zhuk’15: 2ω many clones between

Pol({0,1,2};C3,R=
3 )

and Pol({0,1,2};C3,B2)

Clones below Pol({0,1,2};C3): ‘self-dual’

Pol({0,1,2};C3,R=
3 ) contains binary ‘paper-scissor-stone operation’
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Theorem (Zhuk). Let A and B be structures s.t.

({0,1,2};C3,R=
3 ) ≤def Pol(A),Pol(B)

≤def ({0,1,2};C3,B2).

If B ≤int A then B ≤def A.

Corollary: 2ω clones over {0,1,2}
even when considered up to
clone homomorphism equivalence!

Conclusion: Need stronger weapon. pp constructions!
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The constructability poset on {0,1,2}

W := ({0,1,2};C3,R=
3 )

3-4 weak near unanimity
g(x , x , y) = g(x , y , x) = g(y , x , x) =

f (x , x , x , y) = f (x , x , y , x) = f (x , y , x , x) = f (y , x , x , x)

Q := ({0,1,2};C3, {(x , y , z) | x ∈ {0,1} ∧ x = 0⇒ y = z ∈ {0,1})

‘guarded 3-cyclic’:
f (x , x , x , y) = x , f (x1, x2, x3, y) = f (x2, x3, x1, y)

Q ≡ P := ({0,1,2};C3, {(x , y , z) | x , y ∈ {0,1} ∧ x = y = 0⇒ z = 0)
(Infinitely many clones between Q and P.)

Further collapses . . .
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W := ({0,1,2};C3,R=
3 )
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The constructability poset on {0,1,2}

≤con for self-dual clones on {0,1,2}: outcome (Zhuk+Vucaj+B.’21)
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Digraphs
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Digraphs: pieces

P2 ≤con D for every digraph D
with a Mal’cev polymorphism
and cyclic polymorphisms
of all prime arities

f (y , y , x) = f (x , y , y) = y

f (x1, x2) = f (x2, x1)

f (x1, x2, x3) = f (x2, x3, x1)

f (x1, x2, x3, x4) = f (x2, x3, x4, x1)

. . .

D ≤con T3 for every digraph D
without a Mal’cev polymorphism

D ≤con Cp for every finite digraph D
without p-cyclic polymorphism

Joint work with F. Starke
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Digraphs: current state

•

; !:-c.
•?

Î
•

f9 %!Îç . . . # ET

ËËËÏ*:→•

•Ê•I

Minor Identities Manuel Bodirsky 32



Open Problems

≤con on finite structures:

1 What is the cardinality of ≤con?

2 Are there infinite ascending chains?

3 Is ≤con a lattice?

4 What are the maximal elements below P2 for general finite structures?

5 What are the maximal digraphs below T3?
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Algebraic Dichotomy, Pictorially
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The Barto+Kozik Theorem
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PP Obstruction Theorem 3
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PP Obstruction Theorem 4
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PP Constructions over Infinite Structures

CSP(B) also defined for infinite structures B with finite relational
signature.

If B ≤con C then there exists a polynomial-time many-one reduction from
CSP(C) to CSP(B).

If B ≤ K3 then CSP(B) is NP-hard.

A structure is called ω-categorical if all countable models of its first-order
theory are isomorphic.

If B is ω-categorical then B ≤def C if and only if Pol(B) ⊆ Pol(C).

If B,C are ω-categorical then B ≤int C if and only if Pol(B)

has a continuous homomorphism whose image lies dense in Pol(C)

(B+Pinsker’12).

If B is ω-categorical and C is finite then B ≤con C if and only if
Pol(B) has a uniformly continuous minor-preserving map to Pol(C)

(Barto+Opršal+Pinsker’15).
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The Infinite-Domain Tractability Conjecture

There are ω-categorical digraphs with undecidable CSPs.

A structure is called homogeneous if every isomorphism between finite
substructures can be extended to an automorphism.

a structure is called finitely bounded if there are F1, . . . ,Fn such that
A ↪→ B if and only F i 6↪→ A for all i ∈ {1, . . . ,n}.

Observation. If B is finitely bounded then CSP(B) is in NP.

Conjecture (B.+Pinsker’11).

Let B be a reduct of a finitely bounded homogeneous structure.
If B 6≤con K3 then CSP(B) is in P.
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