Covering versus partitioning with Polish spaces

Will Brian
University of North Carolina at Charlotte

BLAST
June 11, 2021
Covering and partitioning numbers

Given a completely metrizable space X, define

\[
\text{cov}(X) = \min\{|C| : C \text{ is a covering of } X \text{ with Polish spaces}\},
\]
\[
\text{par}(X) = \min\{|\mathcal{P}| : \mathcal{P} \text{ is a partition of } X \text{ into Polish spaces}\}.
\]
Covering and partitioning numbers

Given a completely metrizable space X, define

$$\text{cov}(X) = \min\{|C| : C \text{ is a covering of } X \text{ with Polish spaces}\},$$

$$\text{par}(X) = \min\{|\mathcal{P}| : \mathcal{P} \text{ is a partition of } X \text{ into Polish spaces}\}.$$

Both of these numbers are well-defined and $\leq |X|$, because X can be partitioned into (covered with) singletons.
Covering and partitioning numbers

Given a completely metrizable space X, define

$$\text{cov}(X) = \min\{|C| : C \text{ is a covering of } X \text{ with Polish spaces}\},$$

$$\text{par}(X) = \min\{|\mathcal{P}| : \mathcal{P} \text{ is a partition of } X \text{ into Polish spaces}\}.$$

Both of these numbers are well-defined and $\leq |X|$, because X can be partitioned into (covered with) singletons. Also,

$$\text{cov}(X) \leq \text{par}(X)$$

for every X, because every partition of X is also a covering.
Covering and partitioning numbers

Given a completely metrizable space X, define

$$\text{cov}(X) = \min\{|C| : C \text{ is a covering of } X \text{ with Polish spaces}\},$$

$$\text{par}(X) = \min\{|\mathcal{P}| : \mathcal{P} \text{ is a partition of } X \text{ into Polish spaces}\}.$$

Both of these numbers are well-defined and $\leq |X|$, because X can be partitioned into (covered with) singletons. Also,

$$\text{cov}(X) \leq \text{par}(X)$$

for every X, because every partition of X is also a covering.

Motivating question:

Is it possible to have $\text{cov}(X) < \text{par}(X)$?
The main results

The answer to this question turns out to be independent of ZFC, and proving it requires large cardinals:
The main results

The answer to this question turns out to be independent of ZFC, and proving it requires large cardinals:

Theorem

It is consistent relative to a huge cardinal that $\text{cov}(X) < \text{par}(X)$ for some completely metrizable space X.
The main results

The answer to this question turns out to be independent of ZFC, and proving it requires large cardinals:

Theorem

It is consistent relative to a huge cardinal that \(\text{cov}(X) < \text{par}(X) \) for some completely metrizable space \(X \).

Furthermore, large cardinal hypotheses are required for obtaining this inequality:

Theorem

If \(\text{cov}(X) < \text{par}(X) \) for any completely metrizable space \(X \), then \(0^+ \) exists.
The main results

The answer to this question turns out to be independent of ZFC, and proving it requires large cardinals:

Theorem

It is consistent relative to a huge cardinal that \(\text{cov}(X) < \text{par}(X) \) for some completely metrizable space \(X \).

Furthermore, large cardinal hypotheses are required for obtaining this inequality:

Theorem

If \(\text{cov}(X) < \text{par}(X) \) for any completely metrizable space \(X \), then \(0^+ \) exists.

We aim to sketch some of the main ideas involved in proving these two theorems, beginning with the second.
The main results

The answer to this question turns out to be independent of ZFC, and proving it requires large cardinals:

Theorem
It is consistent relative to a huge cardinal that $\text{cov}(X) < \text{par}(X)$ *for some completely metrizable space* X.

Furthermore, large cardinal hypotheses are required for obtaining this inequality:

Theorem
If $\text{cov}(X) < \text{par}(X)$ *for any completely metrizable space* X, *then* 0^+ *exists.*

We aim to sketch some of the main ideas involved in proving these two theorems, beginning with the second. The first step is a ZFC theorem concerning spaces of weight $< \aleph_\omega$.
Partitioning spaces of uncountable weight

Lemma

If X is completely metrizable and $w(X) = \kappa$ has uncountable cofinality, then X can be partitioned into $\leq \kappa$ completely metrizable spaces of strictly smaller weight.
Lemma

If X is completely metrizable and $w(X) = \kappa$ has uncountable cofinality, then X can be partitioned into $\leq \kappa$ completely metrizable spaces of strictly smaller weight.

Proof.

Let \mathcal{B} be a basis for X such that $|\mathcal{B}| = w(X) = \kappa$, and every point of X is contained in only countably many members of \mathcal{B}.
Partitioning spaces of uncountable weight

Lemma

If X is completely metrizable and $w(X) = \kappa$ has uncountable cofinality, then X can be partitioned into $\leq \kappa$ completely metrizable spaces of strictly smaller weight.

Proof.

Let B be a basis for X such that $|B| = w(X) = \kappa$, and every point of X is contained in only countably many members of B. Write $B = \{ U_\alpha : \alpha < \kappa \}$. For each $\alpha < \kappa$, let

$X_\alpha = \{ x \in X : \text{if } x \in U_\beta \text{ then } \beta < \alpha \}$

and

$Y_\alpha = X_\alpha \setminus \bigcup_{\beta < \alpha} X_\beta.$
Lemma

If \(X \) is completely metrizable and \(w(X) = \kappa \) has uncountable cofinality, then \(X \) can be partitioned into \(\leq \kappa \) completely metrizable spaces of strictly smaller weight.

Proof.

Let \(\mathcal{B} \) be a basis for \(X \) such that \(|\mathcal{B}| = w(X) = \kappa \), and every point of \(X \) is contained in only countably many members of \(\mathcal{B} \). Write \(\mathcal{B} = \{ U_\alpha : \alpha < \kappa \} \). For each \(\alpha < \kappa \), let

\[
X_\alpha = \{ x \in X : \text{if } x \in U_\beta \text{ then } \beta < \alpha \} \quad \text{and} \quad Y_\alpha = X_\alpha \setminus \bigcup_{\beta < \alpha} X_\beta.
\]

Because \(\text{cf}(\kappa) > \omega \), and because of our choice of \(\mathcal{B} \), every \(x \in X \) is in some \(X_\alpha \), and therefore the \(Y_\alpha \) partition \(X \).
Lemma

If X is completely metrizable and $w(X) = \kappa$ has uncountable cofinality, then X can be partitioned into $\leq \kappa$ completely metrizable spaces of strictly smaller weight.

Proof.

Let \mathcal{B} be a basis for X such that $|\mathcal{B}| = w(X) = \kappa$, and every point of X is contained in only countably many members of \mathcal{B}. Write $\mathcal{B} = \{U_\alpha : \alpha < \kappa\}$. For each $\alpha < \kappa$, let $X_\alpha = \{x \in X : \text{if } x \in U_\beta \text{ then } \beta < \alpha\}$ and $Y_\alpha = X_\alpha \setminus \bigcup_{\beta < \alpha} X_\beta$.

Because $\text{cf}(\kappa) > \omega$, and because of our choice of \mathcal{B}, every $x \in X$ is in some X_α, and therefore the Y_α partition X. Clearly each X_α, and therefore each Y_α, has weight $< \kappa$.

Covering versus partitioning with Polish spaces
Lemma

If X is completely metrizable and $w(X) = \kappa$ has uncountable cofinality, then X can be partitioned into $\leq \kappa$ completely metrizable spaces of strictly smaller weight.

Proof.

It remains to show that the Y_α are completely metrizable.
Partitioning spaces of uncountable weight

Lemma

If \(X \) is completely metrizable and \(w(X) = \kappa \) has uncountable cofinality, then \(X \) can be partitioned into \(\leq \kappa \) completely metrizable spaces of strictly smaller weight.

Proof.

It remains to show that the \(Y_\alpha \) are completely metrizable. First, observe that each \(X_\alpha \) is closed:
Lemma

If X is completely metrizable and $w(X) = \kappa$ has uncountable cofinality, then X can be partitioned into $\leq \kappa$ completely metrizable spaces of strictly smaller weight.

Proof.

It remains to show that the Y_α are completely metrizable. First, observe that each X_α is closed:

\[
\bullet \quad \bullet
\]

If $\langle x_n : n \in \omega \rangle$ is a sequence in X_α with limit p
Partitioning spaces of weight $\prec \mathfrak{w}$
Structure beyond \mathfrak{w}: SSH and \Box
Chaos at \mathfrak{w}: $(\mathfrak{w}+1, \mathfrak{w}) \rightarrow (1, 0)$

Partitioning spaces of uncountable weight

Lemma

If X is completely metrizable and $w(X) = \kappa$ has uncountable cofinality, then X can be partitioned into $\leq \kappa$ completely metrizable spaces of strictly smaller weight.

Proof.

It remains to show that the Y_α are completely metrizable. First, observe that each X_α is closed:

If $\langle x_n : n \in \omega \rangle$ is a sequence in X_α with limit p, then every neighborhood U_β of p
Partitioning spaces of uncountable weight

Lemma

If X is completely metrizable and $w(X) = \kappa$ has uncountable cofinality, then X can be partitioned into $\leq \kappa$ completely metrizable spaces of strictly smaller weight.

Proof.

It remains to show that the Y_α are completely metrizable. First, observe that each X_α is closed:

If $\langle x_n : n \in \omega \rangle$ is a sequence in X_α with limit p, then every neighborhood U_β of p is also a neighborhood of some x_n.

Will Brian
Covering versus partitioning with Polish spaces
Partitioning spaces of uncountable weight

Lemma

If X is completely metrizable and $w(X) = \kappa$ has uncountable cofinality, then X can be partitioned into $\leq \kappa$ completely metrizable spaces of strictly smaller weight.

Proof.

It remains to show that the Y_α are completely metrizable. First, observe that each X_α is closed:

If $\langle x_n : n \in \omega \rangle$ is a sequence in X_α with limit p, then every neighborhood U_β of p is also a neighborhood of some x_n, and therefore $\beta < \alpha$ (as $x_n \in X_\alpha$).
Lemma

If X is completely metrizable and $w(X) = \kappa$ has uncountable cofinality, then X can be partitioned into $\leq \kappa$ completely metrizable spaces of strictly smaller weight.

Proof.

It remains to show that the Y_{α} are completely metrizable. First, observe that each X_{α} is closed:

If $\langle x_n : n \in \omega \rangle$ is a sequence in X_{α} with limit p, then every neighborhood U_{β} of p is also a neighborhood of some x_n, and therefore $\beta < \alpha$ (as $x_n \in X_{\alpha}$). So $\beta < \alpha$ whenever $U_{\beta} \ni p$, which means that $p \in X_{\alpha}$.
Partitioning spaces of uncountable weight

Lemma

If X is completely metrizable and $w(X) = \kappa$ has uncountable cofinality, then X can be partitioned into $\leq \kappa$ completely metrizable spaces of strictly smaller weight.

Proof.

It is now straightforward to show the Y_α are completely metrizable:
Partitioning spaces of uncountable weight

Lemma

If \(X \) is completely metrizable and \(w(X) = \kappa \) has uncountable cofinality, then \(X \) can be partitioned into \(\leq \kappa \) completely metrizable spaces of strictly smaller weight.

Proof.

It is now straightforward to show the \(Y_\alpha \) are completely metrizable:

If \(\alpha = \beta + 1 \), then \(Y_\alpha = X_\alpha \setminus X_\beta \) is the difference of two closed sets, hence \(G_\delta \).
Lemma

If X is completely metrizable and $w(X) = \kappa$ has uncountable cofinality, then X can be partitioned into $\leq \kappa$ completely metrizable spaces of strictly smaller weight.

Proof.

It is now straightforward to show the Y_α are completely metrizable:

If $\alpha = \beta + 1$, then $Y_\alpha = X_\alpha \setminus X_\beta$ is the difference of two closed sets, hence G_δ.

If α has countable cofinality, write $\alpha = \sup \langle \beta_n : n \in \omega \rangle$, and then $Y_\alpha = X_\alpha \setminus \bigcup_{n \in \omega} X_\beta_n$ is again G_δ.
Lemma

If X is completely metrizable and $w(X) = \kappa$ has uncountable cofinality, then X can be partitioned into $\leq \kappa$ completely metrizable spaces of strictly smaller weight.

Proof.

It is now straightforward to show the Y_α are completely metrizable:

If $\alpha = \beta + 1$, then $Y_\alpha = X_\alpha \setminus X_\beta$ is the difference of two closed sets, hence G_δ.

If α has countable cofinality, write $\alpha = \sup \langle \beta_n : n \in \omega \rangle$, and then $Y_\alpha = X_\alpha \setminus \bigcup_{n \in \omega} X_{\beta_n}$ is again G_δ.

If α has uncountable cofinality, then $Y_\alpha = \emptyset$, because $X_\alpha = \bigcup_{\beta < \alpha} X_\beta$ by our choice of \mathcal{B}.

Will Brian

Covering versus partitioning with Polish spaces
Theorem

If X is a completely metrizable space and $w(X) = \aleph_n < \aleph_\omega$, then $\text{cov}(X) = \text{par}(X) = \aleph_n$.
Theorem

If X is a completely metrizable space and $w(X) = \aleph_n < \aleph_\omega$, then $\text{cov}(X) = \text{par}(X) = \aleph_n$.

Proof.

The previous theorem, plus a simple induction argument, shows $\text{par}(X) \leq w(X)$ whenever $w(X) < \aleph_\omega$. It is not difficult to prove that $w(X) \leq \text{cov}(X) \leq \text{par}(X)$ for any X.
Partitioning spaces of uncountable weight

Theorem

If X is a completely metrizable space and $w(X) = \aleph_n < \aleph_\omega$, then $\text{cov}(X) = \text{par}(X) = \aleph_n$.

Proof.

The previous theorem, plus a simple induction argument, shows $\text{par}(X) \leq w(X)$ whenever $w(X) < \aleph_\omega$. It is not difficult to prove that $w(X) \leq \text{cov}(X) \leq \text{par}(X)$ for any X.

Corollary

Suppose $\text{cov}(X) < \text{par}(X)$ for some completely metrizable space X. If κ is the minimum possible weight of such a space X, then κ is a singular cardinal with $\text{cf}(\kappa) = \omega$. Furthermore, $\aleph_\omega \leq \kappa < c$.
Using "L-like" principles, it is possible to push this inductive argument past \aleph_ω and get similar results at higher cardinals.
Using "L-like" principles, it is possible to push this inductive argument past \aleph_ω and get similar results at higher cardinals.

Theorem

Assume \square_κ holds for all singular cardinals $\kappa < c$, then $\text{cov}(X) = \text{par}(X)$ for all completely metrizable spaces X.

Corollary

If $\text{cov}(X) < \text{par}(X)$ for some completely metrizable space X, then 0^+ exists.
SSH and \square

Using "L-like" principles, it is possible to push this inductive argument past \mathfrak{N}_ω and get similar results at higher cardinals.

Theorem

Assume \square_κ holds for all singular cardinals $\kappa < \mathfrak{c}$, and (SSH): if κ is a singular cardinal with cofinality ω, then the poset $([\kappa]^\omega, \subseteq)$ has cofinality κ^+.

\[\text{cov}(X) = \text{par}(X) \] for all completely metrizable spaces X.

Corollary

If $\text{cov}(X) < \text{par}(X)$ for some completely metrizable space X, then 0^\dagger exists.
Using "L-like" principles, it is possible to push this inductive argument past \aleph_ω and get similar results at higher cardinals.

Theorem

Assume \square_κ holds for all singular cardinals $\kappa < \mathfrak{c}$, and (SSH): if κ is a singular cardinal with cofinality ω, then the poset $([\kappa]^\omega, \subseteq)$ has cofinality κ^+. Then $\text{cov}(X) = \text{par}(X)$ for all completely metrizable spaces X.

Corollary

If $\text{cov}(X) < \text{par}(X)$ for some completely metrizable space X, then 0^\dagger exists.
Using "L-like" principles, it is possible to push this inductive argument past \aleph_ω and get similar results at higher cardinals.

Theorem

Assume \square_κ holds for all singular cardinals $\kappa < \mathfrak{c}$, and (SSH): if κ is a singular cardinal with cofinality ω, then the poset $([\kappa]^\omega, \subseteq)$ has cofinality κ^+. Then $\text{cov}(X) = \text{par}(X)$ for all completely metrizable spaces X.

Corollary

If $\text{cov}(X) < \text{par}(X)$ for some completely metrizable space X, then 0^+ exists.
Chang’s Conjecture for \aleph_ω, which is abbreviated by writing $(\aleph_{\omega+1}, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0)$, states:
(\aleph_{\omega+1}, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0)

Chang’s Conjecture for \aleph_\omega, which is abbreviated by writing
(\aleph_{\omega+1}, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0), states:

For every model \mathcal{M} for a countable language \mathcal{L} that contains a
unary predicate A, if \mid \mathcal{M} \mid = \aleph_{\omega+1} and \mid A \mid = \aleph_\omega then there is an
elementary submodel \mathcal{M}' \subset \mathcal{M} such that \mid \mathcal{M}' \mid = \aleph_1 and
\mid \mathcal{M}' \cap A \mid = \aleph_0.
Chang’s Conjecture for \aleph_ω, which is abbreviated by writing

$$(\aleph_{\omega+1}, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0),$$

states:

For every model M for a countable language \mathcal{L} that contains a unary predicate A, if $|M| = \aleph_{\omega+1}$ and $|A| = \aleph_\omega$ then there is an elementary submodel $M' \prec M$ such that $|M'| = \aleph_1$ and $|M' \cap A| = \aleph_0$.

Levinsky, Magidor, and Shelah proved $(\aleph_{\omega+1}, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0)$ is consistent relative to a large cardinal hypothesis a little stronger than a huge cardinal.
Partitioning spaces of weight $< \aleph_\omega$
Structure beyond \aleph_ω: SSH and \square
Chaos at \aleph_ω: $(\aleph_{\omega+1}, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0)$

Chang’s Conjecture for \aleph_ω, which is abbreviated by writing $(\aleph_{\omega+1}, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0)$, states:

For every model M for a countable language \mathcal{L} that contains a unary predicate A, if $|M| = \aleph_{\omega+1}$ and $|A| = \aleph_\omega$ then there is an elementary submodel $M' \prec M$ such that $|M'| = \aleph_1$ and $|M' \cap A| = \aleph_0$.

Levinsky, Magidor, and Shelah proved $(\aleph_{\omega+1}, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0)$ is consistent relative to a large cardinal hypothesis a little stronger than a huge cardinal.

This was improved recently by Eskew and Hayut, who showed $(\aleph_{\omega+1}, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0)$ is consistent relative to a huge cardinal.
A (very loose) translation of this runs as follows:
A simplified \((\aleph_{\omega+1}, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0)\)

A (very loose) translation of this runs as follows:

\[(\aleph_{\omega+1}, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0) \ldots \text{sort of}\]

Suppose \(M\) is a collection of \(\geq \aleph_{\omega+1}\) structures (molecules), each built from countably many members of an \(\aleph_\omega\)-sized set \(A\) (atoms).
a simplified \((\aleph_{\omega+1}, \aleph_\omega) \mapsto (\aleph_1, \aleph_0)\)

A (very loose) translation of this runs as follows:

\[(\aleph_{\omega+1}, \aleph_\omega) \mapsto (\aleph_1, \aleph_0) \ldots \text{sort of}\]

Suppose \(M\) is a collection of \(\geq \aleph_{\omega+1}\) structures (molecules), each built from countably many members of an \(\aleph_\omega\)-sized set \(A\) (atoms). Then there is a single countable \(A_0 \subseteq A\) that was used to build uncountably many members of \(M\).
a simplified \((\aleph_{\omega+1}, \aleph_\omega) \mapsto (\aleph_1, \aleph_0)\)

A (very loose) translation of this runs as follows:

\((\aleph_{\omega+1}, \aleph_\omega) \mapsto (\aleph_1, \aleph_0)\) . . . sort of

Suppose \(M\) is a collection of \(\geq \aleph_{\omega+1}\) structures (molecules), each built from countably many members of an \(\aleph_\omega\)-sized set \(A\) (atoms). Then there is a single countable \(A_0 \subseteq A\) that was used to build uncountably many members of \(M\).

For example, suppose \(X\) is a completely metrizable space of weight \(\aleph_\omega\).
A (very loose) translation of this runs as follows:

Suppose M is a collection of $\geq \aleph_{\omega+1}$ structures (molecules), each built from countably many members of an \aleph_ω-sized set A (atoms). Then there is a single countable $A_0 \subseteq A$ that was used to build uncountably many members of M.

For example, suppose X is a completely metrizable space of weight \aleph_ω. We could take A to be an \aleph_ω-sized basis for X, and M to be some $\geq \aleph_{\omega+1}$-sized collection of Polish subspaces of X.
A (very loose) translation of this runs as follows:

Suppose M is a collection of $\geq \aleph_{\omega+1}$ structures (molecules), each built from countably many members of an \aleph_ω-sized set A (atoms). Then there is a single countable $A_0 \subseteq A$ that was used to build uncountably many members of M.

For example, suppose X is a completely metrizable space of weight \aleph_ω. We could take A to be an \aleph_ω-sized basis for X, and M to be some $\geq \aleph_{\omega+1}$-sized collection of Polish subspaces of X. Each member of M is "built" from a countable subset of A (because each member of M is a second countable G_δ).
A simplified \((\kappa_{\omega+1}, \kappa_\omega) \rightarrow (\kappa_1, \kappa_0)\)

A (very loose) translation of this runs as follows:

Suppose \(M\) is a collection of \(\geq \kappa_{\omega+1}\) structures (molecules), each built from countably many members of an \(\kappa_\omega\)-sized set \(A\) (atoms). Then there is a single countable \(A_0 \subseteq A\) that was used to build uncountably many members of \(M\).

For example, suppose \(X\) is a completely metrizable space of weight \(\kappa_\omega\). We could take \(A\) to be an \(\kappa_\omega\)-sized basis for \(X\), and \(M\) to be some \(\geq \kappa_{\omega+1}\)-sized collection of Polish subspaces of \(X\). Each member of \(M\) is "built" from a countable subset of \(A\) (because each member of \(M\) is a second countable \(G_\delta\)). So, \((\kappa_{\omega+1}, \kappa_\omega) \rightarrow (\kappa_1, \kappa_0)\) implies that uncountably many members of \(M\) are defined from some countable \(A_0 \subseteq A\).
how to get $\text{cov}(X) < \text{par}(X)$

Theorem

Let D be the discrete space of cardinality \aleph_ω. It is consistent, relative to a huge cardinal, that $\text{cov}(D^\omega) < \text{par}(D^\omega)$.
Theorem

Let D be the discrete space of cardinality \aleph_ω. It is consistent, relative to a huge cardinal, that $\text{cov}(D^\omega) < \text{par}(D^\omega)$.

Proof sketch.

Begin with a model of $\text{GCH} + (\aleph_{\omega+1}, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0)$. (This is the part that requires a huge cardinal.)
Theorem

Let D be the discrete space of cardinality \aleph_ω. It is consistent, relative to a huge cardinal, that $\text{cov}(D^\omega) < \text{par}(D^\omega)$.

Proof sketch.

Begin with a model of GCH $+$ $(\aleph_{\omega+1}, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0)$. (This is the part that requires a huge cardinal.) Then force with any ccc poset that makes $\text{non}(\mathcal{M}) \geq \aleph_{\omega+2}$. For example, the forcing to add $\aleph_{\omega+2}$ Cohen reals will do.
how to get $\text{cov}(X) < \text{par}(X)$

Theorem

Let D be the discrete space of cardinality \aleph_{ω}. It is consistent, relative to a huge cardinal, that $\text{cov}(D^\omega) < \text{par}(D^\omega)$.

Proof sketch.

Begin with a model of $\text{GCH} + (\aleph_{\omega+1}, \aleph_{\omega}) \rightarrow (\aleph_1, \aleph_0)$. (This is the part that requires a huge cardinal.) Then force with any ccc poset that makes $\text{non}(\mathcal{M}) \geq \aleph_{\omega+2}$. For example, the forcing to add $\aleph_{\omega+2}$ Cohen reals will do.

In the extension, we have $\text{cov}(D^\omega) = \aleph_{\omega+1}$. (This is where the GCH of the ground model comes in.)
Theorem

Let D be the discrete space of cardinality \aleph_ω. It is consistent, relative to a huge cardinal, that $\text{cov}(D^\omega) < \text{par}(D^\omega)$.

Proof sketch.

Begin with a model of $\text{GCH} + (\aleph_{\omega+1}, \aleph_\omega) \rightarrowcreg (\aleph_1, \aleph_0)$. (This is the part that requires a huge cardinal.) Then force with any ccc poset that makes $\text{non}(\mathcal{M}) \geq \aleph_{\omega+2}$. For example, the forcing to add $\aleph_{\omega+2}$ Cohen reals will do.

In the extension, we have $\text{cov}(D^\omega) = \aleph_{\omega+1}$. (This is where the GCH of the ground model comes in.)

Forcing with a ccc poset preserves $(\aleph_{\omega+1}, \aleph_\omega) \rightarrowcreg (\aleph_1, \aleph_0)$, so $(\aleph_{\omega+1}, \aleph_\omega) \rightarrowcreg (\aleph_1, \aleph_0)$ holds in the extension.
Theorem

Let \(D \) be the discrete space of cardinality \(\aleph_\omega \). It is consistent, relative to a huge cardinal, that \(\text{cov}(D^\omega) < \text{par}(D^\omega) \).

Proof sketch.

Begin with a model of GCH + (\(\aleph_{\omega+1}, \aleph_\omega \) \(\rightarrow \) (\(\aleph_1, \aleph_0 \)). (This is the part that requires a huge cardinal.) Then force with any ccc poset that makes \(\text{non}(M) \geq \aleph_{\omega+2} \). For example, the forcing to add \(\aleph_{\omega+2} \) Cohen reals will do.

In the extension, we have \(\text{cov}(D^\omega) = \aleph_{\omega+1} \). (This is where the GCH of the ground model comes in.)

Forcing with a ccc poset preserves (\(\aleph_{\omega+1}, \aleph_\omega \) \(\rightarrow \) (\(\aleph_1, \aleph_0 \)), so (\(\aleph_{\omega+1}, \aleph_\omega \) \(\rightarrow \) (\(\aleph_1, \aleph_0 \)) holds in the extension.

Working in the extension, suppose \(\mathcal{P} \) is a partition of \(D^\omega \).
how to get $\text{cov}(X) < \text{par}(X)$

Theorem

Let D be the discrete space of cardinality \aleph_ω. It is consistent, relative to a huge cardinal, that $\text{cov}(D^\omega) < \text{par}(D^\omega)$.

Proof sketch.

As $\text{par}(D^\omega) \geq \text{cov}(D^\omega) = \aleph_{\omega+1}$, P is a collection of $\geq \aleph_{\omega+1}$ Polish spaces.
how to get $\text{cov}(X) < \text{par}(X)$

Theorem

Let D be the discrete space of cardinality \aleph_ω. It is consistent, relative to a huge cardinal, that $\text{cov}(D^\omega) < \text{par}(D^\omega)$.

Proof sketch.

As $\text{par}(D^\omega) \geq \text{cov}(D^\omega) = \aleph_\omega + 1$, \mathcal{P} is a collection of $\geq \aleph_\omega + 1$ Polish spaces. Applying $(\aleph_\omega + 1, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0)$, there are uncountably many members of \mathcal{P} that are all "built from" the same countable collection of basic open sets.
how to get $\text{cov}(X) < \text{par}(X)$

Theorem

Let D be the discrete space of cardinality \aleph_ω. It is consistent, relative to a huge cardinal, that $\text{cov}(D^\omega) < \text{par}(D^\omega)$.

Proof sketch.

As $\text{par}(D^\omega) \geq \text{cov}(D^\omega) = \aleph_{\omega+1}$, \mathcal{P} is a collection of $\geq \aleph_{\omega+1}$ Polish spaces. Applying $(\aleph_{\omega+1}, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0)$, there are uncountably many members of \mathcal{P} that are all "built from" the same countable collection of basic open sets. Consequently, there is a countable $A \subseteq D$ such that A^ω contains uncountably many members of \mathcal{P}.

Will Brian
Covering versus partitioning with Polish spaces
Theorem

Let D be the discrete space of cardinality \aleph_ω. It is consistent, relative to a huge cardinal, that $\text{cov}(D^{\omega}) < \text{par}(D^{\omega})$.

Proof sketch.

As $\text{par}(D^{\omega}) \geq \text{cov}(D^{\omega}) = \aleph_{\omega+1}$, \mathcal{P} is a collection of $\geq \aleph_{\omega+1}$ Polish spaces. Applying $(\aleph_{\omega+1}, \aleph_\omega) \hookrightarrow (\aleph_1, \aleph_0)$, there are uncountably many members of \mathcal{P} that are all "built from" the same countable collection of basic open sets. Consequently, there is a countable $A \subseteq D$ such that A^{ω} contains uncountably many members of \mathcal{P}. Let $X = A^{\omega} \subseteq D^{\omega}$, and note that $\mathcal{P} \upharpoonright X$ is an uncountable partition of X.

how to get $\text{cov}(X) < \text{par}(X)$
how to get \(\text{cov}(X) < \text{par}(X) \)

Theorem

Let \(D \) be the discrete space of cardinality \(\aleph_\omega \). It is consistent, relative to a huge cardinal, that \(\text{cov}(D^\omega) < \text{par}(D^\omega) \).

Proof sketch.

As \(\text{par}(D^\omega) \geq \text{cov}(D^\omega) = \aleph_{\omega+1} \), \(\mathcal{P} \) is a collection of \(\geq \aleph_{\omega+1} \) Polish spaces. Applying \((\aleph_{\omega+1}, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0) \), there are uncountably many members of \(\mathcal{P} \) that are all "built from" the same countable collection of basic open sets. Consequently, there is a countable \(A \subseteq D \) such that \(A^\omega \) contains uncountably many members of \(\mathcal{P} \). Let \(X = A^\omega \subseteq D^\omega \), and note that \(\mathcal{P} \upharpoonright X \) is an uncountable partition of \(X \). By a result of Fremlin and Shelah, every uncountable partition of a Polish space into \(G_\delta \)'s has size \(\geq \text{non}(\mathcal{M}) \).
Theorem

Let D be the discrete space of cardinality \aleph_ω. It is consistent, relative to a huge cardinal, that $\text{cov}(D^\omega) < \text{par}(D^\omega)$.

Proof sketch.

As $\text{par}(D^\omega) \geq \text{cov}(D^\omega) = \aleph_{\omega+1}$, \mathcal{P} is a collection of $\geq \aleph_{\omega+1}$ Polish spaces. Applying $(\aleph_{\omega+1}, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0)$, there are uncountably many members of \mathcal{P} that are all "built from" the same countable collection of basic open sets. Consequently, there is a countable $A \subseteq D$ such that A^ω contains uncountably many members of \mathcal{P}. Let $X = A^\omega \subseteq D^\omega$, and note that $\mathcal{P} \upharpoonright X$ is an uncountable partition of X. By a result of Fremlin and Shelah, every uncountable partition of a Polish space into G_δ’s has size $\geq \text{non}(\mathcal{M})$. Hence $|\mathcal{P}| \geq |\mathcal{P} \upharpoonright X| \geq \text{non}(\mathcal{M}) \geq \aleph_{\omega+2} > \text{cov}(D^\omega)$.

Will Brian

Covering versus partitioning with Polish spaces
Open questions

Question

Can one find more precise bounds on the consistency strength of the statement “There is a completely metrizable space X with $\text{cov}(X) < \text{par}(X)$”? Does a supercompact suffice?
Open questions

Question

Can one find more precise bounds on the consistency strength of the statement “There is a completely metrizable space X with $\text{cov}(X) < \text{par}(X)$”? Does a supercompact suffice?

Question

Instead of Polish spaces, what about using separable Borel sets: is it still possible to separate par and cov in this context?
Open questions

Question

Can one find more precise bounds on the consistency strength of the statement “There is a completely metrizable space X with $\text{cov}(X) < \text{par}(X)$”? Does a supercompact suffice?

Question

Instead of Polish spaces, what about using separable Borel sets: is it still possible to separate par and cov in this context?

Question

What is the consistency strength of the failure of SSH?
The end

Thank you for listening