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Intuitionism is an important direction in the mathematics of the
20th century. Intuitionistic logic is the logic of constructive
mathematics. It has its origins in Brouwer’s criticism of the use of
the principle of the excluded middle.

Important developements in 1930s and 1940s in the study of
intuitionistic logic:

• Axiomatization (Kolmogorov, Glivenko, Heyting)

• Algebraic semantics (Birkhoff, McKinsey-Tarski)
• Topological semantics (Stone, Tarski)

Important translations:

• Double negation translation of classical logic into intuitionistic
logic (Glivenko)

• Translation of intuitionistic logic into modal logic (Gödel)



Intuitionism is an important direction in the mathematics of the
20th century. Intuitionistic logic is the logic of constructive
mathematics. It has its origins in Brouwer’s criticism of the use of
the principle of the excluded middle.

Important developements in 1930s and 1940s in the study of
intuitionistic logic:

• Axiomatization (Kolmogorov, Glivenko, Heyting)

• Algebraic semantics (Birkhoff, McKinsey-Tarski)
• Topological semantics (Stone, Tarski)

Important translations:

• Double negation translation of classical logic into intuitionistic
logic (Glivenko)

• Translation of intuitionistic logic into modal logic (Gödel)
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Gödel translation



In 1933 Gödel proposed a translation of the intuitionistic
propositional calculus IPC into the modal logic S4.

The Gödel translation

T(⊥) = ⊥
T(p) = �p

T(ϕ ∧ ψ) = T(ϕ) ∧ T(ψ)
T(ϕ ∨ ψ) = T(ϕ) ∨ T(ψ)

T(ϕ→ ψ) = �(¬T(ϕ) ∨ T(ψ))

Theorem (McKinsey-Tarski 1948)
T translates IPC into S4 fully and faithfully, i.e.

IPC ` ϕ iff S4 ` T (ϕ)

for any intuitionistic formula ϕ.
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The study of the logics extending IPC was initiated by Umezawa in
1950s. It provides a classification of logical principles on the basis
of IPC that are all equivalent from the point of view of classical
logic.

Such logics are called superintuitionistic logics. There are 3
main schools that carried out this study:

• Japanese (Umezawa, Hosoi, Ono, etc.)
• Dutch (Troelstra, de Jongh, etc.)
• Soviet (Kuznetsov, Esakia, Maksimova, etc.)

Dummett and Lemmon started to investigate the Gödel translation
of superintuitionistic logics into normal extensions of S4.
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Definition
Let L be a superintuitionistic logic and M a normal extension of
S4.
We call L the intuitionistic fragment of M and M a modal
companion of L if

L ` ϕ iff M ` T(ϕ)

for any intuitionistic formula ϕ.

Each consistent superintuitionistic logic has many modal
companions.



The least modal companion of IPC is S4. The greatest one is Grz.
Definition
Let Grz := S4 + grz where

grz := �(�(p → �p)→ p)→ p

Theorem (Grzegorczyk 1967)
T translates IPC into Grz fully and faithfully, i.e.

IPC ` ϕ iff Grz ` T (ϕ)

Theorem (Esakia’s theorem 1976)
Grz is the greatest modal companion of IPC.
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Maksimova and Rybakov introduced the mappings ρ, τ , and σ.
Theorem
Let L be a superintuitionistic logic and M a normal extension of
S4.

• ρM := {ϕ | T(ϕ) ∈ M} is the intuitionistic fragment of M.
• τL := S4 + {T(ϕ) | ϕ ∈ L} is the least modal companion of L.
• σL := Grz + {T(ϕ) | ϕ ∈ L} is the greatest modal companion

of L.

Theorem (Blok-Esakia 1976)
σ is a lattice isomorphism between the lattice of
superintuitionistic logics and the lattice of normal extensions of
Grz.
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Gödel translation in the predicate
setting



Rasiowa and Sikorski extended the Gödel translation to the
predicate setting as follows:

T(∀xϕ) = �∀xT(ϕ)
T(∃xϕ) = ∃xT(ϕ)

Theorem (Rasiowa-Sikorski 1953)
T translates the intuitionistic predicate calculus IQC into the
predicate S4 logic QS4 fully and faithfully.
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The theory of modal companions is not well developed in the
predicate setting because of the lack of semantic tools.

It is
convenient to study the monadic fragment.
Definition
The monadic fragment of a predicate logic L is the set of
formulas in one fixed variable that are provable in L.

Example

Therefore, monadic fragments can be treated like propositional
bimodal logics with modalities ∀, ∃.
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Definition

• MIPC is the monadic fragment of the intuitionistic predicate
calculus IQC.

• MS4 is the monadic fragment of the predicate S4 logic QS4.

The predicate Gödel translation restricts to a full and faithful
translation of MIPC into MS4.

MIPC

IQC

MS4

QS4T

T

T(∀ϕ) = �∀T(ϕ)
T(∃ϕ) = ∃T(ϕ)

ρM, τL, and σL can be defined similarly in the monadic setting.
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Semantics



There are three standard semantics for intuitionistic and modal
logics:

• algebraic semantics,

• topological semantics,
• relational semantics.

For convenience, we will mainly concentrate on relational
semantics.
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Definition

• An IPC-frame is a pair F = (X ,R) where X is a set and R is a
partial order.

• An S4-frame is a pair G = (X ,R) where X is a set and R is a
reflexive and transitive relation, i.e. a quasi-order.
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Definition
Given an S4-frame G = (X ,R) we can define an equivalence
relation ∼ on X by setting

x ∼ y iff xRy and yRx .

Let ρG be the IPC-frame obtained by identifying each R-cluster
of G to a point. We call ρG the skeleton of G.
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Let F be a partially ordered set, we can think of it as an IPC-frame
and as an S4-frame. When we think of it as an S4-frame, we
denote it by σF.

Theorem
Let F be an IPC-frame and G an S4-frame. We have that
ρσF = F and for any formula ϕ

ρG � ϕ iff G � T (ϕ)
F � ϕ iff σF � T (ϕ)

Moreover, if G � ϕ, then σρG � ϕ.
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Theorem
A finite S4-frame validates grz iff it is a poset.

Thus, the finite Grz-frames are exactly the ones of the form σF for
some finite IPC-frame F.

Sketch of the proof of Esakia’s theorem
Suppose M is a modal companion of IPC.

• For each finite IPC-frame F there is an M-frame G such that
F = ρG.

• σF = σρG is an M-frame that validates grz.
• Thus, each finite Grz-frame is an M-frame.
• Since Grz has the finite model property, M ⊆ Grz.
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Definition (Esakia)
An MIPC-frame is a triple F = (X ,R,E ) where (X ,R) is an
IPC-frame, E is an equivalence relation,

and the following
commutativity condition holds:

(∀x , y , z ∈ X )(xEy & yRz)

⇒ (∃u ∈ X )(xRu & uEz).

x y
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E

R
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R

u

Definition
MS4-frames are defined analogously but R is only required to be
a quasi-order.
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Definition
Let G = (X ,R,E ) be an MS4-frame. The skeleton ρG of G is
the skeleton of (X ,R) equipped with the equivalence relation
induced by the join of ∼ and E .
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we denote it by σF.

Again we have ρσF = F and for any formula ϕ
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Heyting algebras and S4-algebras provide algebraic semantics for
IPC and S4.

Definition

• A Heyting algebra H is a bounded distributive lattice with a
binary operation → such that for every a, b, c ∈ H

a ∧ b ≤ c iff a ≤ b → c

• An S4-algebra is a boolean algebra equipped with a unary
operator � satisfying Kuratowski’s axioms for interior

�1 = 1 �(a ∧ b) = �a ∧�b �a ≤ a �a ≤ ��a
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Definition

• If B is an S4-algebra, ρB := {b ∈ B | �b = b} with
a→ b := �(¬a ∨ b).

• If H is a Heyting algebra, σH is the free boolean extension of
H with the operator

�

( n∧
1

(¬ai ∨ bi )
)

:=
n∧
1

(ai → bi )

Theorem
We have ρσH ∼= H and that σρB embeds into B.
Moreover,

H � ϕ iff σH � T (ϕ)
ρB � ϕ iff B � T (ϕ)
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In the monadic setting some issues arise:
Problem
While ρ can be defined on MS4-algebras, σ is not always defined.

Reason: it is not always possible to define ∀ on σH.
Dually: a descriptive MIPC-frame is not a descriptive MS4-frame.
Indeed, in a descriptive MS4-frame,

• if A is clopen, then E [A] is clopen.

However, in a descriptive MIPC-frame,

• only if A is a clopen upset it is guaranteed that E [A] is clopen.

Open problem
Does every extension of MIPC have at least one modal
companion?
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M+Grz is the greatest modal companion of M+IPC.

Two main ingredients:

• A finite MIPC-frame validates MCas iff every E -class is clean,
i.e. if xEy and xRy , then x = y .

• M+Grz has the finite model property.
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THANK YOU!
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