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A standard modern proof (Engelking 1995: exercises with hints)

» Any countable metric space is homeomorphic to a
subspace of Cantor set A.

» (Brouwer 1910) Every zero-dimensional compact metric
space with no isolated points is homeomorphic to A.

> |f X is a countable subset of A with no isolated point, then
X~ A.

» Any two countable dense subsets of A are homeomorphic.

X~Q

» Not direct!
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subspace of R — proof 5 pages
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» 1956 General Topology (reprint Dover 2000) — proof
incomplete, no citation

» Textbook proofs are rare!
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Toolbox

ball: B(x,r)={y:d(x,y)<r}, r>0

open set: union of balls

isolated: {x} is a ball

continuous function: g,

homeomorphism: bijection, continuous in both directions

Theorem
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Proof:

>
>

D c (0,) countable
S C X, Y: next(S) = xx where k = min{i: x; € S}
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QED!

Corollary

Every countable metric space is homeomorphic to a subspace
of Q.

Proof.

X countable. X x Q:

metric p((x,p),(y.q)) =d(x.y)+|p—q|

Countable, no isolated points

X=Xx{0}CcXxQ ~Q O
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