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The Challenge

To prove directly:

Q×Q≈Q
Q∩ (0,1]≈Q∩ (0,1)
A standard modern proof (Engelking 1995: exercises with hints)

I Any countable metric space is homeomorphic to a
subspace of Cantor set ∆.

I (Brouwer 1910) Every zero-dimensional compact metric
space with no isolated points is homeomorphic to ∆.

I If X is a countable subset of ∆ with no isolated point, then
X ≈∆.

I Any two countable dense subsets of ∆ are homeomorphic.
I X ≈Q
I Not direct!
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Sierpiński

I 1920 Any two countable dense-in-itself subsets of Rn are
homeomorphic – proof 6 pages

I 1921 Any countable metric space is homeomorphic to a
subspace of R – proof 5 pages

I 1934 Introduction to General Topology — states general
case but proof is incomplete, no citation

I 1956 General Topology (reprint Dover 2000) — proof
incomplete, no citation

I Textbook proofs are rare!
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I 1920 Any two countable dense-in-itself subsets of Rn are
homeomorphic – proof 6 pages

I 1921 Any countable metric space is homeomorphic to a
subspace of R – proof 5 pages

I 1934 Introduction to General Topology — states general
case but proof is incomplete, no citation

I 1956 General Topology (reprint Dover 2000) — proof
incomplete, no citation

I Textbook proofs are rare!



Sierpiński
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Elementary proof with finite recursion
I Toolbox

I ball: B(x , r) = {y : d(x ,y) < r}, r > 0
I open set: union of balls
I isolated: {x} is a ball
I continuous function: ε,δ

I homeomorphism: bijection, continuous in both directions

Theorem
Metric X = {x1,x2, . . .}, Y = {y1,y2, . . .}
no isolated points
=⇒ X ≈ Y
Proof:

I D = {dX (xm,xn) : m 6= n}∪{dY (ym,yn) : m 6= n}
I D ⊂ (0,∞) countable
I S ⊂ X ,Y : next(S) = xk where k = min{i : xi ∈ S}
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The Splitter

















QED!

Corollary
Every countable metric space is homeomorphic to a subspace
of Q.

Proof.
X countable. X ×Q:
metric ρ((x ,p),(y ,q)) = d(x ,y) + |p−q|
Countable, no isolated points
X ≈ X ×{0} ⊂ X ×Q ≈ Q
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