Countable Metric Spaces Without Isolated Points

Frederick K. Dashiell Jr.

CECAT - Center of Excellence for Computation, Algebra, and Topology Chapman University, Orange, California and University of California at Los Angeles - UCLA dashiell@math.ucla.edu

June 11, 2021

To prove directly:

To prove directly: $\mathbb{Q}\times\mathbb{Q}\approx\mathbb{Q}$

To prove directly: $\mathbb{Q} \times \mathbb{Q} \approx \mathbb{Q}$ $\mathbb{Q} \cap (0,1] \approx \mathbb{Q} \cap (0,1)$

To prove directly: $\mathbb{Q} \times \mathbb{Q} \approx \mathbb{Q}$ $\mathbb{Q} \cap (0,1] \approx \mathbb{Q} \cap (0,1)$ A standard modern proof (Engelking 1995: exercises with hints)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

To prove directly: $\mathbb{Q} \times \mathbb{Q} \approx \mathbb{Q}$ $\mathbb{Q} \cap (0,1] \approx \mathbb{Q} \cap (0,1)$

A standard modern proof (Engelking 1995: exercises with hints)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 Any countable metric space is homeomorphic to a subspace of Cantor set Δ.

To prove directly: $\mathbb{Q} \times \mathbb{Q} \approx \mathbb{Q}$

 $\mathbb{Q}\cap (0,1]\approx \mathbb{Q}\cap (0,1)$

A standard modern proof (Engelking 1995: exercises with hints)

- Any countable metric space is homeomorphic to a subspace of Cantor set △.
- (Brouwer 1910) Every zero-dimensional compact metric space with no isolated points is homeomorphic to Δ.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

To prove directly: $\mathbb{Q} \times \mathbb{Q} \approx \mathbb{Q}$

 $\mathbb{Q}\cap(0,1]\approx\mathbb{Q}\cap(0,1)$

A standard modern proof (Engelking 1995: exercises with hints)

- Any countable metric space is homeomorphic to a subspace of Cantor set △.
- (Brouwer 1910) Every zero-dimensional compact metric space with no isolated points is homeomorphic to Δ.
- If X is a countable subset of Δ with no isolated point, then $\overline{X} \approx \Delta$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

To prove directly: $\mathbb{Q} \times \mathbb{Q} \approx \mathbb{Q}$

 $\mathbb{Q}\cap(0,1]\approx\mathbb{Q}\cap(0,1)$

A standard modern proof (Engelking 1995: exercises with hints)

- Any countable metric space is homeomorphic to a subspace of Cantor set Δ.
- (Brouwer 1910) Every zero-dimensional compact metric space with no isolated points is homeomorphic to Δ.
- If X is a countable subset of Δ with no isolated point, then $\overline{X} \approx \Delta$.
- Any two countable dense subsets of Δ are homeomorphic.

To prove directly: $\mathbb{Q} \times \mathbb{Q} \approx \mathbb{Q}$

 $\mathbb{Q}\cap(0,1]\approx\mathbb{Q}\cap(0,1)$

A standard modern proof (Engelking 1995: exercises with hints)

- Any countable metric space is homeomorphic to a subspace of Cantor set △.
- (Brouwer 1910) Every zero-dimensional compact metric space with no isolated points is homeomorphic to Δ.
- If X is a countable subset of Δ with no isolated point, then $\overline{X} \approx \Delta$.
- Any two countable dense subsets of Δ are homeomorphic.

(ロ) (同) (三) (三) (三) (○) (○)

 $\blacktriangleright X \approx \mathbb{Q}$

To prove directly: $\mathbb{O} \times \mathbb{O} \approx \mathbb{O}$

 $\mathbb{Q} \cap (0,1] \approx \mathbb{Q} \cap (0,1)$

A standard modern proof (Engelking 1995: exercises with hints)

- Any countable metric space is homeomorphic to a subspace of Cantor set △.
- (Brouwer 1910) Every zero-dimensional compact metric space with no isolated points is homeomorphic to Δ.
- If X is a countable subset of Δ with no isolated point, then $\overline{X} \approx \Delta$.
- Any two countable dense subsets of Δ are homeomorphic.

- $\blacktriangleright X \approx \mathbb{Q}$
- Not direct!

► 1920 Any two countable dense-in-itself subsets of Rⁿ are homeomorphic – proof 6 pages

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- ► 1920 Any two countable dense-in-itself subsets of Rⁿ are homeomorphic proof 6 pages
- ► 1921 Any countable metric space is homeomorphic to a subspace of ℝ proof 5 pages

- ► 1920 Any two countable dense-in-itself subsets of Rⁿ are homeomorphic proof 6 pages
- ► 1921 Any countable metric space is homeomorphic to a subspace of ℝ proof 5 pages
- 1934 Introduction to General Topology states general case but proof is incomplete, no citation

- ► 1920 Any two countable dense-in-itself subsets of Rⁿ are homeomorphic proof 6 pages
- ► 1921 Any countable metric space is homeomorphic to a subspace of ℝ proof 5 pages
- 1934 Introduction to General Topology states general case but proof is incomplete, no citation

(ロ) (同) (三) (三) (三) (○) (○)

 1956 General Topology (reprint Dover 2000) — proof incomplete, no citation

- ► 1920 Any two countable dense-in-itself subsets of Rⁿ are homeomorphic proof 6 pages
- ► 1921 Any countable metric space is homeomorphic to a subspace of ℝ proof 5 pages
- 1934 Introduction to General Topology states general case but proof is incomplete, no citation

- 1956 General Topology (reprint Dover 2000) proof incomplete, no citation
- Textbook proofs are rare!

Toolbox

- Toolbox
- ▶ ball: $B(x,r) = \{y : d(x,y) < r\}, r > 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- Toolbox
- ▶ ball: $B(x,r) = \{y : d(x,y) < r\}, r > 0$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

open set: union of balls

Toolbox

▶ ball:
$$B(x,r) = \{y : d(x,y) < r\}, r > 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- open set: union of balls
- ▶ isolated: {x} is a ball

- Toolbox
- ▶ ball: $B(x,r) = \{y : d(x,y) < r\}, r > 0$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- open set: union of balls
- ▶ isolated: {x} is a ball
- continuous function: ε, δ

- Toolbox
- ▶ ball: $B(x,r) = \{y : d(x,y) < r\}, r > 0$
- open set: union of balls
- ▶ isolated: {x} is a ball
- continuous function: ε, δ
- homeomorphism: bijection, continuous in both directions

- Toolbox
- ▶ ball: $B(x,r) = \{y : d(x,y) < r\}, r > 0$
- open set: union of balls
- ▶ isolated: {x} is a ball
- continuous function: ε, δ
- homeomorphism: bijection, continuous in both directions

- Toolbox
- ▶ ball: $B(x,r) = \{y : d(x,y) < r\}, r > 0$
- open set: union of balls
- ▶ isolated: {x} is a ball
- continuous function: ε, δ
- homeomorphism: bijection, continuous in both directions

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem

Metric
$$X = \{x_1, x_2, ...\}, Y = \{y_1, y_2, ...\}$$

- Toolbox
- ▶ ball: $B(x,r) = \{y : d(x,y) < r\}, r > 0$
- open set: union of balls
- ▶ isolated: {x} is a ball
- continuous function: ε, δ
- homeomorphism: bijection, continuous in both directions

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Theorem

Metric $X = \{x_1, x_2, ...\}, Y = \{y_1, y_2, ...\}$ no isolated points

- Toolbox
- ▶ ball: $B(x,r) = \{y : d(x,y) < r\}, r > 0$
- open set: union of balls
- ▶ isolated: {x} is a ball
- continuous function: ε, δ
- homeomorphism: bijection, continuous in both directions

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Theorem

Metric $X = \{x_1, x_2, ...\}, Y = \{y_1, y_2, ...\}$ no isolated points $\implies X \approx Y$

Toolbox

▶ ball:
$$B(x,r) = \{y : d(x,y) < r\}, r > 0$$

- open set: union of balls
- ▶ isolated: {x} is a ball
- continuous function: ε, δ
- homeomorphism: bijection, continuous in both directions

(ロ) (同) (三) (三) (三) (○) (○)

Theorem

Metric
$$X = \{x_1, x_2, ...\}, Y = \{y_1, y_2, ...\}$$

no isolated points
 $\implies X \approx Y$

Proof:

▶
$$D = \{d_X(x_m, x_n) : m \neq n\} \cup \{d_Y(y_m, y_n) : m \neq n\}$$

Toolbox

▶ ball:
$$B(x,r) = \{y : d(x,y) < r\}, r > 0$$

- open set: union of balls
- ▶ isolated: {x} is a ball
- continuous function: ε, δ
- homeomorphism: bijection, continuous in both directions

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Theorem

Metric
$$X = \{x_1, x_2, ...\}, Y = \{y_1, y_2, ...\}$$

no isolated points
 $\implies X \approx Y$

Proof:

►
$$D = \{d_X(x_m, x_n) : m \neq n\} \cup \{d_Y(y_m, y_n) : m \neq n\}$$

► $D \subset (0, \infty)$ countable

Toolbox

▶ ball:
$$B(x,r) = \{y : d(x,y) < r\}, r > 0$$

- open set: union of balls
- ▶ isolated: {x} is a ball
- continuous function: ε, δ
- homeomorphism: bijection, continuous in both directions

Theorem

Metric
$$X = \{x_1, x_2, ...\}, Y = \{y_1, y_2, ...\}$$

no isolated points
 $\implies X \approx Y$

Proof:

►
$$D = \{d_X(x_m, x_n) : m \neq n\} \cup \{d_Y(y_m, y_n) : m \neq n\}$$

- ▶ $D \subset (0, \infty)$ countable
- $S \subset X, Y$: next $(S) = x_k$ where $k = \min\{i : x_i \in S\}$

The Splitter

▲ 重 ▶ = ∽ ۹ (~

€ 940°

æ

き▶▲ 돌▶ (돌) ∽ Q () (

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Corollary Every countable metric space is homeomorphic to a subspace of $\mathbb{Q}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Corollary Every countable metric space is homeomorphic to a subspace of $\mathbb{Q}. \label{eq:Q}$

Proof.

Corollary Every countable metric space is homeomorphic to a subspace of $\mathbb{Q}. \label{eq:Q}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Proof. X countable.

Corollary Every countable metric space is homeomorphic to a subspace of $\mathbb{Q}. \label{eq:Q}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Proof. X countable. $X \times \mathbb{Q}$:

Corollary

Every countable metric space is homeomorphic to a subspace of $\mathbb{Q}. \label{eq:Q_star}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Proof. X countable. $X \times \mathbb{Q}$: metric $\rho((x,p),(y,q)) = d(x,y) + |p-q|$

Corollary

Every countable metric space is homeomorphic to a subspace of $\mathbb{Q}. \label{eq:Q_star}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proof.

X countable. $X \times \mathbb{Q}$: metric $\rho((x,p),(y,q)) = d(x,y) + |p-q|$ Countable, no isolated points

Corollary

Every countable metric space is homeomorphic to a subspace of $\mathbb{Q}. \label{eq:Q_star}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proof.

X countable. $X \times \mathbb{Q}$: metric $\rho((x,p),(y,q)) = d(x,y) + |p-q|$ Countable, no isolated points $X \approx X \times \{0\}$

Corollary

Every countable metric space is homeomorphic to a subspace of $\mathbb{Q}. \label{eq:Q_star}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Proof.

X countable. $X \times \mathbb{Q}$: metric $\rho((x,p),(y,q)) = d(x,y) + |p-q|$ Countable, no isolated points $X \approx X \times \{0\} \subset X \times \mathbb{Q}$

Corollary

Every countable metric space is homeomorphic to a subspace of $\mathbb{Q}. \label{eq:Q_star}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Proof.

X countable. $X \times \mathbb{Q}$: metric $\rho((x,p),(y,q)) = d(x,y) + |p-q|$ Countable, no isolated points $X \approx X \times \{0\} \subset X \times \mathbb{Q} \approx \mathbb{Q}$

References

- Dasgupta, A. Countable metric spaces without isolated points. *Topology Explained*. June 2005, published by *Topology Atlas*. Accessed 7 June 2021 at http://dasgupab.faculty.udmercy.edu.
- Dashiell, F., Countable metric spaces without isolated points. Amer. Math. Monthly 128(3) (2021), 265–267.