Big Ramsey Degrees of Universal Limit Structures

Natasha Dobrinen*, University of Denver joint work with Kaiyun Wang[†], Shaanxi Normal University

BLAST 2021

- * Research supported by National Science Foundation.
- † Research supported by National Natural Science Foundation of China, and Innovation Capability Support Program of Shaanxi.

Dobrinen

Big Ramsey Degrees of Universal Limit Structures

Natasha Dobrinen*, University of Denver joint work with Kaiyun Wang[†], Shaanxi Normal University

BLAST 2021

- * Research supported by National Science Foundation.
- † Research supported by National Natural Science Foundation of China, and Innovation Capability Support Program of Shaanxi.

Dobrinen

Fraïssé Classes

A class ${\mathcal K}$ of finite structures is a Fraı̈ssé class if ${\mathcal K}$ has the

- hereditary property
- joint embedding property
- amalgamation property

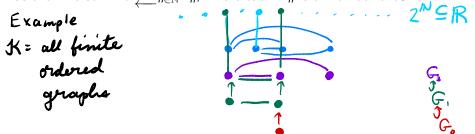
We will be working with Fraïssé classes with finitely many binary relations and a linear order, such as

- finite ordered graphs.
- finite ordered directed graphs.
- finite ordered tournaments.
- finite ordered *k*-clique-free graphs.
- finite ordered graphs with *n* edge relations.

Universal Inverse Limit Structures

Let ${\mathcal K}$ be a Fraïssé class of ordered binary relational structures.

An inverse limit structure for \mathcal{K} is a structure of size 2^{\aleph_0} which is obtained as the inverse limit $\lim_{n \in \mathbb{N}} K_n$, where each K_n is a member of \mathcal{K} .



A universal inverse limit structure for \mathcal{K} is an inverse limit structure **K** into which every other inverse limit structure for \mathcal{K} embeds continuously.

Remark. Universal inverse limit structures can be viewed as structures on perfect subsets of \mathbb{R} , with the inherited topology.

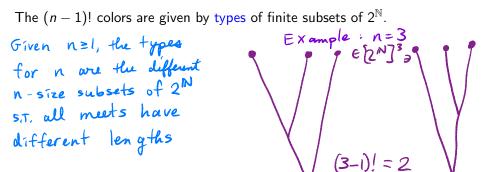
Ramsey Theory

Ramsey's Theorem. Given any $k, \ell \ge 1$ and a coloring of $[\mathbb{N}]^k$ into ℓ colors, there is an infinite subset $M \subseteq \mathbb{N}$ such that all members of $[M]^k$ have the same color.

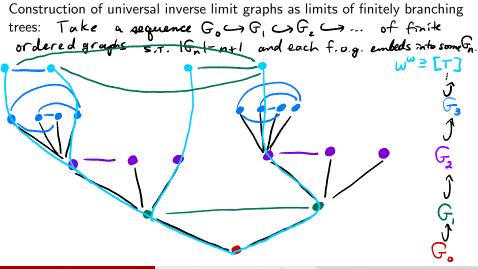
Theorem (Blass). For each perfect subset P of \mathbb{R} and each finite Baire measurable coloring of $[P]^n$, there is a perfect set $Q \subseteq P$ such that $[Q]^n$ has at most (n-1)! colors.

Theorem (Huber-Geschke-Kojman). For each finite ordered graph **A**, there is a natural number $\mathcal{T}(\mathbf{A}) \geq 1$ such that for each universal inverse limit graph **G**, for each finite Baire measurable partition of $\binom{\mathbf{G}}{\mathbf{A}}$, there is a closed copy $\mathbf{G}' \subseteq \mathbf{G}$ of \mathbf{G} such that $\binom{\mathbf{G}'}{\mathbf{A}}$ meets at most $\mathcal{T}(\mathbf{A})$ parts.

Theorem (Blass). For each perfect subset P of \mathbb{R} and each finite Baire measurable coloring of $[P]^n$, there is a perfect set $Q \subseteq P$ such that $[Q]^n$ has at most (n-1)! colors.



Constructions of universal inverse limit graphs



Types in trees coding graphs

Atype is a subtree s.T. each level has at most one splitting node. Note: The splitting degree is not bounded. Make skew tree T S.T. [T] codes a universal limit graph.

Types and upper bounds for profinite graphs

Theorem (Zheng). For each type τ , there is a topological Ramsey space $\mathcal{R}(\tau)$ of trees T such that τ forms an initial segment of T and [T] forms a universal profinite graph.

This recovers the theorem of Huber-Geschke-Kojman Given a finite graph G, look at a given type T producing G

A space (\mathcal{R}, \leq, r) is a topological Ramsey space if for any partition of \mathcal{R} into two pieces with the Baire property, there is a $T \in \mathcal{R}$ such that $\{S \in \mathcal{R} : S \leq T\}$ is contained in one piece of the partition.

Exact big Ramsey degrees

Let **G** be a universal inverse limit graph, and let **A** be a finite ordered graph. We let $T(\mathbf{A})$ denote the smallest integer T such that for each finite Baire measurable partition of $\binom{G}{A}$, there is a closed copy $\mathbf{G}' \subseteq \mathbf{G}$ of **G** such that $\binom{G'}{A}$ meets at most T parts of the partition. We call $T(\mathbf{A})$ the big Ramsey degree of **A** in **G**.

Theorem (D.-Wang). Given a universal profinite graph **G** and a finite ordered graph **A**, the big Ramsey degree $T(\mathbf{A})$ equals the number of types representing a copy of **A**.

We prove that each type persists in any smaller universal inverse limit.

Other universal limit structures

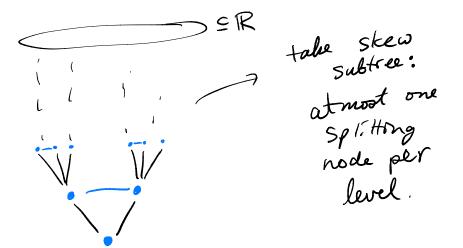
A Fraïssé class \mathcal{K} has the Ramsey property if for each pair $\mathbf{A} \leq \mathbf{B}$ in \mathcal{K} and any $r \geq 2$, there is a $\mathbf{C} \in \mathcal{K}$ such that $\mathbf{B} \leq \mathbf{C}$ and for any *r*-coloring of $\begin{pmatrix} \mathbf{C} \\ \mathbf{A} \end{pmatrix}$, there is a $\mathbf{B}' \leq \mathbf{C}$ with $\mathbf{B}' \cong \mathbf{B}$ such that all members of $\begin{pmatrix} \mathbf{B}' \\ \mathbf{A} \end{pmatrix}$ have the same color.

Theorem (Nešetřil-Rödl). Many Fraïssé classes have the Ramsey property, including the classes of finite ordered graphs, directed graphs, *k*-clique-free graphs, and combinations of these.

Theorem (D.-Wang). Let \mathcal{K} be a Fraïssé class of ordered structures with finitely many binary relations, and assume that \mathcal{K} has the Ramsey property. Then for each type τ , there is a topological Ramsey space $\mathcal{R}(\tau)$ of trees T such that τ forms an initial segment of T and [T] forms a universal inverse limit of \mathcal{K} .

Examples

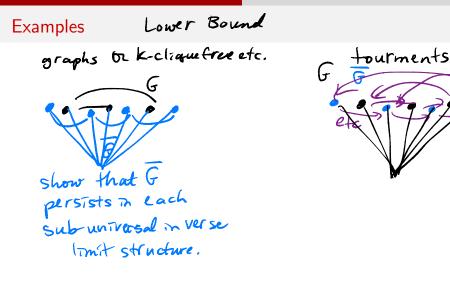
triangle -free graph



Exact big Ramsey degrees in universal limit structures

Theorem (D.-Wang). Let \mathcal{K} be any of the classes of finite ordered graphs, finite ordered *k*-clique-free graphs, finite ordered directed graphs, or finite ordered tournaments. Then for each $\mathbf{A} \in \mathcal{K}$, the big Ramsey degree $\mathcal{T}(\mathbf{A})$ for Baire measurable colorings of $\binom{\mathsf{K}}{\mathsf{A}}$ is exactly the number of types representing \mathbf{A} .

Similar methods seem to work for such structures with finitely many edges or directed edges. Details are being checked.



Blass. *A partition theorem for perfect sets*, Proceedings of the AMS (1981).

Dobrinen-Wang. *Big Ramsey degrees in universal limit structures*, (2020) Submitted.

Huber-Geschke-Kojman. *Partitioning subgraphs of profinite ordered graphs*, Combinatorica (2019).

Zheng. A collection of topological Ramsey spaces of trees and their application to profinite graph theory, Archive for Mathematical Logic (2018).