Hausdorff reflection of internal preneighbourhood spaces

Partha Pratim Ghosh

Department of Mathematical Sciences, UNISA Email: ghoshpp@unisa.ac.za

Talk given at
BLAST 9-13 June 2021 (Online)
Las Cruces , New Mexico
New Mexico State Uniquersity
on June 10, 2021

Topological Spaces

Definition (Topological Spaces, see Schubert, Topology, §2.3)

A topological space is given by (X, η) , where X is a set and $X \xrightarrow{\eta} \text{Fil}X$ is a function assigning to each $x \in X$ a filter η_x (called the *neighbourhood filter* of x) such that:

$$U \in \eta_x \Rightarrow x \in U$$

 $U \in \eta_x \Rightarrow (\exists V \in \eta_x)(y \in V \Rightarrow U \in \eta_v).$

and

The notion of a *space* is now seen inside a large number of categories, see Ghosh, "Internal neighbourhood structures".

A *context* is a category A with the following properties:

(a) A is finitely complete

see Ghosh, "Internal neighbourhood structures", §2, Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", §1

A *context* is a category \mathbb{A} with the following properties:

- (a) A is finitely complete
- (b) A has finite coproducts

see Ghosh, "Internal neighbourhood structures", §2, Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", §1

A *context* is a category \mathbb{A} with the following properties:

- (a) A is finitely complete
- (b) A has finite coproducts
- (c) A has a proper (E, M)-factorisation structure

see Ghosh, "Internal neighbourhood structures", §2, Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", §1

A *context* is a category \mathbb{A} with the following properties:

- (a) A is finitely complete
- (b) A has finite coproducts
- (c) A has a proper (E, M)-factorisation structure
- (d) For each object X of \mathbb{A} , the (possibly large) set $Sub_{M}(X)$ of admissible subobjects of X is a complete lattice.

see Ghosh, "Internal neighbourhood structures", §2, Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", §1

Example (Contexts abound..., see Ghosh, "Internal neighbourhood structures", Examples in §3)

Example (Contexts abound..., see Ghosh, "Internal neighbourhood structures", Examples in §3)

- (b) (Set, Surjection, Injection)
- (Top, Epi, ExtMon)
- (d) (Meas, Epi, ExtMon)
- (e) (Grp, RegEpi, Mon)
- (f) $((\Omega, \Xi)$ -Alg, RegEpi, Mon)
- (g) (Loc, Epi, RegMon)

Example (Contexts abound..., see Ghosh, "Internal neighbourhood structures", Examples in §3)

- (b) (Set, Surjection, Injection)
- (c) (Top, Epi, ExtMon)
- (d) (Meas, Epi, ExtMon)
- (e) (Grp, RegEpi, Mon)
- (f) $((\Omega, \Xi)$ -Alg, RegEpi, Mon)
- (g) (Loc, Epi, RegMon)

(I) (A, Epi(A), ExtMon(A)), where A is a small complete and small cocomplete well powered category

Example (Contexts abound..., see Ghosh, "Internal neighbourhood structures", Examples in §3)

- (a) (FinSet, Surjection, Injection)
- (b) (Set, Surjection, Injection)
- (c) (Top, Epi, ExtMon)
- (d) (Meas, Epi, ExtMon)
- (e) (Grp, RegEpi, Mon)
- (f) $((\Omega, \Xi)$ -Alg, RegEpi, Mon)
- (g) (Loc, Epi, RegMon)

(I) (A, Epi(A), ExtMon(A)), where A is a small complete and small cocomplete well powered category

Example (Contexts abound..., see Ghosh, "Internal neighbourhood structures", Examples in §3)

- (a) (FinSet, Surjection, Injection)
- (b) (Set, Surjection, Injection)
- (c) (Top, Epi, ExtMon)
- (d) (Meas, Epi, ExtMon)
- (e) (Grp, RegEpi, Mon)
- (f) $((\Omega, \Xi)$ -Alg, RegEpi, Mon)
- (g) (Loc, Epi, RegMon)
- (h) (CRing^{op}, Epi, RegMon)
- (i) any topos
- (j) any lextensive category

(I) (A, Epi(A), ExtMon(A)), where A is a small complete and small cocomplete well powered category

Example (Contexts abound..., see Ghosh, "Internal neighbourhood structures", Examples in §3)

- (a) (FinSet, Surjection, Injection)
- (b) (Set, Surjection, Injection)
- (c) (Top, Epi, ExtMon)
- (d) (Meas, Epi, ExtMon)
- (e) (Grp, RegEpi, Mon)
- (f) $((\Omega, \Xi)$ -Alg, RegEpi, Mon)
- (g) (Loc, Epi, RegMon)
- (h) (CRing^{op}, Epi, RegMon)
- (i) any topos
- (j) any lextensive category
- (k) if (A, E, M) be a context then for any object B, then $((A \downarrow B), (E \downarrow B), (M \downarrow B))$ is also a context
- (I) (A, Epi(A), ExtMon(A)), where A is a small complete and small cocomplete well powered category

Definition (Filters)

Given any object X, a filter F on X is a subset of $Sub_M(X)$ such that

(a)
$$x \ge y \in F \Rightarrow x \in F$$
,

(b)
$$x, y \in F \Rightarrow x \land y \in F$$

The set of all filters on X is FilX.

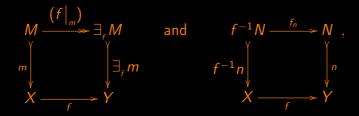
and

FilX is a complete algebraic lattice, with compact elements being

$$\uparrow x = \big\{ p \in \mathrm{Sub}_{\mathsf{M}}(X) : x \leq p \big\}.$$

FilX is distributive if and only if $Sub_M(X)$ is distributive (see Iberkleid and McGovern, "A natural equivalence for the category of coherent frames", Theorem 1.2).

The (E, M) factorisation produces the notion of *image* and *preimage* of a morphism $X \stackrel{f}{\rightarrow} Y$:



(E, M) factorisation of $f \circ m$		pullback of <i>n</i> along <i>f</i>	
$\exists_{f} m$	image of m under f	$f^{-1}n$	preimage of <i>n</i> under <i>f</i>
$\exists_{f} M$	image of M under f	$f^{-1}N$	preimage of N under f
(f)	restriction of f to m	f	corestriction of f to n

The image and preimage assignments for a morphism $X \xrightarrow{f} Y$ constitute an adjunction $\operatorname{Sub}_{\mathsf{M}}(X) \xrightarrow{\sqsubseteq_f} \operatorname{Sub}_{\mathsf{M}}(Y)$.

Definition (Neighbourhoods, see Ghosh, "Internal neighbourhood structures",

Definition 3.1)

Let X be an object of \mathbb{A} .

Definition (Neighbourhoods, see Ghosh, "Internal neighbourhood structures", Definition 3.1)

Let X be an object of \mathbb{A} .

(a) A preneighbourhood system on X is an order preserving function $\mathrm{Sub}_{\mathrm{M}}(X)^{\mathrm{op}} \stackrel{\mu}{\to} \mathrm{Fil}X$ such that for each $x \in \mathrm{Sub}_{\mathrm{M}}(X)$

$$p \in \mu(x) \Rightarrow x \leq p$$
.

The pair (X, μ) is called an *internal preneighbourhood space* of \mathbb{A} .

Definition (Neighbourhoods, see Ghosh, "Internal neighbourhood structures", Definition 3.1)

Let X be an object of \mathbb{A} .

(a) A preneighbourhood system on X is an order preserving function $\operatorname{Sub}_{\mathsf{M}}(X)^{\operatorname{op}} \stackrel{\overline{\mu}}{\to} \operatorname{Fil}X$ such that for each $x \in Sub_{M}(X)$

$$p \in \mu(x) \Rightarrow x \leq p$$
.

The pair (X, μ) is called an *internal preneighbourhood space* of A.

(b) A preneighbourhood system μ on X is a weak neighbourhood system if

$$p \in \mu(x) \Rightarrow (\exists q \in \mu(x))(p \in \mu(q)).$$

The pair (X, μ) is called an internal weak neighbourhood space of A.

Frame 3 of 18

Definition (Neighbourhoods, see Ghosh, "Internal neighbourhood structures", Definition 3.1)

Let X be an object of \mathbb{A} .

(a) A preneighbourhood system on X is an order preserving function $\operatorname{Sub}_{\mathsf{M}}(X)^{\operatorname{op}} \stackrel{\mu}{\to} \operatorname{Fil}X$ such that for each $X \in \operatorname{Sub}_{\mathsf{M}}(X)$

$$p \in \mu(x) \Rightarrow x \leq p$$
.

The pair (X, μ) is called an *internal preneighbourhood space* of \mathbb{A} .

(b) A preneighbourhood system μ on X is a weak neighbourhood system if

$$p \in \mu(x) \Rightarrow (\exists q \in \mu(x))(p \in \mu(q)).$$

The pair (X, μ) is called an *internal weak neighbourhood space* of \mathbb{A} .

(c) A weak neighbourhood system μ on X is a neighbourhood system on X if

$$\mu\bigg(\bigvee_{i\in I}p_i\bigg)=\bigcap_{i\in I}\mu(p_i).$$

The pair (X, μ) is called an *internal neighbourhood space* of \mathbb{A} .

Definition (Morphisms of Neighbourhoods, see Ghosh, "Internal neighbourhood structures", Definition 3.39)

Let (X, μ) , (Y, ϕ) be internal preneighbourhood spaces of \mathbb{A} and $X \xrightarrow{f} Y$ be a morphism of \mathbb{A} .

Definition (Morphisms of Neighbourhoods, see Ghosh, "Internal neighbourhood structures", Definition 3.39)

Let (X, μ) , (Y, ϕ) be internal preneighbourhood spaces of \mathbb{A} and $X \xrightarrow{f} Y$ be a morphism of \mathbb{A} .

(a) The morphism f is a *preneighbourhood morphism*, written $(X, \mu) \stackrel{f}{\to} (Y, \phi)$, if for each $y \in \operatorname{Sub}_{\mathsf{M}}(Y)$

$$p \in \phi(y) \Rightarrow f^{-1}p \in \mu(f^{-1}y).$$

Definition (Morphisms of Neighbourhoods, see Ghosh, "Internal neighbourhood structures", Definition 3.39)

Let (X, μ) , (Y, ϕ) be internal preneighbourhood spaces of \mathbb{A} and $X \xrightarrow{f} Y$ be a morphism of \mathbb{A} .

(a) The morphism f is a preneighbourhood morphism, written $(X, \mu) \xrightarrow{f} (Y, \phi)$, if for each $y \in \operatorname{Sub}_{\mathsf{M}}(Y)$

$$p \in \phi(y) \Rightarrow f^{-1}p \in \mu(f^{-1}y).$$

(b) If (X, μ) and (Y, ϕ) are internal neighbourhoods of \mathbb{A} then a preneighbourhood morphism $(X, \mu) \xrightarrow{f} (Y, \phi)$ is a *neighbourhood morphism* if for any family $\langle y_i : i \in I \rangle$ of admissible subobjects of Y

$$f^{-1}(\bigvee_{i\in I}y_i)=\bigvee_{i\in I}f^{-1}y_i.$$

Definition (Categories of Neighbourhoods, see Ghosh, "Internal neighbourhood structures", Definition 4.1)

(a) pNbd[A] is the category of all internal preneighbourhood spaces of A and preneighbourhood morphisms.

Definition (Categories of Neighbourhoods, see Ghosh, "Internal neighbourhood structures", Definition 4.1)

- (a) pNbd[A] is the category of all internal preneighbourhood spaces of A and preneighbourhood morphisms.
- (b) wNbd[A] is the category of all internal weak neighbourhood spaces of A and preneighbourhood morphisms.

Definition (Categories of Neighbourhoods, see Ghosh, "Internal neighbourhood structures", Definition 4.1)

- (a) pNbd[A] is the category of all internal preneighbourhood spaces of A and preneighbourhood morphisms.
- (b) wNbd[A] is the category of all internal weak neighbourhood spaces of A and preneighbourhood morphisms.
- (c) Nbd[A] is the category of all internal neighbourhood spaces of A and neighbourhood morphisms.

Theorem (Topologicity, see Ghosh, "Internal neighbourhood structures", Theorem 4.8) The categories pNbd[A] and wNbd[A] are topological over A.

Theorem (Topologicity, see Ghosh, "Internal neighbourhood structures", Theorem 4.8)

The categories pNbd[A] and wNbd[A] are topological over A.

The category Nbd[A] is topological over A provided preimage for every morphism preserve joins.

Definition (Definition of closure, closed subobject and closed morphism, see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", definitions in §3)

Definition (Definition of closure, closed subobject and closed morphism, see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", definitions in §3)

Let (X, μ) be an internal preneighbourhood space and $p \in Sub_M(X)$. The admissible subobject:

$$\operatorname{cl}_{\mu} p = \bigvee \left\{ u \in \operatorname{Sub}_{\mathsf{M}}(X)_{\neq 1} : x \in \mu(u) \Rightarrow x \wedge p \neq \sigma_{X} \right\}$$
 (1)

is called the μ -closure of p.

Definition (Definition of closure, closed subobject and closed morphism, see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", definitions in §3)

Let (X, μ) be an internal preneighbourhood space and $p \in Sub_M(X)$. The admissible subobject:

$$\operatorname{cl}_{\mu} p = \bigvee \left\{ u \in \operatorname{Sub}_{\mathsf{M}}(X)_{\neq 1} : x \in \mu(u) \Rightarrow x \wedge p \neq \sigma_{X} \right\}$$
 (1)

is called the μ -closure of p.

The subobject p is μ -closed if $\operatorname{cl}_{\mu}p = p$.

Definition (Definition of closure, closed subobject and closed morphism, see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", definitions in §3)

Let (X, μ) be an internal preneighbourhood space and $p \in Sub_M(X)$. The admissible subobject:

$$\operatorname{cl}_{\mu} p = \bigvee \left\{ u \in \operatorname{Sub}_{\mathsf{M}}(X)_{\neq 1} : x \in \mu(u) \Rightarrow x \wedge p \neq \sigma_{X} \right\}$$
 (1)

is called the μ -closure of p.

The subobject p is μ -closed if $\operatorname{cl}_{\mu}p = p$.

For any internal preneighbourhood space (X, μ) , $\mathfrak{C}_{\mu} = \{p \in \operatorname{Sub}_{\mathsf{M}}(X) : p = \operatorname{cl}_{\mu}p\}$.

Definition (Definition of closure, closed subobject and closed morphism, see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", definitions in §3)

Let (X, μ) be an internal preneighbourhood space and $p \in Sub_M(X)$. The admissible subobject:

$$\operatorname{cl}_{\mu} p = \bigvee \left\{ u \in \operatorname{Sub}_{\mathsf{M}}(X)_{\neq 1} : x \in \mu(u) \Rightarrow x \wedge p \neq \sigma_{X} \right\}$$
 (1)

is called the μ -closure of p.

The subobject p is μ -closed if $\operatorname{cl}_{\mu}p = p$.

For any internal preneighbourhood space (X, μ) , $\mathfrak{C}_{\mu} = \{p \in \operatorname{Sub}_{\mathsf{M}}(X) : p = \operatorname{cl}_{\mu}p\}$.

Given the internal preneighbourhood spaces (X, μ) and (Y, ϕ) , a morphism $X \xrightarrow{f} Y$ is said to be μ - ϕ closed or simply closed if it preserves closed subobjects, i.e., $p \in \mathfrak{C}_{\mu} \Rightarrow \exists_f p \in \mathfrak{C}_{\phi}$.

Definition (Definition of closure, closed subobject and closed morphism, see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", definitions in §3)

Let (X, μ) be an internal preneighbourhood space and $p \in Sub_M(X)$. The admissible subobject:

$$\operatorname{cl}_{\mu}p = \bigvee \left\{ u \in \operatorname{Sub}_{\mathsf{M}}(X)_{\neq 1} : x \in \mu(u) \Rightarrow x \wedge p \neq \sigma_{X} \right\}$$
 (1)

is called the μ -closure of p.

The subobject p is μ -closed if $\operatorname{cl}_{\mu}p = p$.

For any internal preneighbourhood space (X, μ) , $\mathfrak{C}_{\mu} = \{p \in \operatorname{Sub}_{\mathsf{M}}(X) : p = \operatorname{cl}_{\mu}p\}$.

Given the internal preneighbourhood spaces (X, μ) and (Y, ϕ) , a morphism $X \xrightarrow{f} Y$ is said to be μ - ϕ closed or simply closed if it preserves closed subobjects, i.e., $p \in \mathfrak{C}_{\mu} \Rightarrow \exists_{f} p \in \mathfrak{C}_{\phi}$. \mathbb{A}_{cl} is the (possibly large) set of all closed morphisms of \mathbb{A} .

Properties of the closure operator

Definition (Closure Operation)

An order preserving function $P \xrightarrow{c} P$ on a partially ordered set P is said to be a *closure* operation if it satisfies the conditions

$$x \le c(x)$$
 (Extensionality)

and

$$c \circ c = c$$
 (Idempotence)

Definition (Closure Operation)

An order preserving function $P \xrightarrow{c} P$ on a partially ordered set P is said to be a *closure* operation if it satisfies the conditions

$$x \le c(x)$$
 (Extensionality)

and

$$c \circ c = c$$
 (Idempotence)

If it further satisfies

$$c(x \lor y) = c(x) \lor c(y)$$
 (Additivity)

then it is called a Kuratowksi closure operation.

Theorem (Properties of Closure, see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Theorem 3.1)

• Given any internal preneighbourhood space (X, μ) , the function $\mathrm{Sub}_{\mathsf{M}}(X) \xrightarrow{\mathrm{cl}_{\mu}} \mathrm{Sub}_{\mathsf{M}}(X)$ defines a closure operation on $\mathrm{Sub}_{\mathsf{M}}(X)$ such that $\mathrm{cl}_{\mu}\sigma_X = \sigma_Y$.

Jausdorff Reflection Partha Pratim Ghosh Frame 5 of 18.

Theorem (Properties of Closure, see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Theorem 3.1)

- Given any internal preneighbourhood space (X, μ) , the function $\mathrm{Sub}_{\mathsf{M}}(X) \xrightarrow{\mathrm{cl}_{\mu}} \mathrm{Sub}_{\mathsf{M}}(X)$ defines a closure operation on $\mathrm{Sub}_{\mathsf{M}}(X)$ such that $\mathrm{cl}_{\mu}\sigma_X = \sigma_Y$.
- If $(X, \mu) \xrightarrow{f} (Y, \phi)$ is a preneighbourhood morphism reflecting zero then it is μ - ϕ continuous, i.e., for any $p \in \operatorname{Sub}_{\mathsf{M}}(X)$:

$$\exists_{f} \operatorname{cl}_{\mu} \rho \le \operatorname{cl}_{\phi} \exists_{f} \rho \tag{2}$$

ausdorff Reflection Partha Pratim Ghosh Frame 5 of 18...

Definition (Reflecting Zero)

A morphism $X \xrightarrow{f} Y$ is said to *reflect zero* if $f^{-1}\sigma_Y = \sigma_X$.

The following three statements are equivalent for any morphism $X \stackrel{f}{\rightarrow} Y$:

- (a) f reflects zero
- (b) For each $x \in \operatorname{Sub}_{\mathsf{M}}(X)$, $\exists_{\mathsf{f}} x = \sigma_{\mathsf{Y}} \Rightarrow x = \sigma_{\mathsf{X}}$
- (c) For each $x \in \operatorname{Sub}_{\mathsf{M}}(X)$ and $y \in \operatorname{Sub}_{\mathsf{M}}(Y)$, $y \wedge \exists_{f} x = \sigma_{Y} \Rightarrow x \wedge f^{-1}y = \sigma_{X}$ see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Theorem 9.2

Hausdorff Reflection Partha Pratim Ghosh Frame 5 of 18.

In any context if every morphism reflects zero then the initial object \emptyset is strict. Conversely, if the initial object \emptyset is strict and the unique morphism $\emptyset \to 1$ is an admissible monomorphism then every morphism reflects zero.

see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Theorem 9.2

Hausdorff Reflection Partha Pratim Ghosh Frame 5 of 18...

A category is said to be *quasi-pointed* (see Bourn, " 3×3 lemma and protomodularity", §1, and see Goswami and Janelidze, "On the structure of zero morphisms in a quasi-pointed category") if the unique morphism $\emptyset \to 1$ is a monomorphism.

Hausdorff Reflection Partha Pratim Ghosh Frame 5 of 18...

A category is said to be *quasi-pointed* (see Bourn, " 3×3 lemma and protomodularity", §1, and see Goswami and Janelidze, "On the structure of zero morphisms in a quasi-pointed category") if the unique morphism $\emptyset \to 1$ is a monomorphism.

A context shall be called *admissibly quasi-pointed* if the unique morphism $\emptyset \to 1$ is an admissible monomorphism.

Hausdorff Reflection Partha Pratim Ghosh Frame 5 of 18.15

A category is said to be *quasi-pointed* (see Bourn, " 3×3 lemma and protomodularity", §1, and see Goswami and Janelidze, "On the structure of zero morphisms in a quasi-pointed category") if the unique morphism $\emptyset \to 1$ is a monomorphism.

A context shall be called *admissibly quasi-pointed* if the unique morphism $\emptyset \to 1$ is an admissible monomorphism.

Several contexts are admissibly quasi-pointed — e.g., sets and functions, topological spaces and continuous maps, locales and localic maps, where this unique morphism is a regular monomorphism and hence admissible; however the context of rings and their homomorphisms is **not** quasi-pointed even.

Partha Pratim Ghosh Frame 5 of 18.7.5

The following three statements are equivalent for any morphism $X \stackrel{f}{\rightarrow} Y$:

- (a) f reflects zero
- (b) For each $x \in \text{Sub}_{M}(X)$, $\exists_{f} x = \sigma_{Y} \Rightarrow x = \sigma_{X}$
- (c) For each $x \in \text{Sub}_{M}(X)$ and $y \in \text{Sub}_{M}(Y)$, $y \land \exists_{f} x = \sigma_{Y} \Rightarrow x \land f^{-1}y = \sigma_{X}$

see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Theorem 9.2

In any context if every morphism reflects zero then the initial object \emptyset is strict.

Conversely, if the initial object \emptyset is strict and the unique morphism $\emptyset \to 1$ is an admissible monomorphism then every morphism reflects zero.

see ibid., Theorem 9.2

Thus: in admissibly quasi-pointed contexts, the initial object is strict if and only if every morphism reflects zero.

Frame 5 of 18.

Theorem (Properties of Closure, see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Theorem 3.1)

• If every filter of $\operatorname{Sub}_{\mathsf{M}}(X)$ is contained in a prime filter then cl_{μ} is additive, i.e., for each $x,y\in\operatorname{Sub}_{\mathsf{M}}(X)$:

$$\operatorname{cl}_{\mu}(x \vee y) = \operatorname{cl}_{\mu} x \vee \operatorname{cl}_{\mu} y. \tag{2}$$

Hausdorff Reflection Partha Pratim Ghosh Frame 5 of 18...

Even in the presence of <u>Axiom of Choice</u> the presence of a prime filter in a complete non-distributive lattice is not guaranteed.

Hausdorff Reflection Partha Pratim Ghosh Frame 5 of 18.

Even in the presence of <u>Axiom of Choice</u> the presence of a prime filter in a complete non-distributive lattice is not guaranteed.

Absence of distributivity in the lattice does not even ensure a maximal filter to be prime. See Erné, "Prime and maximal ideals of partially ordered sets" for <u>details</u>.

Hausdorff Reflection Partha Pratim Ghosh Frame 5 of 18.

Theorem (Properties of Closure, see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Theorem 3.1)

- ullet Given any internal preneighbourhood space (X,μ) , the function $\operatorname{Sub}_{\mathsf{M}}(X)\stackrel{\operatorname{\operatorname{cl}}_{\mu}}{\longrightarrow}\operatorname{Sub}_{\mathsf{M}}(X)$ defines a closure operation on $Sub_M(X)$ such that $cl_\mu \sigma_X = \sigma_Y$.
- If $(X, \mu) \xrightarrow{f} (Y, \phi)$ is a preneighbourhood morphism reflecting zero then it is μ - ϕ continuous, i.e., for any $p \in Sub_M(X)$:

$$\exists_{f} \operatorname{cl}_{\mu} \rho \le \operatorname{cl}_{\phi} \exists_{f} \rho \tag{2}$$

• If every filter of $Sub_M(X)$ is contained in a prime filter then cl_u is additive, i.e., for each $x, y \in \operatorname{Sub}_{\mathsf{M}}(X)$:

$$\operatorname{cl}_{\mu}(x \vee y) = \operatorname{cl}_{\mu} x \vee \operatorname{cl}_{\mu} y. \tag{3}$$

• The closure operation is hereditary, i.e., given $A > \stackrel{a}{\longrightarrow} M > \stackrel{m}{\longrightarrow} X$,

$$\operatorname{cl}_{(\mu|_{\pi})}a=m^{-1}(\operatorname{cl}_{\mu}(m\circ a));$$

hence a and m closed imply moa closed.

Definition (see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Definition 6.1)

A preneighbourhood morphism $(X,\mu) \xrightarrow{f} (Y,\phi)$ is *proper* if for every preneighbourhood morphism $(Z,\psi) \xrightarrow{g} (Y,\phi)$ and pullback $X \times_Y Z \xrightarrow{f_g} Z$, the morphism $\downarrow^g \downarrow^g X \xrightarrow{f_g} Y$

 $(X \times_Y Z, \mu \times_{\phi} \psi) \xrightarrow{f_g} (Z, \psi)$ is a closed morphism.

The set A_{pr} is the (possibly large) set of all proper morphisms.

Hausdorff Reflection Partha Pratim Ghosh Frame 6 of 18.

Definition (see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Definition 6.1)

A preneighbourhood morphism $(X, \mu) \xrightarrow{f} (Y, \phi)$ is *proper* if for every preneighbourhood morphism $(Z,\psi) \xrightarrow{g} (Y,\phi)$ and pullback $X \times_Y Z \xrightarrow{f_g} Z$, the morphism $\begin{array}{c|c}
g_f & & g \\
X & & Y
\end{array}$

 $(X \times_Y Z, \mu \times_{\phi} \psi) \xrightarrow{f_g} (Z, \psi)$ is a closed morphism.

The set A_{pr} is the (possibly large) set of all proper morphisms.

Examples

(Set, Sur, Inj)

(Top, Epi, ExtMon)

(Loc, Epi, RegMon)

Definition (see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Definition 6.1)

$$(X \times_Y Z, \mu \times_{\phi} \psi) \xrightarrow{f_g} (Z, \psi)$$
 is a closed morphism.

The set A_{pr} is the (possibly large) set of all proper morphisms.

_		
∟xam	рl	AC
∟∧aııı	v	C.S

(Set, Sur, Inj)	for internal neighbourhood spaces, usual proper maps of topological
	spaces
$({\tt Top}, {\tt Epi}, {\tt ExtMon})$	for internal neighbourhood spaces, usual proper maps between the
	second topology
(Loc, Epi, RegMon)	for locales with T -neighbourhood systems, usual proper maps of locales

The T-neighbourhood system was investigated in the papers Dube and Ighedo, "More on locales in which every open sublocale is z-embedded"; Dube and Ighedo, "Characterising points which make P-frames", christened in Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms" and for any locale X, it is the order preserving map $\operatorname{Sub}_{\operatorname{RegMon}}(X)^{\operatorname{op}} \xrightarrow{\mathfrak{o}_X} \operatorname{Fil}X$ defined by:

$$\mathfrak{o}_X(S) = \big\{ T \in \mathrm{Sub}_{\mathtt{RegMon}}(X) : (\exists a \in X) \big(S \subseteq \mathfrak{O}[a] \subseteq T \big) \big\}.$$

It is a neighbourhood system on X, and the functor with object function $X \mapsto (X, \mathfrak{o}_X)$ is right inverse to the forgetful functor pNbd[Loc] \xrightarrow{U} Loc (see Ghosh, "Internal neighbourhood structures", Theorem 3.38)

Frame 6 of 18

Definition (see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Definition 6.1)

A preneighbourhood morphism $(X,\mu) \xrightarrow{f} (Y,\phi)$ is *proper* if for every preneighbourhood morphism $(Z,\psi) \xrightarrow{g} (Y,\phi)$ and pullback $X \times_Y Z \xrightarrow{f_g} Z$, the morphism \downarrow^g

$$(X \times_Y Z, \mu \times_{\phi} \psi) \xrightarrow{f_g} (Z, \psi)$$
 is a closed morphism.

The set \triangle_{pr} is the (possibly large) set of all proper morphisms.

Examples				
		-	ЯI	~~
	:ха	m	911	es

Examples	
(Set, Sur, Inj)	for internal neighbourhood spaces, usual proper maps of topological
	spaces
(Top, Epi, ExtMon)	for internal neighbourhood spaces, usual proper maps between the second topology
(Loc, Epi, RegMon)	for locales with T -neighbourhood systems, usual proper maps of locales

Theorem (Alternative characaterisation of proper morphisms, see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Theorem 6.1(a))

A preneighbourhood morphism $(X, \mu) \xrightarrow{f} (Y, \phi)$ is proper if and only if for every preneighbourhood space (Z, ψ) , every corestriction of

$$(X \times Z, \mu \times \psi) \xrightarrow{f \times 1_Z} (Y \times Z, \phi \times \psi)$$
 is a closed morphism.

Lemma (see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Lemma 7.1)

If
$$(X, \mu) \xrightarrow{f} (Y, \phi)$$
 is a preneighbourhood morphism, $\ker f \xrightarrow{p_2} X$ be its kernel pair, $\downarrow f$ $\downarrow f$

 $X \xrightarrow{d_f = (1_X, 1_X)} \ker f$ be the diagonal morphism, then $\mu = ((\mu \times_{\phi} \mu)|_X)$ and d_f is an embedding.

Hausdorff Reflection Partha Pratim Ghosh Frame 7 of 18...

Lemma (see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms'', Lemma 7.1)

If
$$(X, \mu) \xrightarrow{f} (Y, \phi)$$
 is a preneighbourhood morphism, $\ker f \xrightarrow{p_2} X$ be its kernel pair, $\downarrow^{p_1} \downarrow^{q_2} X \xrightarrow{p_3} Y$

 $X \xrightarrow{d_f = (1_X, 1_X)} \ker f$ be the diagonal morphism, then $\mu = ((\mu \times_{\phi} \mu)|_{x})$ and d_f is an embedding.

Definition (see ibid., Definition 7.1)

A preneighbourhood morphism $(X, \mu) \xrightarrow{f} (Y, \phi)$ is separated if d_f is a proper morphism.

Frame 7 of 18

Lemma (see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms', Lemma 7.1)

If
$$(X, \mu) \xrightarrow{f} (Y, \phi)$$
 is a preneighbourhood morphism, $\ker f \xrightarrow{p_2} X$ be its kernel pair, $\downarrow f$ $\downarrow f$

 $X \xrightarrow{d_f = (1_X, 1_X)} \ker f$ be the diagonal morphism, then $\mu = ((\mu \times_{\phi} \mu)|_X)$ and d_f is an embedding.

Definition (see ibid., Definition 7.1)

A preneighbourhood morphism $(X, \mu) \xrightarrow{f} (Y, \phi)$ is separated if d_f is a proper morphism.

If every preneighbourhood morphism is continuous then f is separated if and only if d_f is a closed embedding — compare with the notion of separated morphisms in Clementino, Giuli, and Tholen, "A functional approach to general topology".

Definition (see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Definition 7.1)

A preneighbourhood morphism $(X, \mu) \xrightarrow{f} (Y, \phi)$ is separated if d_f is a proper morphism.

Examples

(Set, Sur, Inj)
(Top, Epi, ExtMon)

Definition (see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Definition 7.1)

A preneighbourhood morphism $(X, \mu) \xrightarrow{f} (Y, \phi)$ is separated if d_f is a proper morphism.

_		
Exam	a	00
LXaIII	191	ES.

(Set, Sur, Inj)	for internal neighbourhood spaces, continuous maps in whose fibres
	distinct points have disjoint neighbourhoods
(Top, Epi, ExtMon)	for internal neighbourhood spaces, separated maps between the sec-
	ond topology

A_{cl}	
contain isomorphisms	
closed under compositions	
$g \circ f$ is closed, f is a continuous formal surjection imply g is closed	
if $m \in \mathfrak{C}_{\phi}$ then f is continuous implies $f^{-1}m \in \mathfrak{C}_{\mu}$, f is closed and continuous imply f_m is closed	

A_{cl}	\mathbb{A}_{pr}	
contain isomorphisms	contain closed embeddings in a reflecting zero context	
closed under compositions	closed under compositions	
$g \circ f$ is closed, f is a continuous formal surjection imply g is closed	$g \circ f$ is proper, f is continuously stably in E imply g is proper $g \circ f$ is proper, g is a monomorphism imply f is proper	
if $m \in \mathfrak{C}_{\phi}$ then f is continuous implies $f^{-1}m \in \mathfrak{C}_{\mu}$, f is closed and continuous imply f_m is closed	pullback stable	

A_{cl}	\mathbb{A}_{pr}	\mathbb{A}_{sep}
contain isomorphisms	contain closed embeddings in a reflecting zero context	contain all monomorphisms
closed under compositions	closed under compositions	closed under compositions
$g \circ f$ is closed, f is a continuous formal surjection imply g is closed	$g \circ f$ is proper, f is continuously stably in E imply g is proper $g \circ f$ is proper, g is a monomorphism imply f is proper	$g \circ f$ is separated, f is proper and continuously stably in E imply g is separated $g \circ f$ is separated imply f is separated
if $m \in \mathfrak{C}_{\phi}$ then f is continuous implies $f^{-1}m \in \mathfrak{C}_{\mu}$, f is closed and continuous imply f_m is closed	pullback stable	pullback stable

Summary of properties of closed/proper/separated morphisms, given the preneighbourhood morphisms $(X, \mu) \xrightarrow{f} (Y, \phi) \xrightarrow{g} (Z, \psi)$

$g \circ f$ is closed, f is a continuous formal surjection imply g is closed	

A morphism $X \xrightarrow{f} Y$ is a *formal surjection* if $y \in \operatorname{Sub}_{M}(Y) \Rightarrow (\exists x \in \operatorname{Sub}_{M}(X))(y = \exists_{f} x)$, or equivalently, for each $y \in \operatorname{Sub}_{M}(Y)$, $f_{v} \in E$.

Hausdorff Reflection Partha Pratim Ghosh Frame 8 of 18:..

Summary of properties of closed/proper/separated morphisms, given the preneighbourhood morphisms $(X, \mu) \xrightarrow{f} (Y, \phi) \xrightarrow{g} (Z, \psi)$

$g \circ f$ is proper, f is continuously stably in E imply g is proper	$g \circ f$ is separated, f is proper and continuously stably in E imply g is separated

A preneighbourhood morphism $(X, \mu) \xrightarrow{f} (Y, \phi)$ is continuously stably in E if for every preneighbourhood morphism $(Z, \psi) \xrightarrow{g} (Y, \phi)$, the pullback f_g of f along g is $((\mu \times_{\phi} \psi), \psi)$ -continuous and is in E.

Summary of properties of closed/proper/separated morphisms, given the preneighbourhood morphisms $(X, \mu) \xrightarrow{f} (Y, \phi) \xrightarrow{g} (Z, \psi)$

\mathbb{A}_{cl}	\mathbb{A}_{pr}	\mathbb{A}_{sep}
contain isomorphisms	contain closed embeddings in a reflecting zero context	contain all monomorphisms
closed under compositions	closed under compositions	closed under compositions
$g \circ f$ is closed, f is a continuous formal surjection imply g is closed	$g \circ f$ is proper, f is continuously stably in E imply g is proper $g \circ f$ is proper, g is a monomorphism imply f is proper	$g \circ f$ is separated, f is proper and continuously stably in E imply g is separated $g \circ f$ is separated imply f is separated
if $m \in \mathfrak{C}_{\phi}$ then f is continuous implies $f^{-1}m \in \mathfrak{C}_{\mu}$, f is closed and continuous imply f_m is closed	pullback stable	pullback stable

Compare the properties for similar morphisms in Clementino, Giuli, and Tholen, "A functional approach to general topology", where *continuous* condition is automatic.

lausdorff Reflection Partha Pratim Ghosh Frame 8 of 18...

The smallest preneighbourhood system on an object X is $Sub_M(X)^{\operatorname{op}} \xrightarrow{\nabla_X} FilX$, where:

$$abla_X(p) = egin{cases} \operatorname{Sub}_\mathsf{M}(X), & ext{ if } p = \sigma_X \ \{1_X\}, & ext{ if } p
eq \sigma_X \end{cases}.$$

Hausdorff Reflection Partha Pratim Ghosh Frame 9 of 18:...

The smallest preneighbourhood system on an object X is $Sub_M(X)^{op} \xrightarrow{\nabla_X} FilX$, where:

$$abla_X(p) = egin{cases} \operatorname{Sub}_\mathsf{M}(X), & ext{if } p = \sigma_X \ \{1_X\}, & ext{if } p
eq \sigma_X \end{cases}.$$

The largest preneighbourhood system on an object X is $Sub_M(X)^{op} \xrightarrow{\uparrow_X} FilX$, where:

$$\uparrow_X (p) = \uparrow p = \{x \in \mathrm{Sub}_{\mathsf{M}}(X) : p \leq x\}.$$

Hausdorff Reflection Partha Pratim Ghosh Frame 9 of 18:...

The smallest preneighbourhood system on an object X is $Sub_M(X)^{op} \xrightarrow{\nabla_X} FilX$, where:

$$abla_X(p) = egin{cases} \operatorname{Sub}_\mathsf{M}(X), & ext{if } p = \sigma_X \ \{1_X\}, & ext{if } p
eq \sigma_X \end{cases}.$$

The largest preneighbourhood system on an object X is $Sub_M(X)^{op} \xrightarrow{\uparrow_X} FilX$, where:

$$\uparrow_X (p) = \uparrow p = \{x \in \mathrm{Sub}_{\mathsf{M}}(X) : p \leq x\}.$$

The terminal object 1 being the empty product is considered as an internal preneighbourhood space with its smallest preneighbourhood system ∇_1 .

Hausdorff Reflection Partha Pratim Ghosh Frame 9 of 18...

Definition (see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", §7.2)

An internal preneighbourhood space (X, μ) is said to be *Hausdorff* if the unique morphism $(X, \mu) \xrightarrow{\mathsf{t}_X} (1, \nabla_1)$ is separated.

Hausdorff Reflection Partha Pratim Ghosh Frame 9 of 18:...

Hausdorff preneighbourhood spaces

Definition (see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", §7.2)

An internal preneighbourhood space (X, μ) is said to be *Hausdorff* if the unique morphism $(X, \mu) \xrightarrow{\mathbf{t}_X} (1, \nabla_1)$ is separated.

Since every isomorphism is separated, $(1, \nabla_1)$ is always Hausdorff.

Hausdorff preneighbourhood spaces

Definition (see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", §7.2)

An internal preneighbourhood space (X, μ) is said to be *Hausdorff* if the unique morphism $(X, \mu) \xrightarrow{\mathbf{t}_X} (1, \nabla_1)$ is separated.

Since every isomorphism is separated, $(1, \nabla_1)$ is always Hausdorff.

In (Set, Surjection, Injection) the terminal object is singleton, $\nabla_1 = \uparrow_1$.

Hausdorff preneighbourhood spaces

Definition (see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", §7.2)

An internal preneighbourhood space (X, μ) is said to be *Hausdorff* if the unique morphism $(X, \mu) \xrightarrow{\mathbf{t}_X} (1, \nabla_1)$ is separated.

Since every isomorphism is separated, $(1, \nabla_1)$ is always Hausdorff.

In (Set, Surjection, Injection) the terminal object is singleton, $\nabla_1 = \uparrow_1$.

However, in (CRing^{op}, Epi, RegMon) the terminal object is $\mathbb Z$ and $\nabla_1 < \uparrow_1$.

• (Set, Sur, Inj) Hausdorff neighbourhood spaces are usual Hausdorff topological spaces

- (Set, Sur, Inj) Hausdorff neighbourhood spaces are usual Hausdorff topological spaces
- (Top, Epi, ExtMon) Hausdorff neighbourhood spaces are bitopological spaces with the second topology Hausdorff

- (Set, Sur, Inj) Hausdorff neighbourhood spaces are usual Hausdorff topological spaces
- (Top, Epi, ExtMon) Hausdorff neighbourhood spaces are bitopological spaces with the second topology Hausdorff
- (Grp, RegEpi, Mon) every Hausdorff topological group is a Hausdorff neighbourhood space

- (Set, Sur, Inj) Hausdorff neighbourhood spaces are usual Hausdorff topological spaces
- (Top, Epi, ExtMon) Hausdorff neighbourhood spaces are bitopological spaces with the second topology Hausdorff
- (Grp, RegEpi, Mon) every Hausdorff topological group is a Hausdorff neighbourhood space
- (Loc, Epi, RegMon) every Hausdorff locale is a Hausdorff preneighbourhood space with its functorial T-neighbourhood system

Theorem (see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Theorem 7.3)

The following are equivalent for any internal preneighbourhood space (X, μ) :

Theorem (see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Theorem 7.3)

The following are equivalent for any internal preneighbourhood space (X, μ) :

• (X, μ) is Hausdorff.

Theorem (see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Theorem 7.3)

The following are equivalent for any internal preneighbourhood space (X, μ) :

- (X, μ) is Hausdorff.
- The diagonal morphism $(X,\mu) \xrightarrow{d_X=(1_X,1_X)} (X \times X, \mu \times \mu)$ is a proper morphism.

Theorem (see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Theorem 7.3)

The following are equivalent for any internal preneighbourhood space (X, μ) :

- (X, μ) is Hausdorff.
- The diagonal morphism $(X, \mu) \xrightarrow{d_X = (1_X, 1_X)} (X \times X, \mu \times \mu)$ is a proper morphism.
- Every preneighbourhood morphism with (X, μ) as domain is separated.

Theorem (see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Theorem 7.3)

The following are equivalent for any internal preneighbourhood space (X, μ) :

- (X, μ) is Hausdorff.
- The diagonal morphism $(X,\mu) \xrightarrow{d_X=(1_X,1_X)} (X \times X, \mu \times \mu)$ is a proper morphism.
- Every preneighbourhood morphism with (X, μ) as domain is separated.
- There exists a separated preneighbourhood morphism with domain (X, μ) and codomain a Hausdorff preneighbourhood space (Y, ϕ) .

Theorem (see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Theorem 7.3)

The following are equivalent for any internal preneighbourhood space (X, μ) :

- (X, μ) is Hausdorff.
- The diagonal morphism $(X,\mu) \xrightarrow{d_X=(1_X,1_X)} (X \times X, \mu \times \mu)$ is a proper morphism.
- Every preneighbourhood morphism with (X, μ) as domain is separated.
- There exists a separated preneighbourhood morphism with domain (X, μ) and codomain a Hausdorff preneighbourhood space (Y, ϕ) .
- If $(X, \mu) \xrightarrow{f} (Y, \phi)$ is a proper morphism stably continuously in E then (Y, ϕ) is Hausdorff.

Theorem (see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Theorem 7.3)

The following are equivalent for any internal preneighbourhood space (X, μ) :

- (X, μ) is Hausdorff.
- The diagonal morphism $(X,\mu) \xrightarrow{d_X=(1_X,1_X)} (X \times X, \mu \times \mu)$ is a proper morphism.
- Every preneighbourhood morphism with (X, μ) as domain is separated.
- There exists a separated preneighbourhood morphism with domain (X, μ) and codomain a Hausdorff preneighbourhood space (Y, ϕ) .
- If $(X, \mu) \xrightarrow{f} (Y, \phi)$ is a proper morphism stably continuously in E then (Y, ϕ) is Hausdorff.
- If $(X \times Y, \mu \times \phi) \xrightarrow{p_2} (Y, \phi)$ is the product projection then p_2 is separated.

Theorem (see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Theorem 7.3)

The following are equivalent for any internal preneighbourhood space (X, μ) :

- (X, μ) is Hausdorff.
- The diagonal morphism $(X,\mu) \xrightarrow{d_X=(1_X,1_X)} (X \times X, \mu \times \mu)$ is a proper morphism.
- Every preneighbourhood morphism with (X, μ) as domain is separated.
- There exists a separated preneighbourhood morphism with domain (X, μ) and codomain a Hausdorff preneighbourhood space (Y, ϕ) .
- If $(X, \mu) \xrightarrow{f} (Y, \phi)$ is a proper morphism stably continuously in E then (Y, ϕ) is Hausdorff.
- If $(X \times Y, \mu \times \phi) \xrightarrow{p_2} (Y, \phi)$ is the product projection then p_2 is separated.
- The product internal preneighbourhood space $(X \times Y, \mu \times \phi)$ is Hausdorff whenever (Y, ϕ) is Hausdorff.

Theorem (see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Theorem 7.3)

The following are equivalent for any internal preneighbourhood space (X, μ) :

- (X, μ) is Hausdorff.
- The diagonal morphism $(X,\mu) \xrightarrow{d_X=(1_X,1_X)} (X \times X, \mu \times \mu)$ is a proper morphism.
- Every preneighbourhood morphism with (X, μ) as domain is separated.
- There exists a separated preneighbourhood morphism with domain (X, μ) and codomain a Hausdorff preneighbourhood space (Y, ϕ) .
- If $(X, \mu) \xrightarrow{f} (Y, \phi)$ is a proper morphism stably continuously in E then (Y, ϕ) is Hausdorff.
- If $(X \times Y, \mu \times \phi) \xrightarrow{p_2} (Y, \phi)$ is the product projection then p_2 is separated.
- The product internal preneighbourhood space $(X \times Y, \mu \times \phi)$ is Hausdorff whenever (Y, ϕ) is Hausdorff.
- If $(E, (\psi|_{E})) \xrightarrow{e} (Z, \psi) \xrightarrow{f} (X, \mu)$ is an equaliser diagram then e is a proper morphism.

Theorem (see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Theorem 7.3)

The following are equivalent for any internal preneighbourhood space (X, μ) :

- (X, μ) is Hausdorff.
- The diagonal morphism $(X,\mu) \xrightarrow{d_X=(1_X,1_X)} (X \times X, \mu \times \mu)$ is a proper morphism.
- Every preneighbourhood morphism with (X, μ) as domain is separated.
- There exists a separated preneighbourhood morphism with domain (X, μ) and codomain a Hausdorff preneighbourhood space (Y, ϕ) .
- If $(X, \mu) \xrightarrow{f} (Y, \phi)$ is a proper morphism stably continuously in E then (Y, ϕ) is Hausdorff.
- If $(X \times Y, \mu \times \phi) \xrightarrow{p_2} (Y, \phi)$ is the product projection then p_2 is separated.
- The product internal preneighbourhood space $(X \times Y, \mu \times \phi)$ is Hausdorff whenever (Y, ϕ) is Hausdorff.
- If $(E, (\psi|_{E})) \xrightarrow{e} (Z, \psi) \xrightarrow{f} (X, \mu)$ is an equaliser diagram then e is a proper morphism.

Compare similar characterisations of Hausdorffness Clementino, Giuli, and Tholen, "A functional approach to general topology", especially where *continuous* condition is automatic.

Haus[A] is the full subcategory of Hausdorff preneighbourhood spaces.

ullet Haus[A] is finitely complete, closed under subobjects and images of morphisms stably continuously in E.

see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Corollary 7.4

- Haus [A] is finitely complete, closed under subobjects and images of morphisms stably continuously in E.
- see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Corollary 7.4
- In an extensive context with finite sum of closed morphisms closed, Haus[A] is closed under finite sums if and only if $(1+1, \nabla_1 + \nabla_1)$ is Hausdorff.
- see Ghosh, "Internal neighbourhood structures III: Finite sum of subobjects", Theorem 10.1

 A category with finite sums is extensive if the sum functor $(\mathbb{A}\downarrow A)\times (\mathbb{A}\downarrow B)\xrightarrow{+} (\mathbb{A}\downarrow A+B)$ is an equivalence of categories (see Carboni, Lack, and Walters, "Introduction to extensive and distributive categories", for details...). In short, these are precisely categories where sums behave well with pullbacks.

- A category with finite sums is extensive if the sum functor
- $(\mathbb{A} \downarrow A) \times (\mathbb{A} \downarrow B) \xrightarrow{+} (\mathbb{A} \downarrow A + B)$ is an equivalence of categories (see Carboni, Lack, and Walters, "Introduction to extensive and distributive categories", for details...). In short, these are precisely categories where sums behave well with pullbacks.
- In an extensive context, a finite sum of admissible subobjects is an admissible subobject if and only if the monomorphisms in E between finite sums are stable under pullbacks along coproduct injections.
- see Ghosh, "Internal neighbourhood structures III: Finite sum of subobjects", Theorem 4.1

- A category with finite sums is extensive if the sum functor
- $(\mathbb{A}\downarrow A)\times (\mathbb{A}\downarrow B)\xrightarrow{+} (\mathbb{A}\downarrow A+B)$ is an equivalence of categories (see Carboni, Lack, and Walters, "Introduction to extensive and distributive categories", for details...). In short, these are precisely categories where sums behave well with pullbacks.
- In an extensive context, a finite sum of admissible subobjects is an admissible subobject if and only if the monomorphisms in E between finite sums are stable under pullbacks along coproduct injections.

see Ghosh, "Internal neighbourhood structures III: Finite sum of subobjects", Theorem 4.1

- In an extensive context the following statements are equivalent:
- (a) Every finite sum of closed embeddings is a closed embedding.
- (b) Every finite sum of admissible subobjects is an admissible subobject and each coproduct injection is a closed embedding.
- (c) Each *dense* morphism between finite sums is stable under pullbacks along coproduct injections.

In particular, in an extensive context in which finite sum of admissible subobjects is admissible, a finite sum of closed embeddings is a closed embedding if and only if the coproduct injections are closed.

see ibid., Theorem 5.1, Corollary 5.2

Haus[A] is the full subcategory of Hausdorff preneighbourhood spaces.

- Haus [A] is finitely complete, closed under subobjects and images of morphisms stably continuously in E.
- see Ghosh, "Internal neighbourhood structures II: Closure and Closed Morphisms", Corollary 7.4
- In an extensive context with finite sum of closed morphisms closed, Haus[A] is closed under finite sums if and only if $(1+1, \nabla_1 + \nabla_1)$ is Hausdorff.
- see Ghosh, "Internal neighbourhood structures III: Finite sum of subobjects", Theorem 10.1

Theorem (see Ghosh, "Internal neighbourhood structures IV: Internal Hausdorff Spaces", Theorem 3.2)

Haus[A] is (regular epi)-reflective subcategory of pNbd[A], provided the product projections are in E and every morphism reflects zero.

Theorem (see Ghosh, "Internal neighbourhood structures IV: Internal Hausdorff Spaces", Theorem 3.2)

Haus[A] is (regular epi)-reflective subcategory of pNbd[A], provided the product projections are in E and every morphism reflects zero. Sketch of proof.

Theorem (see Ghosh, "Internal neighbourhood structures IV: Internal Hausdorff Spaces", Theorem 3.2)

 $\mathtt{Haus}[\mathbb{A}]$ is (regular epi)-reflective subcategory of $\mathtt{pNbd}[\mathbb{A}]$, provided the product projections are in E and every morphism reflects zero.

Sketch of proof.

Let (X, μ) be an internal preneighbourhood space, $d = \operatorname{cl}_{\mu \times \mu} d_X$ and define:

Theorem (see Ghosh, "Internal neighbourhood structures IV: Internal Hausdorff Spaces", Theorem 3.2)

 ${\tt Haus}[{\mathbb A}]$ is (regular epi)-reflective subcategory of ${\tt pNbd}[{\mathbb A}]$, provided the product projections are in E and every morphism reflects zero.

Sketch of proof.

Let (X, μ) be an internal preneighbourhood space, $d = \operatorname{cl}_{\mu \times \mu} d_X$ and define:

$$(r_1, r_2) = \bigvee \{(u_1, u_2) \in \operatorname{Sub}_{\mathsf{M}}(X \times X) : f \circ u_1 = f \circ u_2,$$

whenever $(X, \mu) \xrightarrow{f} (Y, \phi)$ with (Y, ϕ) Hausdorff $\}$.

Theorem (see Ghosh, "Internal neighbourhood structures IV: Internal Hausdorff Spaces", Theorem 3.2)

 ${\tt Haus}[{\mathbb A}]$ is (regular epi)-reflective subcategory of ${\tt pNbd}[{\mathbb A}]$, provided the product projections are in E and every morphism reflects zero.

Sketch of proof.

Let (X, μ) be an internal preneighbourhood space, $d = \operatorname{cl}_{\mu \times \mu} d_X$ and define:

$$(r_1, r_2) = \bigvee \{(u_1, u_2) \in \operatorname{Sub}_{\mathsf{M}}(X \times X) : f \circ u_1 = f \circ u_2,$$

whenever
$$(X, \mu) \xrightarrow{f} (Y, \phi)$$
 with (Y, ϕ) Hausdorff $\}$.

Let
$$X \xrightarrow{\mathfrak{h}} \left[\frac{X}{R}\right]$$
 be the coequaliser of the pair $R \xrightarrow{r_1} X$.

Theorem (see Ghosh, "Internal neighbourhood structures IV: Internal Hausdorff Spaces", Theorem 3.2)

 $\mathtt{Haus}[\mathbb{A}]$ is (regular epi)-reflective subcategory of $\mathtt{pNbd}[\mathbb{A}]$, provided the product projections are in E and every morphism reflects zero.

Sketch of proof.

Let (X, μ) be an internal preneighbourhood space, $d = \operatorname{cl}_{\mu \times \mu} d_X$ and define:

$$(r_1, r_2) = \bigvee \left\{ (u_1, u_2) \in \operatorname{Sub}_{\mathsf{M}}(X \times X) : f \circ u_1 = f \circ u_2, \right.$$
 whenever $(X, \mu) \xrightarrow{f} (Y, \phi)$ with (Y, ϕ) Hausdorff $\left. \right\}$.

Let $X \xrightarrow{\mathfrak{h}} \left[\frac{X}{R}\right]$ be the coequaliser of the pair $R \xrightarrow{r_1} X$. Take the largest

preneighbourhood system $\mu_{\mathfrak{h}}$ on $\left[\frac{X}{R}\right]$ such that \mathfrak{h} is a preneighbourhood morphism,

Theorem (see Ghosh, "Internal neighbourhood structures IV: Internal Hausdorff Spaces", Theorem 3.2)

 ${\tt Haus}[{\mathbb A}]$ is (regular epi)-reflective subcategory of ${\tt pNbd}[{\mathbb A}]$, provided the product projections are in E and every morphism reflects zero.

Sketch of proof.

Let (X, μ) be an internal preneighbourhood space, $d = \operatorname{cl}_{\mu \times \mu} d_X$ and define:

$$(r_1,r_2)=\bigvee\Big\{(u_1,u_2)\in\operatorname{Sub}_{\mathsf{M}}(X\times X):f\circ u_1=f\circ u_2,$$

whenever
$$(X, \mu) \xrightarrow{f} (Y, \phi)$$
 with (Y, ϕ) Hausdorff $\}$.

Let $X \xrightarrow{\mathfrak{h}} \left[\frac{X}{R} \right]$ be the coequaliser of the pair $R \xrightarrow[r_2]{r_1} X$. Take the largest preneighbourhood system $\mu_{\mathfrak{h}}$ on $\left[\frac{X}{R} \right]$ such that \mathfrak{h} is a preneighbourhood morphism.

Then: $\left(\begin{bmatrix} \underline{X} \\ R \end{bmatrix}, \mu_{\mathfrak{h}}\right)$ is a Hausdorff preneighbourhood space, $(X, \mu) \xrightarrow{\mathfrak{h}} \left(\begin{bmatrix} \underline{X} \\ R \end{bmatrix}, \mu_{\mathfrak{h}}\right)$ the required reflection.

Theorem (see Ghosh, "Internal neighbourhood structures IV: Internal Hausdorff Spaces", Theorem 3.2)

 ${\tt Haus}[{\mathbb A}]$ is (regular epi)-reflective subcategory of ${\tt pNbd}[{\mathbb A}]$, provided the product projections are in E and every morphism reflects zero.

Remarks on the proof:

Theorem (see Ghosh, "Internal neighbourhood structures IV: Internal Hausdorff Spaces", Theorem 3.2)

Haus[A] is (regular epi)-reflective subcategory of pNbd[A], provided the product projections are in E and every morphism reflects zero.

Remarks on the proof:

• Assumption of every morphism reflecting zero simplifies the description of Hausdorffness — it is enough to check d_X is closed.

Theorem (see Ghosh, "Internal neighbourhood structures IV: Internal Hausdorff Spaces", Theorem 3.2)

 $\mathtt{Haus}[\mathbb{A}]$ is (regular epi)-reflective subcategory of $\mathtt{pNbd}[\mathbb{A}]$, provided the product projections are in E and every morphism reflects zero.

$$(r_1, r_2) = \bigvee \left\{ (u_1, u_2) \in \operatorname{Sub}_{\mathsf{M}}(X \times X) : f \circ u_1 = f \circ u_2, \right.$$
 whenever $(X, \mu) \xrightarrow{f} (Y, \phi)$ with (Y, ϕ) Hausdorff $\left. \right\}$.

Remarks on the proof:

- Assumption of every morphism reflecting zero simplifies the description of Hausdorffness
- it is enough to check d_X is closed.
- The subobject lattice $Sub_M(X)$ is *large*, and hence has *large* meets/joins. Extending the set theoretic universe accommodating *conglomerates* as in Adámek, Herrlich, and Strecker, *Abstract and concrete categories* explains the (possibly large) join for the subobject (r_1, r_2) .

Theorem (see Ghosh, "Internal neighbourhood structures IV: Internal Hausdorff Spaces", Theorem 3.2)

Haus[A] is (regular epi)-reflective subcategory of pNbd[A], provided the product projections are in E and every morphism reflects zero.

Remarks on the proof:

- Assumption of every morphism reflecting zero simplifies the description of Hausdorffness it is enough to check d_X is closed.
- The subobject lattice $Sub_M(X)$ is *large*, and hence has *large* meets/joins. Extending the set theoretic universe accommodating *conglomerates* as in Adámek, Herrlich, and Strecker, *Abstract and concrete categories* explains the (possibly large) join for the subobject (r_1, r_2) .
- Since $pNbd[A] \xrightarrow{\downarrow \downarrow} Haus[A]$ and pNbd[A] is topological over A, Haus[A] is as (co)complete as the category A.

In what follows the Hausdorff reflection functor is:

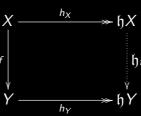
$$\begin{array}{ccc} \mathfrak{h}: & \operatorname{pNbd}[\mathbb{A}] \longrightarrow \operatorname{Haus}[\mathbb{A}] \\ & & (X,\mu) \longmapsto \left(\mathfrak{h}X,\mu_{\mathfrak{h}}\right) \\ & & \downarrow \downarrow & \downarrow & \downarrow \\ & & (Y,\phi) \longmapsto \left(\mathfrak{h}Y,\phi_{\mathfrak{h}}\right) \end{array}$$

Hausdorff reflection

In what follows the Hausdorff reflection functor is:

$$\begin{array}{ccc} \mathfrak{h}: & \operatorname{pNbd}[\mathbb{A}] \longrightarrow \operatorname{Haus}[\mathbb{A}] \\ & & (X,\mu) \longmapsto \left(\mathfrak{h}X,\mu_{\mathfrak{h}}\right) \\ & & \downarrow \downarrow & \downarrow \mathfrak{h}f \\ & & (Y,\phi) \longmapsto \left(\mathfrak{h}Y,\phi_{\mathfrak{h}}\right) \end{array} \right\}$$

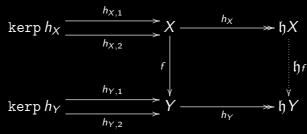
where $(\mathfrak{h}X, \mu_{\mathfrak{h}}) \xrightarrow{\mathfrak{h}f} (\mathfrak{h}Y, \phi_{\mathfrak{h}})$ is the unique preneighbourhood morphism such that the diagram:



commutes.

Hausdorff reflection

where $(\mathfrak{h}X, \mu_{\mathfrak{h}}) \xrightarrow{\mathfrak{h}^{\mathfrak{f}}} (\mathfrak{h}Y, \phi_{\mathfrak{h}})$ is the unique preneighbourhood morphism such that the diagram:



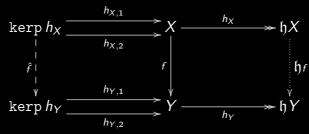
commutes.

Since h_X is a regular epimorphism it is the coequaliser of its kernel pair as shown on the left.

Frame 13 of 18

Hausdorff reflection

where $(\mathfrak{h}X, \mu_{\mathfrak{h}}) \xrightarrow{\mathfrak{h}^f} (\mathfrak{h}Y, \phi_{\mathfrak{h}})$ is the unique preneighbourhood morphism such that the diagram:



commutes.

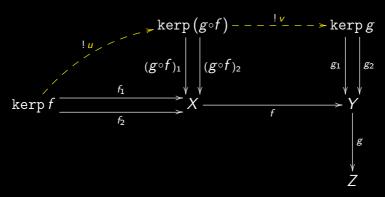
Since h_X is a regular epimorphism it is the coequaliser of its kernel pair as shown on the left. Since $h_Y \circ f \circ h_{X,1} = h_Y \circ f \circ h_{X,2}$, there exists the unique morphism \hat{f} such that the squares on the left reasonably commutes, i.e., $f \circ h_{X,i} = h_{Y,i} \circ \hat{f}$, i = 1, 2.

Frame 13 of 18

Theorem (see Ghosh, "Internal neighbourhood structures IV: Internal Hausdorff Spaces", Theorem 4.1)

In a reflecting zero context with each finite product projection in E, if $(X, \mu) \xrightarrow{f} (Y, \phi)$ is a preneighbourhood morphism with codomain a Hausdorff preneighbourhood space then $\ker f$ is closed in $(X \times X, \mu \times \mu)$.

In particular, for the Hausdorff reflection $(X, \mu) \xrightarrow{h_X} (\mathfrak{h}X, \mu_{\mathfrak{h}})$, $\ker h_X$ is the smallest internal equivalence relation on X such that its quotient preneighbourhood space is Hausdorff.



Evidently, kerp $g \leq d_Y \Leftrightarrow g_1 = g_2 \Rightarrow u \in \operatorname{Iso}(\mathbb{A})$.

If v is an epimorphism then $u \in \mathrm{Iso}(\mathbb{A}) \Rightarrow \ker g \leq d_{Y}$.

Proof:

$$g_1 \circ v = f \circ f_1 \circ u^{-1} = f \circ f_2 \circ u^{-1} = g_2 \circ v$$
 completes the proof.

Transfinite Construction:

Let (X, μ) be an internal preneighbourhood space.

• Step 1:

Take $q_0 = 1_X$.

Then: $kerp q_0 = d_X \leq kerp h_X$.

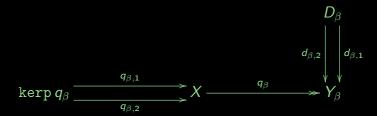
• Step 2:

Assume α is a non-limit ordinal, $\alpha = \beta + 1$ and for each $\gamma \leq \beta$, q_{γ} is defined, $\ker q_{\gamma} \leq \ker p_{X}$ and $\gamma \leq \gamma' \leq \beta \Rightarrow \ker q_{\gamma} \leq \ker p_{\gamma'}$. Consider the diagram:

$$\ker q_{eta} \xrightarrow{q_{eta,1}} X \xrightarrow{q_{eta}} Y_{eta}$$

• Step 2:

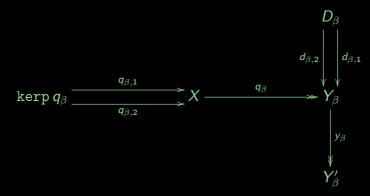
Assume α is a non-limit ordinal, $\alpha = \beta + 1$ and for each $\gamma \leq \beta$, q_{γ} is defined, $\ker q_{\gamma} \leq \ker p h_{\chi}$ and $\gamma \leq \gamma' \leq \beta \Rightarrow \ker p q_{\gamma} \leq \ker p q_{\gamma'}$. Consider the diagram:



Take: μ_{β} quotient preneighbourhood system on Y_{β} , $D_{\beta} \xrightarrow[d_{\beta}, 2]{d_{\beta}, 1} Y_{\beta} = \operatorname{cl}_{\mu_{\beta}} d_{Y_{\beta}}$.

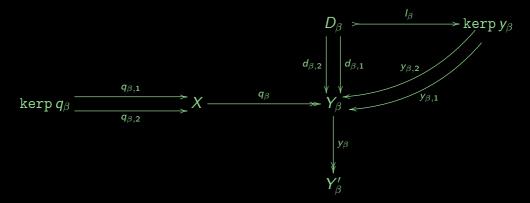
• Step 2:

Assume α is a non-limit ordinal, $\alpha = \beta + 1$ and for each $\gamma \leq \beta$, q_{γ} is defined, $\ker q_{\gamma} \leq \ker p h_{\chi}$ and $\gamma \leq \gamma' \leq \beta \Rightarrow \ker p q_{\gamma} \leq \ker p q_{\gamma'}$. Consider the diagram:



• Step 2:

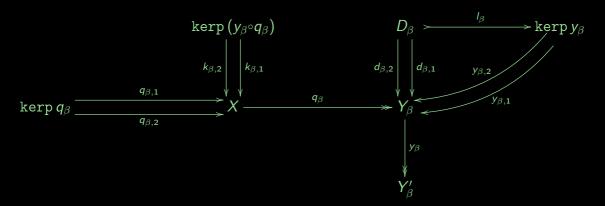
Assume α is a non-limit ordinal, $\alpha = \beta + 1$ and for each $\gamma \leq \beta$, q_{γ} is defined, $\ker q_{\gamma} \leq \ker p h_{\chi}$ and $\gamma \leq \gamma' \leq \beta \Rightarrow \ker p q_{\gamma} \leq \ker p q_{\gamma'}$. Consider the diagram:



Partha Pratim Ghosh Frame 14 of 18:..

• Step 2:

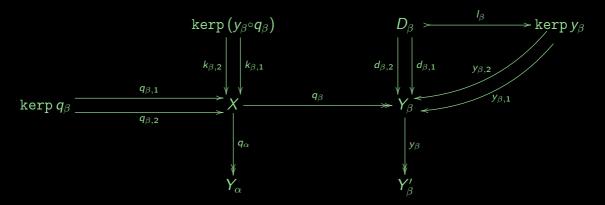
Assume α is a non-limit ordinal, $\alpha = \beta + 1$ and for each $\gamma \leq \beta$, q_{γ} is defined, $\ker q_{\gamma} \leq \ker p h_X$ and $\gamma \leq \gamma' \leq \beta \Rightarrow \ker p q_{\gamma} \leq \ker p q_{\gamma'}$. Consider the diagram:



Frame 14 of 18

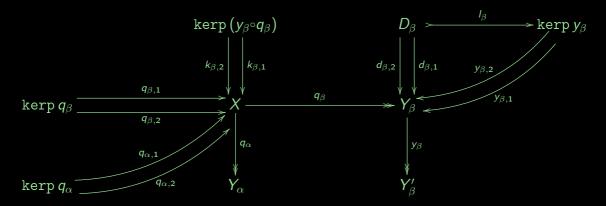
• Step 2:

Assume α is a non-limit ordinal, $\alpha = \beta + 1$ and for each $\gamma \leq \beta$, q_{γ} is defined, $\ker q_{\gamma} \leq \ker p h_{\chi}$ and $\gamma \leq \gamma' \leq \beta \Rightarrow \ker p q_{\gamma} \leq \ker p q_{\gamma'}$. Consider the diagram:



• Step 2:

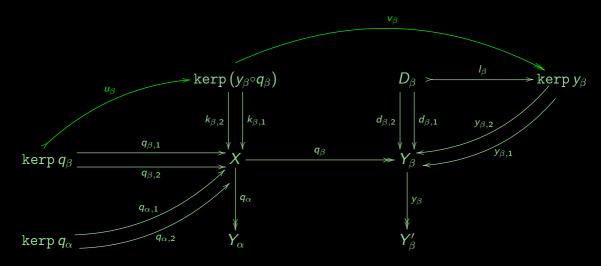
Assume α is a non-limit ordinal, $\alpha = \beta + 1$ and for each $\gamma \leq \beta$, q_{γ} is defined, $\ker q_{\gamma} \leq \ker p_{X}$ and $\gamma \leq \gamma' \leq \beta \Rightarrow \ker q_{\gamma} \leq \ker p_{\gamma'}$. Consider the diagram:



Partha Pratim Ghosh Frame 14 of 18:

• Step 2:

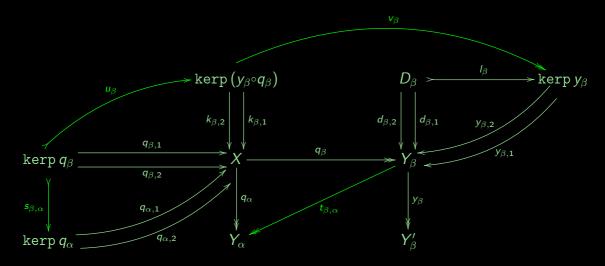
Assume α is a non-limit ordinal, $\alpha = \beta + 1$ and for each $\gamma \leq \beta$, q_{γ} is defined, $\ker q_{\gamma} \leq \ker p_{X}$ and $\gamma \leq \gamma' \leq \beta \Rightarrow \ker q_{\gamma} \leq \ker p_{\gamma'}$. Consider the diagram:



Partha Pratim Ghosh Frame 14 of 18:...

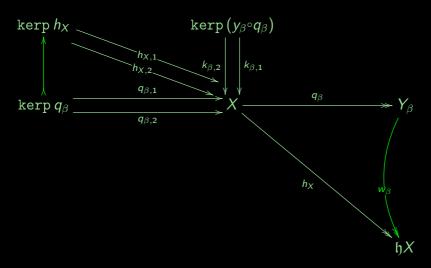
• Step 2:

Assume α is a non-limit ordinal, $\alpha = \beta + 1$ and for each $\gamma \leq \beta$, q_{γ} is defined, $\ker q_{\gamma} \leq \ker p_{X}$ and $\gamma \leq \gamma' \leq \beta \Rightarrow \ker q_{\gamma} \leq \ker p_{\gamma'}$. Consider the diagram:



• Step 2:

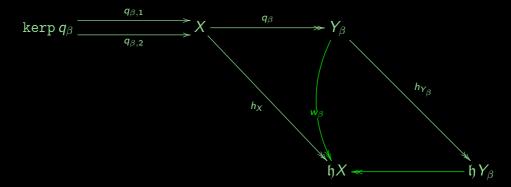
Assume α is a non-limit ordinal, $\alpha = \beta + 1$ and for each $\gamma \leq \beta$, q_{γ} is defined, $\ker q_{\gamma} \leq \ker p h_{\chi}$ and $\gamma \leq \gamma' \leq \beta \Rightarrow \ker p q_{\gamma} \leq \ker p q_{\gamma'}$. Consider the diagram:



Since kerp $q_{\beta} \leq \text{kerp } h_X$ there exists the morphism w_{β} such that $h_X = w_{\beta} \circ q_{\beta}$.

• Step 2:

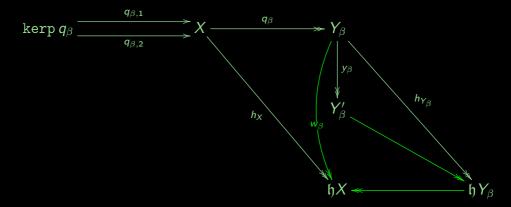
Assume α is a non-limit ordinal, $\alpha = \beta + 1$ and for each $\gamma \leq \beta$, q_{γ} is defined, $\ker q_{\gamma} \leq \ker p_{X}$ and $\gamma \leq \gamma' \leq \beta \Rightarrow \ker q_{\gamma} \leq \ker p_{\gamma'}$. Consider the diagram:



Since $\mathfrak{h}X$ is Hausdorff, w_{β} factors through the Hausdorff reflection $h_{Y_{\beta}}$.

• Step 2:

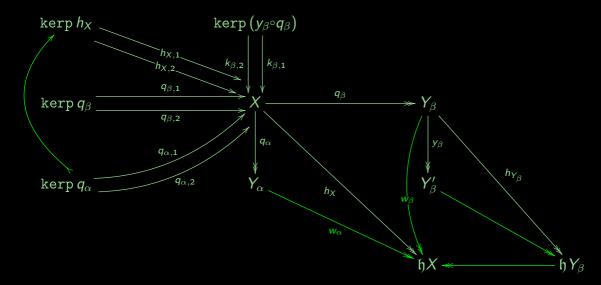
Assume α is a non-limit ordinal, $\alpha = \beta + 1$ and for each $\gamma \leq \beta$, q_{γ} is defined, $\ker q_{\gamma} \leq \ker p_{X}$ and $\gamma \leq \gamma' \leq \beta \Rightarrow \ker q_{\gamma} \leq \ker p_{\gamma'}$. Consider the diagram:



Since $(d_{\beta,1}, d_{\beta,2}) \leq \ker h_{Y_{\beta}}$, $h_{Y_{\beta}}$ factors through the coequaliser y_{β} .

• Step 2:

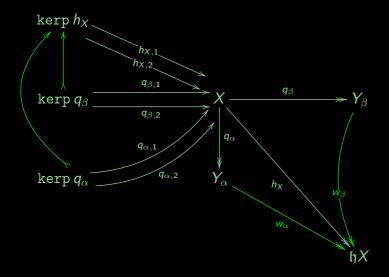
Assume α is a non-limit ordinal, $\alpha = \beta + 1$ and for each $\gamma \leq \beta$, q_{γ} is defined, $\ker q_{\gamma} \leq \ker p h_{\chi}$ and $\gamma \leq \gamma' \leq \beta \Rightarrow \ker p q_{\gamma} \leq \ker p q_{\gamma'}$. Consider the diagram:



Since w_{β} factors through y_{β} , $h_X \circ k_{\beta,1} = w_{\beta} \circ q_{\beta} \circ k_{\beta,1} = w_{\beta} \circ q_{\beta} \circ k_{\beta,2} = h_X \circ k_{\beta_2}$.

• Step 2:

Assume α is a non-limit ordinal, $\alpha = \beta + 1$ and for each $\gamma \leq \beta$, q_{γ} is defined, $\ker q_{\gamma} \leq \ker p_{X}$ and $\gamma \leq \gamma' \leq \beta \Rightarrow \ker q_{\gamma} \leq \ker p_{\gamma'}$. Consider the diagram:



Hence kerp $q_{\alpha} \leq \ker h_X$.

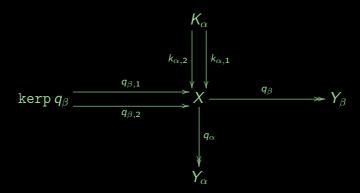
• Step 3:

Assume α is a limit ordinal and for each $\beta < \alpha$, q_{β} is defined, $\ker q_{\beta} \leq \ker p h_{X}$ and $\gamma < \gamma' < \alpha \Rightarrow \ker p q_{\gamma} \leq \ker p q_{\gamma'}$. Consider the diagram:

$$\ker q_{eta} \xrightarrow{q_{eta,1}} X \xrightarrow{q_{eta}} X$$

• Step 3:

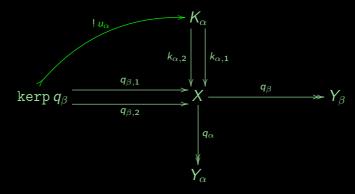
Assume α is a limit ordinal and for each $\beta < \alpha$, q_{β} is defined, $\ker q_{\beta} \leq \ker p h_{X}$ and $\gamma < \gamma' < \alpha \Rightarrow \ker p q_{\gamma} \leq \ker p q_{\gamma'}$. Consider the diagram:



Take $K_{\alpha} \xrightarrow[k_{\alpha,2}]{k_{\alpha,2}} X = \bigvee_{\beta < \alpha} \ker q_{\beta}$, q_{α} is the coequaliser of the pair $(k_{\alpha,1}, k_{\alpha,2})$, μ_{α} is the quotient preneighbourhood system on Y_{α} .

• Step 3:

Assume α is a limit ordinal and for each $\beta < \alpha$, q_{β} is defined, kerp $q_{\beta} \leq \text{kerp } h_X$ and $\gamma < \gamma' < \alpha \Rightarrow \ker q_{\gamma} \leq \ker q_{\gamma'}$. Consider the diagram:

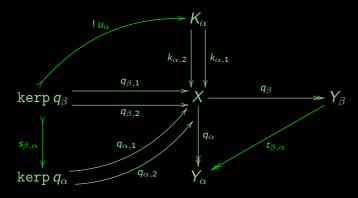


Since kerp $q_{\beta} \leq K_{\alpha}$, there exists the morphism u_{α} such that $q_{\beta,i} = k_{\alpha,i} \circ u_{\alpha}$ for each $\beta < \alpha$.

Frame 14 of 18

• Step 3:

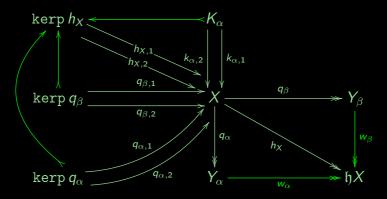
Assume α is a limit ordinal and for each $\beta < \alpha$, q_{β} is defined, $\ker q_{\beta} \leq \ker p h_X$ and $\gamma < \gamma' < \alpha \Rightarrow \ker p q_{\gamma} \leq \ker p q_{\gamma'}$. Consider the diagram:



Hence there exists the unique morphism $s_{\beta,\alpha}$ and $t_{\beta,\alpha}$ such that $q_{\beta,i}=q_{\alpha,i}\circ s_{\beta,\alpha}$ and $q_{\alpha}=t_{\beta,\alpha}\circ q_{\beta}$ for each $\beta<\alpha$ and i=1,2.

• Step 3:

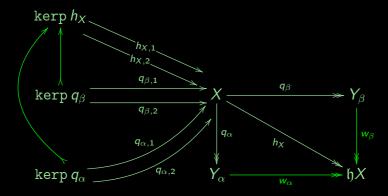
Assume α is a limit ordinal and for each $\beta < \alpha$, q_{β} is defined, $\ker q_{\beta} \leq \ker p h_{X}$ and $\gamma < \gamma' < \alpha \Rightarrow \ker p q_{\gamma} \leq \ker p q_{\gamma'}$. Consider the diagram:



Since $\ker q_{\beta} \leq \ker p h_X$ there exists the morphism w_{β} such that $h_X = w_{\beta} \circ q_{\beta}$. Hence $(k_{\alpha,1}, k_{\alpha,2}) = \bigvee_{\beta < \alpha} \ker p q_{\beta} \leq \ker p h_X$.

• Step 3:

Assume α is a limit ordinal and for each $\beta < \alpha$, q_{β} is defined, $\ker q_{\beta} \leq \ker p h_{X}$ and $\gamma < \gamma' < \alpha \Rightarrow \ker p q_{\gamma} \leq \ker p q_{\gamma'}$. Consider the diagram:



Hence kerp $q_{\alpha} \leq \ker h_X$.

Transfinite Construction:

Let (X, μ) be an internal preneighbourhood space.

There exists a transfinite sequence $\langle (X, \mu) \xrightarrow{q_{\alpha}} (Y_{\alpha}, \mu_{\alpha}) : \alpha \text{ is an ordinal} \rangle$ such that:

- (a) μ_{α} is the largest preneighbourhood system on Y_{α} such that q_{α} is a preneighbourhood morphism, and
- (b) $0 \le \beta \le \alpha \Rightarrow \text{kerp } q_{\beta} \le \text{kerp } q_{\alpha} \le \text{kerp } h_{X}$.

Theorem (see Ghosh, "Internal neighbourhood structures IV: Internal Hausdorff Spaces", Theorem 4.2)

In every reflecting zero context with finite product projections in E and stable regular epimorphisms, there exists a transfinite construction of the Hausdorff reflection of an internal preneighbourhood space (X, μ) for which $\mathrm{Sub}_{\mathsf{M}}(X \times X)$ is a small set.

Sketch of proof:

Take the transfinite sequence $\langle (X, \mu) \xrightarrow{q_{\alpha}} (Y_{\alpha}, \mu_{\alpha}) : \alpha \text{ is an ordinal} \rangle$.

Since $\mathrm{Sub}_{\mathsf{M}}(X \times X)$ is a small set, there exists an ordinal β such that $\ker q_{\beta} = \ker q_{\beta+1}$.

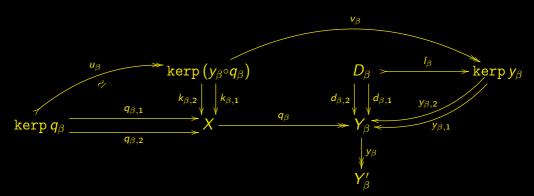
Hence u_{β} is an isomorphism.

Sketch of proof:

Take the transfinite sequence $\langle (X, \mu) \xrightarrow{q_{\alpha}} (Y_{\alpha}, \mu_{\alpha}) : \alpha \text{ is an ordinal} \rangle$.

Since $\operatorname{Sub}_{\mathsf{M}}(X \times X)$ is a small set, there exists an ordinal β such that $\ker q_{\beta} = \ker q_{\beta+1}$. Hence u_{β} is an isomorphism.

Since $(k_{\beta,1}, k_{\beta,2})$ is the pullback of $(y_{\beta,1}, y_{\beta,2})$ along q_{β} , regularity implies v_{β} is an epimorphism.



Hence $y_{\beta,1}=y_{\beta,2}$, implying $(d_{\beta,1},d_{\beta,2})=\operatorname{cl}_{\mu_{\beta}}d_{Y_{\beta}}\leq \ker y_{\beta}\leq d_{Y_{\beta}}$, i.e., (Y_{β},μ_{β}) is Hausdorff.

Hence $\operatorname{kerp} h_X \leq \operatorname{kerp} q_\beta \leq \operatorname{kerp} h_X$ implying $(Y_\beta, \mu_\beta) = (\mathfrak{h} X, \mu_\mathfrak{h}).$

Theorem (see Ghosh, "Internal neighbourhood structures IV: Internal Hausdorff Spaces", Theorem 4.2)

In every reflecting zero context with finite product projections in E and stable regular epimorphisms, there exists a transfinite construction of the Hausdorff reflection of an internal preneighbourhood space (X, μ) for which $\mathrm{Sub}_{M}(X \times X)$ is a small set.

This reminds us of a similar proof of the Hausdorff reflection of topological spaces, see, for example Munster, "Hausdorffization and homotopy"; Munster, "The Hausdorff Quotient"

References I

- Adámek, J., H. Herrlich, and G. E. Strecker. *Abstract and concrete categories*. Pure and Applied Mathematics (New York). The joy of cats, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1990, pp. xiv+482. ISBN: 0-471-60922-6. MR1051419, rev. by Saunders Mac Lane (cit. on pp. 106, 107).
- Bourn, D. "3 × 3 lemma and protomodularity". In: *J. Algebra* 236.2 (2001), pp. 778–795. ISSN: 0021-8693. DOI: 10.1006/jabr.2000.8526. MR1813501, rev. by R. H. Street (cit. on pp. 43–45).
- Carboni, A., S. Lack, and R. F. C. Walters. "Introduction to extensive and distributive categories". In: *J. Pure Appl. Algebra* 84.2 (1993), pp. 145–158. ISSN: 0022-4049. DOI: 10.1016/0022-4049(93)90035-R. MR1201048, rev. by R. H. Street (cit. on pp. 93–95).
- Clementino, M. M., E. Giuli, and W. Tholen. "A functional approach to general topology". In: *Categorical foundations*. Vol. 97. Encyclopedia Math. Appl. Cambridge Univ. Press, Cambridge, 2004, pp. 103–163. DOI: https://doi.org/10.1017/cbo9781107340985.006. MR2056582 (cit. on pp. 59, 68, 89).
- Dube, T. and O. Ighedo. "Characterising points which make *P*-frames". In: *Topology Appl.* 200 (2016), pp. 146–159. ISSN: 0166-8641. DOI: 10.1016/j.topol.2015.12.017. MR3453411, rev. by Ali Akbar Estaji (cit. on p. 54).

References II

- "More on locales in which every open sublocale is z-embedded". In: Topology Appl. 201 (2016), pp. 110–123. ISSN: 0166-8641. DOI: 10.1016/j.topol.2015.12.030.
 MR3461158, rev. by Mack Zakaria Matlabyana (cit. on p. 54).
- Erné, M. "Prime and maximal ideals of partially ordered sets". In: *Math. Slovaca* 56.1 (2006), pp. 1–22. ISSN: 0139-9918. MR2217576, rev. by Viorica Sofronie-Stokkermans (cit. on p. 49).
- Ghosh, P. P. "Internal neighbourhood structures". In: *Algebra Universalis* 81.2 (2020), Paper No. 12, 53 pages. ISSN: 0002-5240. DOI: 10.1007/s00012-020-0640-2. MR4066491 (cit. on pp. 3–13, 18–29, 54).
- ."Internal neighbourhood structures II: Closure and Closed Morphisms". submitted, available from arXiv site: https://arxiv.org/abs/2004.06238. Feb. 2021 (cit. on pp. 4–7, 30–35, 38, 39, 41, 42, 46, 47, 50–61, 72–75, 80–89, 91, 92, 96).
- ."Internal neighbourhood structures III: Finite sum of subobjects". submitted, available from: arXiv. Feb. 2021 (cit. on pp. 92, 94–96).
- ."Internal neighbourhood structures IV: Internal Hausdorff Spaces". in preparation (cit. on pp. 97–107, 112, 137, 140).
- Goswami, A. and Z. Janelidze. "On the structure of zero morphisms in a quasi-pointed category". In: *Appl. Categ. Structures* 25.6 (2017), pp. 1037–1043. ISSN: 0927-2852. DOI: 10.1007/s10485-016-9462-y. MR3720399 (cit. on pp. 43–45).

References III

- lberkleid, W. and W. W. McGovern. "A natural equivalence for the category of coherent frames". In: *Algebra Universalis* 62.2-3 (2009), pp. 247–258. ISSN: 0002-5240. DOI: 10.1007/s00012-010-0058-3. MR2661378, rev. by Mojgan Mahmoudi (cit. on p. 15).
- Munster, B. van. "The Hausdorff Quotient". Bachelor's Thesis. MA thesis. University of Leiden, 2014 (cit. on p. 140).
- "Hausdorffization and homotopy". In: *Amer. Math. Monthly* 124.1 (2017), pp. 81–82. ISSN: 0002-9890. DOI: 10.4169/amer.math.monthly.124.1.81. MR3608690 (cit. on p. 140).
- Schubert, Horst. *Topology*. Translated from the German by Siegfried Moran. Allyn and Bacon, Inc., Boston, Mass., 1968, p. 358. MR0226571 (cit. on p. 2).

shrouded path meander...

Thank you...