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Internal Neighbourhood Spaces

Topological Spaces

Definition (Topological Spaces, see Schubert, Topology, §2.3)
A topological space is given by (X , η), where X is a set and X

η−→ FilX is a function
assigning to each x ∈ X a filter ηx (called the neighbourhood filter of x) such that:

U ∈ ηx ⇒ x ∈ U , and
U ∈ ηx ⇒ (∃V ∈ ηx)

(
y ∈ V ⇒ U ∈ ηy

)
.
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Internal Neighbourhood Spaces

Spaces internalised

The notion of a space is now seen inside a large number of categories, see Ghosh, “Internal
neighbourhood structures”.
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Internal Neighbourhood Spaces

Spaces internalised

A context is a category A with the following properties:

(a) A is finitely complete

(b) A has finite coproducts
(c) A has a proper (E,M)-factorisation structure
(d) For each object X of A, the (possibly large) set SubM(X ) of admissible subobjects of X

is a complete lattice.

see Ghosh, “Internal neighbourhood structures”, §2, Ghosh, “Internal neighbourhood
structures II: Closure and Closed Morphisms”, §1
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Internal Neighbourhood Spaces

Spaces internalised
Example (Contexts abound. . . , see Ghosh, “Internal neighbourhood structures”,
Examples in §3)

(a) (FinSet, Surjection, Injection)
(b) (Set, Surjection, Injection)
(c) (Top, Epi, ExtMon)
(d) (Meas, Epi, ExtMon)
(e) (Grp, RegEpi, Mon)
(f) ((Ω,Ξ)-Alg, RegEpi, Mon)
(g) (Loc, Epi, RegMon)
(h) (CRingop, Epi, RegMon)
(i) any topos
(j) any lextensive category
(k) if (A,E,M) be a context then for any object B , then ((A ↓ B), (E ↓ B), (M ↓ B)) is also

a context
(l) (A, Epi(A), ExtMon(A)), where A is a small complete and small cocomplete well powered

category
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Internal Neighbourhood Spaces

Spaces internalised

Definition (Filters)
Given any object X , a filter F on X is a subset of SubM(X ) such that
(a) x ≥ y ∈ F ⇒ x ∈ F , and
(b) x , y ∈ F ⇒ x ∧ y ∈ F

The set of all filters on X is FilX .
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Internal Neighbourhood Spaces

Spaces internalised

FilX is a complete algebraic lattice, with compact elements being

↑ x =
{
p ∈ SubM(X ) : x ≤ p

}
.

FilX is distributive if and only if SubM(X ) is distributive (see Iberkleid and McGovern, “A
natural equivalence for the category of coherent frames”, Theorem 1.2).
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Internal Neighbourhood Spaces

Spaces internalised

The (E,M) factorisation produces the notion of image and preimage of a morphism X
f−→ Y :

M
��

m

��

(f
∣∣
m
)
// // ∃

f
M
��

∃
f
m

��
X

f
// Y

and f −1N
��

f −1n
��

fn // N
��

n

��
X

f
// Y

,

(E,M) factorisation of f ◦m pullback of n along f

∃
f
m image of m under f f −1n preimage of n under f

∃
f
M image of M under f f −1N preimage of N under f

(f
∣∣
m
) restriction of f to m fn corestriction of f to n
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Internal Neighbourhood Spaces

Spaces internalised

The image and preimage assignments for a morphism X
f−→ Y constitute an adjunction

SubM(X )
∃

f //
⊥oo
f −1

SubM(Y ) .
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Internal Neighbourhood Spaces

Spaces internalised
Definition (Neighbourhoods, see Ghosh, “Internal neighbourhood structures”,
Definition 3.1)
Let X be an object of A.

(a) A preneighbourhood system on X is an order preserving function SubM(X )op µ−→ FilX
such that for each x ∈ SubM(X )

p ∈ µ(x)⇒ x ≤ p.

The pair (X , µ) is called an internal preneighbourhood space of A.
(b) A preneighbourhood system µ on X is a weak neighbourhood system if

p ∈ µ(x)⇒ (∃q ∈ µ(x))
(
p ∈ µ(q)

)
.

The pair (X , µ) is called an internal weak neighbourhood space of A.
(c) A weak neighbourhood system µ on X is a neighbourhood system on X if

µ

Å∨
i∈I

pi

ã
=
⋂
i∈I

µ(pi).

The pair (X , µ) is called an internal neighbourhood space of A.
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Internal Neighbourhood Spaces

Spaces internalised

Definition (Morphisms of Neighbourhoods, see Ghosh, “Internal neighbourhood
structures”, Definition 3.39)
Let (X , µ), (Y , φ) be internal preneighbourhood spaces of A and X

f−→ Y be a morphism of
A.

(a) The morphism f is a preneighbourhood morphism, written (X , µ)
f−→ (Y , φ), if for each

y ∈ SubM(Y )
p ∈ φ(y)⇒ f −1p ∈ µ(f −1y).

(b) If (X , µ) and (Y , φ) are internal neighbourhoods of A then a preneighbourhood morphism
(X , µ)

f−→ (Y , φ) is a neighbourhood morphism if for any family
〈
yi : i ∈ I

〉
of admissible

subobjects of Y
f −1
(∨

i∈I yi
)
=
∨
i∈I

f −1yi .
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Internal Neighbourhood Spaces

Spaces internalised

Definition (Categories of Neighbourhoods, see Ghosh, “Internal neighbourhood
structures”, Definition 4.1)
(a) pNbd[A] is the category of all internal preneighbourhood spaces of A and preneighbourhood

morphisms.

(b) wNbd[A] is the category of all internal weak neighbourhood spaces of A and preneighbour-
hood morphisms.

(c) Nbd[A] is the category of all internal neighbourhood spaces of A and neighbourhood
morphisms.
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Internal Neighbourhood Spaces

Spaces internalised

Theorem (Topologicity, see Ghosh, “Internal neighbourhood structures”,
Theorem 4.8)
The categories pNbd[A] and wNbd[A] are topological over A.
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Internal Neighbourhood Spaces

Spaces internalised

Theorem (Topologicity, see Ghosh, “Internal neighbourhood structures”,
Theorem 4.8)
The categories pNbd[A] and wNbd[A] are topological over A.
The category Nbd[A] is topological over A provided preimage for every morphism preserve
joins.
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Closure operator in preneighbourhood spaces

Closure et al...

Definition (Definition of closure, closed subobject and closed morphism, see
Ghosh, “Internal neighbourhood structures II: Closure and Closed Morphisms”,
definitions in §3)
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Closure operator in preneighbourhood spaces

Closure et al...

Definition (Definition of closure, closed subobject and closed morphism, see
Ghosh, “Internal neighbourhood structures II: Closure and Closed Morphisms”,
definitions in §3)
Let (X , µ) be an internal preneighbourhood space and p ∈ SubM(X ). The admissible
subobject:

clµp =
∨ß

u ∈ SubM(X )6=1 : x ∈ µ(u)⇒ x ∧ p 6= σX

™
(1)

is called the µ-closure of p.
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For any internal preneighbourhood space (X , µ), Cµ =

{
p ∈ SubM(X ) : p = clµp

}
.
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}
.

Given the internal preneighbourhood spaces (X , µ) and (Y , φ), a morphism X
f−→ Y is said

to be µ-φ closed or simply closed if it preserves closed subobjects, i.e., p ∈ Cµ ⇒ ∃f p ∈ Cφ.
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Given the internal preneighbourhood spaces (X , µ) and (Y , φ), a morphism X
f−→ Y is said

to be µ-φ closed or simply closed if it preserves closed subobjects, i.e., p ∈ Cµ ⇒ ∃f p ∈ Cφ.
Acl is the (possibly large) set of all closed morphisms of A.
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Closure operator in preneighbourhood spaces

Properties of the closure operator

Definition (Closure Operation)
An order preserving function P

c−→ P on a partially ordered set P is said to be a closure
operation if it satisfies the conditions

x ≤ c(x) (Extensionality)

and

c◦c = c (Idempotence)
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Properties of the closure operator

Definition (Closure Operation)
An order preserving function P

c−→ P on a partially ordered set P is said to be a closure
operation if it satisfies the conditions

x ≤ c(x) (Extensionality)

and

c◦c = c (Idempotence)

If it further satisfies

c(x ∨ y) = c(x) ∨ c(y) (Additivity)

then it is called a Kuratowksi closure operation.
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Closure operator in preneighbourhood spaces

Properties of the closure operator

Theorem (Properties of Closure, see Ghosh, “Internal neighbourhood structures
II: Closure and Closed Morphisms”, Theorem 3.1)

• Given any internal preneighbourhood space (X , µ), the function SubM(X )
clµ−−→ SubM(X )

defines a closure operation on SubM(X ) such that clµσX = σY .
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Closure operator in preneighbourhood spaces

Properties of the closure operator

Theorem (Properties of Closure, see Ghosh, “Internal neighbourhood structures
II: Closure and Closed Morphisms”, Theorem 3.1)

• Given any internal preneighbourhood space (X , µ), the function SubM(X )
clµ−−→ SubM(X )

defines a closure operation on SubM(X ) such that clµσX = σY .
• If (X , µ) f−→ (Y , φ) is a preneighbourhood morphism reflecting zero then it is µ-φ
continuous, i.e., for any p ∈ SubM(X ):

∃
f
clµp ≤ clφ∃f p (2)
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Closure operator in preneighbourhood spaces

Properties of the closure operator

Definition (Reflecting Zero)
A morphism X

f−→ Y is said to reflect zero if f −1σY = σX .
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Closure operator in preneighbourhood spaces

Properties of the closure operator

The following three statements are equivalent for any morphism X
f−→ Y :

(a) f reflects zero
(b) For each x ∈ SubM(X ), ∃

f
x = σY ⇒ x = σX

(c) For each x ∈ SubM(X ) and y ∈ SubM(Y ), y ∧ ∃
f
x = σY ⇒ x ∧ f −1y = σX

see Ghosh, “Internal neighbourhood structures II: Closure and Closed Morphisms”, Theorem
9.2
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Closure operator in preneighbourhood spaces

Properties of the closure operator

In any context if every morphism reflects zero then the initial object ∅ is strict.
Conversely, if the initial object ∅ is strict and the unique morphism ∅ −→ 1 is an admissible
monomorphism then every morphism reflects zero.
see Ghosh, “Internal neighbourhood structures II: Closure and Closed Morphisms”, Theorem
9.2
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Closure operator in preneighbourhood spaces

Properties of the closure operator
A category is said to be quasi-pointed ( see Bourn, “3× 3 lemma and protomodularity”, §1,
and see Goswami and Janelidze, “On the structure of zero morphisms in a quasi-pointed
category”) if the unique morphism ∅ −→ 1 is a monomorphism.
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Properties of the closure operator
A category is said to be quasi-pointed ( see Bourn, “3× 3 lemma and protomodularity”, §1,
and see Goswami and Janelidze, “On the structure of zero morphisms in a quasi-pointed
category”) if the unique morphism ∅ −→ 1 is a monomorphism.
A context shall be called admissibly quasi-pointed if the unique morphism ∅ −→ 1 is an
admissible monomorphism.
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Closure operator in preneighbourhood spaces

Properties of the closure operator
A category is said to be quasi-pointed ( see Bourn, “3× 3 lemma and protomodularity”, §1,
and see Goswami and Janelidze, “On the structure of zero morphisms in a quasi-pointed
category”) if the unique morphism ∅ −→ 1 is a monomorphism.
A context shall be called admissibly quasi-pointed if the unique morphism ∅ −→ 1 is an
admissible monomorphism.
Several contexts are admissibly quasi-pointed — e.g., sets and functions, topological spaces
and continuous maps, locales and localic maps, where this unique morphism is a regular
monomorphism and hence admissible; however the context of rings and their
homomorphisms is not quasi-pointed even.
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Closure operator in preneighbourhood spaces

Properties of the closure operator

The following three statements are equivalent for any morphism X
f−→ Y :

(a) f reflects zero
(b) For each x ∈ SubM(X ), ∃

f
x = σY ⇒ x = σX

(c) For each x ∈ SubM(X ) and y ∈ SubM(Y ), y ∧ ∃
f
x = σY ⇒ x ∧ f −1y = σX

see Ghosh, “Internal neighbourhood structures II: Closure and Closed Morphisms”, Theorem
9.2
In any context if every morphism reflects zero then the initial object ∅ is strict.
Conversely, if the initial object ∅ is strict and the unique morphism ∅ −→ 1 is an admissible
monomorphism then every morphism reflects zero.
see ibid., Theorem 9.2
Thus: in admissibly quasi-pointed contexts, the initial object is strict if and only if every
morphism reflects zero.
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Closure operator in preneighbourhood spaces

Properties of the closure operator

Theorem (Properties of Closure, see Ghosh, “Internal neighbourhood structures
II: Closure and Closed Morphisms”, Theorem 3.1)
• If every filter of SubM(X ) is contained in a prime filter then clµ is additive, i.e., for each
x , y ∈ SubM(X ):

clµ(x ∨ y) = clµx ∨ clµy . (2)
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Closure operator in preneighbourhood spaces

Properties of the closure operator
Even in the presence of Axiom of Choice the presence of a prime filter in a complete
non-distributive lattice is not guaranteed.
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Closure operator in preneighbourhood spaces

Properties of the closure operator
Even in the presence of Axiom of Choice the presence of a prime filter in a complete
non-distributive lattice is not guaranteed.
Absence of distributivity in the lattice does not even ensure a maximal filter to be prime.
See Erné, “Prime and maximal ideals of partially ordered sets” for details.
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Closure operator in preneighbourhood spaces

Properties of the closure operator

Theorem (Properties of Closure, see Ghosh, “Internal neighbourhood structures
II: Closure and Closed Morphisms”, Theorem 3.1)

• Given any internal preneighbourhood space (X , µ), the function SubM(X )
clµ−−→ SubM(X )

defines a closure operation on SubM(X ) such that clµσX = σY .
• If (X , µ) f−→ (Y , φ) is a preneighbourhood morphism reflecting zero then it is µ-φ
continuous, i.e., for any p ∈ SubM(X ):

∃
f
clµp ≤ clφ∃f p (2)

• If every filter of SubM(X ) is contained in a prime filter then clµ is additive, i.e., for each
x , y ∈ SubM(X ):

clµ(x ∨ y) = clµx ∨ clµy . (3)

• The closure operation is hereditary, i.e., given A // a //M // m // X ,

cl
(µ
∣∣
m
)
a = m−1(clµ(m◦a));

hence a and m closed imply m◦a closed.
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Closure operator in preneighbourhood spaces

Proper Morphisms

Definition (see Ghosh, “Internal neighbourhood structures II: Closure and
Closed Morphisms”, Definition 6.1)
A preneighbourhood morphism (X , µ)

f−→ (Y , φ) is proper if for every preneighbourhood

morphism (Z , ψ)
g−→ (Y , φ) and pullback X ×Y Z

fg //

gf
��

Z

g

��
X

f
// Y

, the morphism

(X ×Y Z , µ×φ ψ)
fg−→ (Z , ψ) is a closed morphism.

The set Apr is the (possibly large) set of all proper morphisms.
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Closure operator in preneighbourhood spaces

Proper Morphisms

Definition (see Ghosh, “Internal neighbourhood structures II: Closure and
Closed Morphisms”, Definition 6.1)
A preneighbourhood morphism (X , µ)

f−→ (Y , φ) is proper if for every preneighbourhood

morphism (Z , ψ)
g−→ (Y , φ) and pullback X ×Y Z

fg //

gf
��

Z

g

��
X

f
// Y

, the morphism

(X ×Y Z , µ×φ ψ)
fg−→ (Z , ψ) is a closed morphism.

The set Apr is the (possibly large) set of all proper morphisms.

Examples
(Set, Sur, Inj)
(Top, Epi, ExtMon)
(Loc, Epi, RegMon)
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Closure operator in preneighbourhood spaces

Proper Morphisms

Definition (see Ghosh, “Internal neighbourhood structures II: Closure and
Closed Morphisms”, Definition 6.1)
A preneighbourhood morphism (X , µ)

f−→ (Y , φ) is proper if for every preneighbourhood

morphism (Z , ψ)
g−→ (Y , φ) and pullback X ×Y Z

fg //

gf
��

Z

g

��
X

f
// Y

, the morphism

(X ×Y Z , µ×φ ψ)
fg−→ (Z , ψ) is a closed morphism.

The set Apr is the (possibly large) set of all proper morphisms.

Examples
(Set, Sur, Inj) for internal neighbourhood spaces, usual proper maps of topological

spaces
(Top, Epi, ExtMon) for internal neighbourhood spaces, usual proper maps between the

second topology
(Loc, Epi, RegMon) for locales with T -neighbourhood systems, usual proper maps of

locales
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Closure operator in preneighbourhood spaces

Proper Morphisms
The T -neighbourhood system was investigated in the papers Dube and Ighedo, “More on
locales in which every open sublocale is z-embedded”; Dube and Ighedo, “Characterising
points which make P-frames”, christened in Ghosh, “Internal neighbourhood structures II:
Closure and Closed Morphisms” and for any locale X , it is the order preserving map
SubRegMon(X )op oX−→ FilX defined by:

oX (S) =
{
T ∈ SubRegMon(X ) : (∃a ∈ X )

(
S ⊆ O[a] ⊆ T

)}
.

It is a neighbourhood system on X , and the functor with object function X 7→ (X , oX ) is
right inverse to the forgetful functor pNbd[Loc] U−→ Loc (see Ghosh, “Internal neighbourhood
structures”, Theorem 3.38)
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Closure operator in preneighbourhood spaces

Proper Morphisms

Definition (see Ghosh, “Internal neighbourhood structures II: Closure and
Closed Morphisms”, Definition 6.1)
A preneighbourhood morphism (X , µ)

f−→ (Y , φ) is proper if for every preneighbourhood

morphism (Z , ψ)
g−→ (Y , φ) and pullback X ×Y Z

fg //

gf
��

Z

g

��
X

f
// Y

, the morphism

(X ×Y Z , µ×φ ψ)
fg−→ (Z , ψ) is a closed morphism.

The set Apr is the (possibly large) set of all proper morphisms.

Examples
(Set, Sur, Inj) for internal neighbourhood spaces, usual proper maps of topological

spaces
(Top, Epi, ExtMon) for internal neighbourhood spaces, usual proper maps between the

second topology
(Loc, Epi, RegMon) for locales with T -neighbourhood systems, usual proper maps of

locales
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Closure operator in preneighbourhood spaces

Proper Morphisms

Theorem (Alternative characaterisation of proper morphisms, see Ghosh,
“Internal neighbourhood structures II: Closure and Closed Morphisms”,
Theorem 6.1(a))
A preneighbourhood morphism (X , µ)

f−→ (Y , φ) is proper if and only if for every
preneighbourhood space (Z , ψ), every corestriction of

(X × Z , µ× ψ) f×1Z−−−→ (Y × Z , φ× ψ) is a closed morphism.
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Closure operator in preneighbourhood spaces

Separated Morphisms

Lemma (see Ghosh, “Internal neighbourhood structures II: Closure and Closed
Morphisms”, Lemma 7.1)
If (X , µ) f−→ (Y , φ) is a preneighbourhood morphism, kerp f

p2 //

p1
��

X

f
��

X
f

// Y

be its kernel pair,

X
df =(1X , 1X )−−−−−−−−→ kerp f be the diagonal morphism, then µ = ((µ×φ µ)

∣∣
X
) and df is an

embedding.
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Closure operator in preneighbourhood spaces

Separated Morphisms

Lemma (see Ghosh, “Internal neighbourhood structures II: Closure and Closed
Morphisms”, Lemma 7.1)
If (X , µ) f−→ (Y , φ) is a preneighbourhood morphism, kerp f

p2 //

p1
��

X

f
��

X
f

// Y

be its kernel pair,

X
df =(1X , 1X )−−−−−−−−→ kerp f be the diagonal morphism, then µ = ((µ×φ µ)

∣∣
X
) and df is an

embedding.

Definition (see ibid., Definition 7.1)
A preneighbourhood morphism (X , µ)

f−→ (Y , φ) is separated if df is a proper morphism.
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Closure operator in preneighbourhood spaces

Separated Morphisms

Lemma (see Ghosh, “Internal neighbourhood structures II: Closure and Closed
Morphisms”, Lemma 7.1)
If (X , µ) f−→ (Y , φ) is a preneighbourhood morphism, kerp f

p2 //

p1
��

X

f
��

X
f

// Y

be its kernel pair,

X
df =(1X , 1X )−−−−−−−−→ kerp f be the diagonal morphism, then µ = ((µ×φ µ)

∣∣
X
) and df is an

embedding.

Definition (see ibid., Definition 7.1)
A preneighbourhood morphism (X , µ)

f−→ (Y , φ) is separated if df is a proper morphism.
If every preneighbourhood morphism is continuous then f is separated if and only if df is a
closed embedding — compare with the notion of separated morphisms in Clementino, Giuli,
and Tholen, “A functional approach to general topology”.
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Closure operator in preneighbourhood spaces

Separated Morphisms

Definition (see Ghosh, “Internal neighbourhood structures II: Closure and
Closed Morphisms”, Definition 7.1)
A preneighbourhood morphism (X , µ)

f−→ (Y , φ) is separated if df is a proper morphism.

Examples
(Set, Sur, Inj)
(Top, Epi, ExtMon)

Hausdorff Reflection Partha Pratim Ghosh Frame 7 of 18. . .



,

Closure operator in preneighbourhood spaces

Separated Morphisms

Definition (see Ghosh, “Internal neighbourhood structures II: Closure and
Closed Morphisms”, Definition 7.1)
A preneighbourhood morphism (X , µ)

f−→ (Y , φ) is separated if df is a proper morphism.

Examples
(Set, Sur, Inj) for internal neighbourhood spaces, continuous maps in whose fibres

distinct points have disjoint neighbourhoods
(Top, Epi, ExtMon) for internal neighbourhood spaces, separated maps between the sec-

ond topology

Hausdorff Reflection Partha Pratim Ghosh Frame 7 of 18. . .
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Closure operator in preneighbourhood spaces

Properties of closed, proper and separated morphisms
Summary of properties of closed/proper/separated morphisms, given the preneighbourhood
morphisms (X , µ) f−→ (Y , φ)

g−→ (Z , ψ)
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Closure operator in preneighbourhood spaces

Properties of closed, proper and separated morphisms
Summary of properties of closed/proper/separated morphisms, given the preneighbourhood
morphisms (X , µ) f−→ (Y , φ)

g−→ (Z , ψ)

Acl

contain isomorphisms
closed under compositions
g ◦f is closed, f is a contin-
uous formal surjection imply
g is closed

if m ∈ Cφ then f is continu-
ous implies f −1m ∈ Cµ, f is
closed and continuous imply
fm is closed
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Closure operator in preneighbourhood spaces

Properties of closed, proper and separated morphisms
Summary of properties of closed/proper/separated morphisms, given the preneighbourhood
morphisms (X , µ) f−→ (Y , φ)

g−→ (Z , ψ)

Acl Apr

contain isomorphisms contain closed embeddings
in a reflecting zero context

closed under compositions closed under compositions
g ◦f is closed, f is a contin-
uous formal surjection imply
g is closed

g ◦f is proper, f is continu-
ously stably in E imply g is
proper
g ◦f is proper, g is a
monomorphism imply f is
proper

if m ∈ Cφ then f is continu-
ous implies f −1m ∈ Cµ, f is
closed and continuous imply
fm is closed

pullback stable
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Closure operator in preneighbourhood spaces

Properties of closed, proper and separated morphisms
Summary of properties of closed/proper/separated morphisms, given the preneighbourhood
morphisms (X , µ) f−→ (Y , φ)

g−→ (Z , ψ)

Acl Apr Asep

contain isomorphisms contain closed embeddings
in a reflecting zero context contain all monomorphisms

closed under compositions closed under compositions closed under compositions
g ◦f is closed, f is a contin-
uous formal surjection imply
g is closed

g ◦f is proper, f is continu-
ously stably in E imply g is
proper

g ◦f is separated, f is proper
and continuously stably in E
imply g is separated

g ◦f is proper, g is a
monomorphism imply f is
proper

g ◦f is separated imply f is
separated

if m ∈ Cφ then f is continu-
ous implies f −1m ∈ Cµ, f is
closed and continuous imply
fm is closed

pullback stable pullback stable
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Closure operator in preneighbourhood spaces

Properties of closed, proper and separated morphisms
Summary of properties of closed/proper/separated morphisms, given the preneighbourhood
morphisms (X , µ) f−→ (Y , φ)

g−→ (Z , ψ)

g ◦f is closed, f is a contin-
uous formal surjection imply
g is closed

A morphism X
f−→ Y is a formal surjection if y ∈ SubM(Y )⇒ (∃x ∈ SubM(X ))(y = ∃

f
x), or

equivalently, for each y ∈ SubM(Y ), fy ∈ E.
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Closure operator in preneighbourhood spaces

Properties of closed, proper and separated morphisms
Summary of properties of closed/proper/separated morphisms, given the preneighbourhood
morphisms (X , µ) f−→ (Y , φ)

g−→ (Z , ψ)

g ◦f is proper, f is continu-
ously stably in E imply g is
proper

g ◦f is separated, f is proper
and continuously stably in E
imply g is separated

A preneighbourhood morphism (X , µ)
f−→ (Y , φ) is continuously stably in E if for every

preneighbourhood morphism (Z , ψ)
g−→ (Y , φ), the pullback fg of f along g is

((µ×φ ψ), ψ)-continuous and is in E.
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Closure operator in preneighbourhood spaces

Properties of closed, proper and separated morphisms
Summary of properties of closed/proper/separated morphisms, given the preneighbourhood
morphisms (X , µ) f−→ (Y , φ)

g−→ (Z , ψ)

Acl Apr Asep

contain isomorphisms contain closed embeddings
in a reflecting zero context contain all monomorphisms

closed under compositions closed under compositions closed under compositions
g ◦f is closed, f is a contin-
uous formal surjection imply
g is closed

g ◦f is proper, f is continu-
ously stably in E imply g is
proper

g ◦f is separated, f is proper
and continuously stably in E
imply g is separated

g ◦f is proper, g is a
monomorphism imply f is
proper

g ◦f is separated imply f is
separated

if m ∈ Cφ then f is continu-
ous implies f −1m ∈ Cµ, f is
closed and continuous imply
fm is closed

pullback stable pullback stable

Compare the properties for similar morphisms in Clementino, Giuli, and Tholen, “A functional
approach to general topology”, where continuous condition is automatic.
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Hausdorff Preneighbourhood Spaces

Hausdorff preneighbourhood spaces
The smallest preneighbourhood system on an object X is SubM(X )op ∇X−−→ FilX , where:

∇X (p) =

SubM(X ), if p = σX

{1X}, if p 6= σX

.
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Hausdorff preneighbourhood spaces
The smallest preneighbourhood system on an object X is SubM(X )op ∇X−−→ FilX , where:

∇X (p) =

SubM(X ), if p = σX

{1X}, if p 6= σX

.

The largest preneighbourhood system on an object X is SubM(X )op ↑X−→ FilX , where:

↑X (p) = ↑ p =
{
x ∈ SubM(X ) : p ≤ x

}
.
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Hausdorff Preneighbourhood Spaces

Hausdorff preneighbourhood spaces
The smallest preneighbourhood system on an object X is SubM(X )op ∇X−−→ FilX , where:

∇X (p) =

SubM(X ), if p = σX

{1X}, if p 6= σX

.

The largest preneighbourhood system on an object X is SubM(X )op ↑X−→ FilX , where:

↑X (p) = ↑ p =
{
x ∈ SubM(X ) : p ≤ x

}
.

The terminal object 1 being the empty product is considered as an internal
preneighbourhood space with its smallest preneighbourhood system ∇1.
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Hausdorff Preneighbourhood Spaces

Hausdorff preneighbourhood spaces

Definition (see Ghosh, “Internal neighbourhood structures II: Closure and
Closed Morphisms”, §7.2)
An internal preneighbourhood space (X , µ) is said to be Hausdorff if the unique morphism

(X , µ)
tX−−→ (1,∇1) is separated.
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Hausdorff Preneighbourhood Spaces

Hausdorff preneighbourhood spaces

Definition (see Ghosh, “Internal neighbourhood structures II: Closure and
Closed Morphisms”, §7.2)
An internal preneighbourhood space (X , µ) is said to be Hausdorff if the unique morphism

(X , µ)
tX−−→ (1,∇1) is separated.

Since every isomorphism is separated, (1,∇1) is always Hausdorff.
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Hausdorff Preneighbourhood Spaces

Hausdorff preneighbourhood spaces

Definition (see Ghosh, “Internal neighbourhood structures II: Closure and
Closed Morphisms”, §7.2)
An internal preneighbourhood space (X , µ) is said to be Hausdorff if the unique morphism

(X , µ)
tX−−→ (1,∇1) is separated.

Since every isomorphism is separated, (1,∇1) is always Hausdorff.

In (Set, Surjection, Injection) the terminal object is singleton, ∇1 =↑1 .
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Hausdorff Preneighbourhood Spaces

Hausdorff preneighbourhood spaces

Definition (see Ghosh, “Internal neighbourhood structures II: Closure and
Closed Morphisms”, §7.2)
An internal preneighbourhood space (X , µ) is said to be Hausdorff if the unique morphism

(X , µ)
tX−−→ (1,∇1) is separated.

Since every isomorphism is separated, (1,∇1) is always Hausdorff.

In (Set, Surjection, Injection) the terminal object is singleton, ∇1 =↑1 .

However, in (CRingop, Epi, RegMon) the terminal object is Z and ∇1 <↑1.
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Hausdorff Preneighbourhood Spaces

Examples of Hausdorff preneighbourhood spaces

• (Set, Sur, Inj) Hausdorff neighbourhood spaces are usual Hausdorff topological spaces
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Hausdorff Preneighbourhood Spaces

Examples of Hausdorff preneighbourhood spaces

• (Set, Sur, Inj) Hausdorff neighbourhood spaces are usual Hausdorff topological spaces
• (Top, Epi, ExtMon) Hausdorff neighbourhood spaces are bitopological spaces with the
second topology Hausdorff
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Hausdorff Preneighbourhood Spaces

Examples of Hausdorff preneighbourhood spaces

• (Set, Sur, Inj) Hausdorff neighbourhood spaces are usual Hausdorff topological spaces
• (Top, Epi, ExtMon) Hausdorff neighbourhood spaces are bitopological spaces with the
second topology Hausdorff
• (Grp, RegEpi, Mon) every Hausdorff topological group is a Hausdorff neighbourhood space
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Hausdorff Preneighbourhood Spaces

Examples of Hausdorff preneighbourhood spaces

• (Set, Sur, Inj) Hausdorff neighbourhood spaces are usual Hausdorff topological spaces
• (Top, Epi, ExtMon) Hausdorff neighbourhood spaces are bitopological spaces with the
second topology Hausdorff
• (Grp, RegEpi, Mon) every Hausdorff topological group is a Hausdorff neighbourhood space
• (Loc, Epi, RegMon) every Hausdorff locale is a Hausdorff preneighbourhood space with its
functorial T -neighbourhood system
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Hausdorff Preneighbourhood Spaces

Alternative characterisation of Hausdorff preneighbourhood spaces

Theorem (see Ghosh, “Internal neighbourhood structures II: Closure and Closed
Morphisms”, Theorem 7.3)
The following are equivalent for any internal preneighbourhood space (X , µ):
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Alternative characterisation of Hausdorff preneighbourhood spaces

Theorem (see Ghosh, “Internal neighbourhood structures II: Closure and Closed
Morphisms”, Theorem 7.3)
The following are equivalent for any internal preneighbourhood space (X , µ):
• (X , µ) is Hausdorff.
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Hausdorff Preneighbourhood Spaces

Alternative characterisation of Hausdorff preneighbourhood spaces

Theorem (see Ghosh, “Internal neighbourhood structures II: Closure and Closed
Morphisms”, Theorem 7.3)
The following are equivalent for any internal preneighbourhood space (X , µ):
• (X , µ) is Hausdorff.

• The diagonal morphism (X , µ)
dX=(1X , 1X )−−−−−−−−→ (X × X , µ× µ) is a proper morphism.
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Hausdorff Preneighbourhood Spaces

Alternative characterisation of Hausdorff preneighbourhood spaces

Theorem (see Ghosh, “Internal neighbourhood structures II: Closure and Closed
Morphisms”, Theorem 7.3)
The following are equivalent for any internal preneighbourhood space (X , µ):
• (X , µ) is Hausdorff.

• The diagonal morphism (X , µ)
dX=(1X , 1X )−−−−−−−−→ (X × X , µ× µ) is a proper morphism.

• Every preneighbourhood morphism with (X , µ) as domain is separated.
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Hausdorff Preneighbourhood Spaces

Alternative characterisation of Hausdorff preneighbourhood spaces

Theorem (see Ghosh, “Internal neighbourhood structures II: Closure and Closed
Morphisms”, Theorem 7.3)
The following are equivalent for any internal preneighbourhood space (X , µ):
• (X , µ) is Hausdorff.

• The diagonal morphism (X , µ)
dX=(1X , 1X )−−−−−−−−→ (X × X , µ× µ) is a proper morphism.

• Every preneighbourhood morphism with (X , µ) as domain is separated.
• There exists a separated preneighbourhood morphism with domain (X , µ) and codomain a
Hausdorff preneighbourhood space (Y , φ).

Hausdorff Reflection Partha Pratim Ghosh Frame 11 of 18. . .
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Hausdorff Preneighbourhood Spaces

Alternative characterisation of Hausdorff preneighbourhood spaces

Theorem (see Ghosh, “Internal neighbourhood structures II: Closure and Closed
Morphisms”, Theorem 7.3)
The following are equivalent for any internal preneighbourhood space (X , µ):
• (X , µ) is Hausdorff.

• The diagonal morphism (X , µ)
dX=(1X , 1X )−−−−−−−−→ (X × X , µ× µ) is a proper morphism.

• Every preneighbourhood morphism with (X , µ) as domain is separated.
• There exists a separated preneighbourhood morphism with domain (X , µ) and codomain a
Hausdorff preneighbourhood space (Y , φ).
• If (X , µ) f−→ (Y , φ) is a proper morphism stably continuously in E then (Y , φ) is Hausdorff.
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Alternative characterisation of Hausdorff preneighbourhood spaces

Theorem (see Ghosh, “Internal neighbourhood structures II: Closure and Closed
Morphisms”, Theorem 7.3)
The following are equivalent for any internal preneighbourhood space (X , µ):
• (X , µ) is Hausdorff.

• The diagonal morphism (X , µ)
dX=(1X , 1X )−−−−−−−−→ (X × X , µ× µ) is a proper morphism.

• Every preneighbourhood morphism with (X , µ) as domain is separated.
• There exists a separated preneighbourhood morphism with domain (X , µ) and codomain a
Hausdorff preneighbourhood space (Y , φ).
• If (X , µ) f−→ (Y , φ) is a proper morphism stably continuously in E then (Y , φ) is Hausdorff.
• If (X × Y , µ× φ) p2−→ (Y , φ) is the product projection then p2 is separated.
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Alternative characterisation of Hausdorff preneighbourhood spaces

Theorem (see Ghosh, “Internal neighbourhood structures II: Closure and Closed
Morphisms”, Theorem 7.3)
The following are equivalent for any internal preneighbourhood space (X , µ):
• (X , µ) is Hausdorff.

• The diagonal morphism (X , µ)
dX=(1X , 1X )−−−−−−−−→ (X × X , µ× µ) is a proper morphism.

• Every preneighbourhood morphism with (X , µ) as domain is separated.
• There exists a separated preneighbourhood morphism with domain (X , µ) and codomain a
Hausdorff preneighbourhood space (Y , φ).
• If (X , µ) f−→ (Y , φ) is a proper morphism stably continuously in E then (Y , φ) is Hausdorff.
• If (X × Y , µ× φ) p2−→ (Y , φ) is the product projection then p2 is separated.
• The product internal preneighbourhood space (X × Y , µ× φ) is Hausdorff whenever
(Y , φ) is Hausdorff.
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Alternative characterisation of Hausdorff preneighbourhood spaces

Theorem (see Ghosh, “Internal neighbourhood structures II: Closure and Closed
Morphisms”, Theorem 7.3)
The following are equivalent for any internal preneighbourhood space (X , µ):
• (X , µ) is Hausdorff.

• The diagonal morphism (X , µ)
dX=(1X , 1X )−−−−−−−−→ (X × X , µ× µ) is a proper morphism.

• Every preneighbourhood morphism with (X , µ) as domain is separated.
• There exists a separated preneighbourhood morphism with domain (X , µ) and codomain a
Hausdorff preneighbourhood space (Y , φ).
• If (X , µ) f−→ (Y , φ) is a proper morphism stably continuously in E then (Y , φ) is Hausdorff.
• If (X × Y , µ× φ) p2−→ (Y , φ) is the product projection then p2 is separated.
• The product internal preneighbourhood space (X × Y , µ× φ) is Hausdorff whenever
(Y , φ) is Hausdorff.

• If
Ä
E , (ψ

∣∣
E
)
ä
// e // (Z , ψ)

f //

g
// (X , µ) is an equaliser diagram then e is a proper

morphism.
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Alternative characterisation of Hausdorff preneighbourhood spaces

Theorem (see Ghosh, “Internal neighbourhood structures II: Closure and Closed
Morphisms”, Theorem 7.3)
The following are equivalent for any internal preneighbourhood space (X , µ):
• (X , µ) is Hausdorff.

• The diagonal morphism (X , µ)
dX=(1X , 1X )−−−−−−−−→ (X × X , µ× µ) is a proper morphism.

• Every preneighbourhood morphism with (X , µ) as domain is separated.
• There exists a separated preneighbourhood morphism with domain (X , µ) and codomain a
Hausdorff preneighbourhood space (Y , φ).
• If (X , µ) f−→ (Y , φ) is a proper morphism stably continuously in E then (Y , φ) is Hausdorff.
• If (X × Y , µ× φ) p2−→ (Y , φ) is the product projection then p2 is separated.
• The product internal preneighbourhood space (X × Y , µ× φ) is Hausdorff whenever
(Y , φ) is Hausdorff.

• If
Ä
E , (ψ

∣∣
E
)
ä
// e // (Z , ψ)

f //

g
// (X , µ) is an equaliser diagram then e is a proper

morphism.
Compare similar characterisations of Hausdorffness Clementino, Giuli, and Tholen, “A
functional approach to general topology”, especially where continuous condition is
automatic.
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The category of Hausdorff preneighbourhood spaces

Haus[A] is the full subcategory of Hausdorff preneighbourhood spaces.
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The category of Hausdorff preneighbourhood spaces

• Haus[A] is finitely complete, closed under subobjects and images of morphisms stably
continuously in E.
see Ghosh, “Internal neighbourhood structures II: Closure and Closed Morphisms”, Corollary
7.4
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The category of Hausdorff preneighbourhood spaces

• Haus[A] is finitely complete, closed under subobjects and images of morphisms stably
continuously in E.
see Ghosh, “Internal neighbourhood structures II: Closure and Closed Morphisms”, Corollary
7.4
• In an extensive context with finite sum of closed morphisms closed, Haus[A] is closed under
finite sums if and only if (1+ 1,∇1 +∇1) is Hausdorff.
see Ghosh, “Internal neighbourhood structures III: Finite sum of subobjects”, Theorem 10.1
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The category of Hausdorff preneighbourhood spaces

• A category with finite sums is extensive if the sum functor
(A ↓ A)× (A ↓ B)

+−→ (A ↓ A+ B) is an equivalence of categories (see Carboni, Lack, and
Walters, “Introduction to extensive and distributive categories”, for details...).
In short, these are precisely categories where sums behave well with pullbacks.
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The category of Hausdorff preneighbourhood spaces

• A category with finite sums is extensive if the sum functor
(A ↓ A)× (A ↓ B)

+−→ (A ↓ A+ B) is an equivalence of categories (see Carboni, Lack, and
Walters, “Introduction to extensive and distributive categories”, for details...).
In short, these are precisely categories where sums behave well with pullbacks.
• In an extensive context, a finite sum of admissible subobjects is an admissible subobject if
and only if the monomorphisms in E between finite sums are stable under pullbacks along
coproduct injections.
see Ghosh, “Internal neighbourhood structures III: Finite sum of subobjects”, Theorem 4.1
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The category of Hausdorff preneighbourhood spaces

• A category with finite sums is extensive if the sum functor
(A ↓ A)× (A ↓ B)

+−→ (A ↓ A+ B) is an equivalence of categories (see Carboni, Lack, and
Walters, “Introduction to extensive and distributive categories”, for details...).
In short, these are precisely categories where sums behave well with pullbacks.
• In an extensive context, a finite sum of admissible subobjects is an admissible subobject if
and only if the monomorphisms in E between finite sums are stable under pullbacks along
coproduct injections.
see Ghosh, “Internal neighbourhood structures III: Finite sum of subobjects”, Theorem 4.1
• In an extensive context the following statements are equivalent:
(a) Every finite sum of closed embeddings is a closed embedding.
(b) Every finite sum of admissible subobjects is an admissible subobject and each coproduct

injection is a closed embedding.
(c) Each dense morphism between finite sums is stable under pullbacks along coproduct

injections.
In particular, in an extensive context in which finite sum of admissible subobjects is
admissible, a finite sum of closed embeddings is a closed embedding if and only if the
coproduct injections are closed.
see ibid., Theorem 5.1, Corollary 5.2
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The category of Hausdorff preneighbourhood spaces

Haus[A] is the full subcategory of Hausdorff preneighbourhood spaces.
• Haus[A] is finitely complete, closed under subobjects and images of morphisms stably
continuously in E.
see Ghosh, “Internal neighbourhood structures II: Closure and Closed Morphisms”, Corollary
7.4
• In an extensive context with finite sum of closed morphisms closed, Haus[A] is closed under
finite sums if and only if (1+ 1,∇1 +∇1) is Hausdorff.
see Ghosh, “Internal neighbourhood structures III: Finite sum of subobjects”, Theorem 10.1
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Hausdorff Preneighbourhood Spaces

Hausdorff reflection

Theorem (see Ghosh, “Internal neighbourhood structures IV: Internal Hausdorff
Spaces”, Theorem 3.2)
Haus[A] is (regular epi)-reflective subcategory of pNbd[A], provided the product projections
are in E and every morphism reflects zero.
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Hausdorff reflection

Theorem (see Ghosh, “Internal neighbourhood structures IV: Internal Hausdorff
Spaces”, Theorem 3.2)
Haus[A] is (regular epi)-reflective subcategory of pNbd[A], provided the product projections
are in E and every morphism reflects zero.
Sketch of proof.
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Hausdorff reflection

Theorem (see Ghosh, “Internal neighbourhood structures IV: Internal Hausdorff
Spaces”, Theorem 3.2)
Haus[A] is (regular epi)-reflective subcategory of pNbd[A], provided the product projections
are in E and every morphism reflects zero.
Sketch of proof.
Let (X , µ) be an internal preneighbourhood space, d = clµ×µdX and define:
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Hausdorff Preneighbourhood Spaces

Hausdorff reflection

Theorem (see Ghosh, “Internal neighbourhood structures IV: Internal Hausdorff
Spaces”, Theorem 3.2)
Haus[A] is (regular epi)-reflective subcategory of pNbd[A], provided the product projections
are in E and every morphism reflects zero.
Sketch of proof.
Let (X , µ) be an internal preneighbourhood space, d = clµ×µdX and define:

(r1, r2) =
∨ß

(u1, u2) ∈ SubM(X × X ) : f ◦u1 = f ◦u2,

whenever (X , µ) f−→ (Y , φ) with (Y , φ) Hausdorff
™
.
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Hausdorff Preneighbourhood Spaces

Hausdorff reflection

Theorem (see Ghosh, “Internal neighbourhood structures IV: Internal Hausdorff
Spaces”, Theorem 3.2)
Haus[A] is (regular epi)-reflective subcategory of pNbd[A], provided the product projections
are in E and every morphism reflects zero.
Sketch of proof.
Let (X , µ) be an internal preneighbourhood space, d = clµ×µdX and define:

(r1, r2) =
∨ß

(u1, u2) ∈ SubM(X × X ) : f ◦u1 = f ◦u2,

whenever (X , µ) f−→ (Y , φ) with (Y , φ) Hausdorff
™
.

Let X
h−→
[
X
R

]
be the coequaliser of the pair R

r1 //
r2
// X .
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Hausdorff Preneighbourhood Spaces

Hausdorff reflection

Theorem (see Ghosh, “Internal neighbourhood structures IV: Internal Hausdorff
Spaces”, Theorem 3.2)
Haus[A] is (regular epi)-reflective subcategory of pNbd[A], provided the product projections
are in E and every morphism reflects zero.
Sketch of proof.
Let (X , µ) be an internal preneighbourhood space, d = clµ×µdX and define:

(r1, r2) =
∨ß

(u1, u2) ∈ SubM(X × X ) : f ◦u1 = f ◦u2,

whenever (X , µ) f−→ (Y , φ) with (Y , φ) Hausdorff
™
.

Let X
h−→
[
X
R

]
be the coequaliser of the pair R

r1 //
r2
// X . Take the largest

preneighbourhood system µh on
[
X
R

]
such that h is a preneighbourhood morphism.
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Hausdorff reflection

Theorem (see Ghosh, “Internal neighbourhood structures IV: Internal Hausdorff
Spaces”, Theorem 3.2)
Haus[A] is (regular epi)-reflective subcategory of pNbd[A], provided the product projections
are in E and every morphism reflects zero.
Sketch of proof.
Let (X , µ) be an internal preneighbourhood space, d = clµ×µdX and define:

(r1, r2) =
∨ß

(u1, u2) ∈ SubM(X × X ) : f ◦u1 = f ◦u2,

whenever (X , µ) f−→ (Y , φ) with (Y , φ) Hausdorff
™
.

Let X
h−→
[
X
R

]
be the coequaliser of the pair R

r1 //
r2
// X . Take the largest

preneighbourhood system µh on
[
X
R

]
such that h is a preneighbourhood morphism.

Then:
Ä[

X
R

]
, µh

ä
is a Hausdorff preneighbourhood space, (X , µ)

h−→
Ä[

X
R

]
, µh

ä
the required

reflection.
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Hausdorff reflection

Theorem (see Ghosh, “Internal neighbourhood structures IV: Internal Hausdorff
Spaces”, Theorem 3.2)
Haus[A] is (regular epi)-reflective subcategory of pNbd[A], provided the product projections
are in E and every morphism reflects zero.
Remarks on the proof:
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Hausdorff reflection

Theorem (see Ghosh, “Internal neighbourhood structures IV: Internal Hausdorff
Spaces”, Theorem 3.2)
Haus[A] is (regular epi)-reflective subcategory of pNbd[A], provided the product projections
are in E and every morphism reflects zero.
Remarks on the proof:
• Assumption of every morphism reflecting zero simplifies the description of Hausdorffness
— it is enough to check dX is closed.
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Hausdorff reflection

Theorem (see Ghosh, “Internal neighbourhood structures IV: Internal Hausdorff
Spaces”, Theorem 3.2)
Haus[A] is (regular epi)-reflective subcategory of pNbd[A], provided the product projections
are in E and every morphism reflects zero.

(r1, r2) =
∨ß

(u1, u2) ∈ SubM(X × X ) : f ◦u1 = f ◦u2,

whenever (X , µ) f−→ (Y , φ) with (Y , φ) Hausdorff
™
.

Remarks on the proof:
• Assumption of every morphism reflecting zero simplifies the description of Hausdorffness
— it is enough to check dX is closed.
• The subobject lattice SubM(X ) is large, and hence has large meets/joins. Extending the
set theoretic universe accommodating conglomerates as in Adámek, Herrlich, and Strecker,
Abstract and concrete categories explains the (possibly large) join for the subobject (r1, r2).
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Hausdorff reflection

Theorem (see Ghosh, “Internal neighbourhood structures IV: Internal Hausdorff
Spaces”, Theorem 3.2)
Haus[A] is (regular epi)-reflective subcategory of pNbd[A], provided the product projections
are in E and every morphism reflects zero.
Remarks on the proof:
• Assumption of every morphism reflecting zero simplifies the description of Hausdorffness
— it is enough to check dX is closed.
• The subobject lattice SubM(X ) is large, and hence has large meets/joins. Extending the
set theoretic universe accommodating conglomerates as in Adámek, Herrlich, and Strecker,
Abstract and concrete categories explains the (possibly large) join for the subobject (r1, r2).

• Since pNbd[A]
h //
⊥oo

incl
Haus[A] and pNbd[A] is topological over A, Haus[A] is as

(co)complete as the category A.
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Hausdorff reflection

In what follows the Hausdorff reflection functor is:

h : pNbd[A] // Haus[A]

(X , µ) � //

f

��

Ä
hX , µh

ä
hf
��

(Y , φ) � //
Ä
hY , φh

ä� //


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Hausdorff reflection

In what follows the Hausdorff reflection functor is:

h : pNbd[A] // Haus[A]

(X , µ) � //

f

��

Ä
hX , µh

ä
hf
��

(Y , φ) � //
Ä
hY , φh

ä� //


where

Ä
hX , µh

ä hf−→
Ä
hY , φh

ä
is the unique preneighbourhood morphism such that the

diagram:

X
hX // //

f

��

hX

hf

��
Y

hY
// // hY

commutes.
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Hausdorff reflection

where
Ä
hX , µh

ä hf−→
Ä
hY , φh

ä
is the unique preneighbourhood morphism such that the

diagram:

kerp hX
hX ,1 //

hX ,2
// X

hX // //

f

��

hX

hf

��
kerp hY

hY ,1 //

hY ,2
// Y hY

// // hY

commutes.
Since hX is a regular epimorphism it is the coequaliser of its kernel pair as shown on the left.
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Hausdorff reflection

where
Ä
hX , µh

ä hf−→
Ä
hY , φh

ä
is the unique preneighbourhood morphism such that the

diagram:

kerp hX
hX ,1 //

hX ,2
//

f̂

��

X
hX // //

f

��

hX

hf

��
kerp hY

hY ,1 //

hY ,2
// Y hY

// // hY

commutes.
Since hX is a regular epimorphism it is the coequaliser of its kernel pair as shown on the left.
Since hY ◦f ◦hX ,1 = hY ◦f ◦hX ,2, there exists the unique morphism f̂ such that the squares on
the left reasonably commutes, i.e., f ◦hX ,i = hY ,i ◦f̂ , i = 1, 2.
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Transfinite construction of Hausdorff reflection

Theorem (see Ghosh, “Internal neighbourhood structures IV: Internal Hausdorff
Spaces”, Theorem 4.1)
In a reflecting zero context with each finite product projection in E, if (X , µ) f−→ (Y , φ) is a
preneighbourhood morphism with codomain a Hausdorff preneighbourhood space then
kerp f is closed in (X × X , µ× µ).
In particular, for the Hausdorff reflection (X , µ)

hX−→
Ä
hX , µh

ä
, kerp hX is the smallest

internal equivalence relation on X such that its quotient preneighbourhood space is
Hausdorff.
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Transfinite construction of Hausdorff reflection

kerp (g ◦f )

(g ◦f )1

��

(g ◦f )2

��

! v // kerp g

g1

��

g2

��
kerp f

f1 //

f2
//

! u

22

X
f

// Y

g

��
Z

Evidently, kerp g ≤ dY ⇔ g1 = g2 ⇒ u ∈ Iso(A).
If v is an epimorphism then u ∈ Iso(A)⇒ kerp g ≤ dY .
Proof:
g1◦v = f ◦f1◦u

−1 = f ◦f2◦u
−1 = g2◦v completes the proof.
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Transfinite construction of Hausdorff reflection
Transfinite Construction:
Let (X , µ) be an internal preneighbourhood space.
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Transfinite construction of Hausdorff reflection

• Step 1:
Take q0 = 1X .
Then: kerp q0 = dX ≤ kerp hX .
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Transfinite construction of Hausdorff reflection

• Step 2:
Assume α is a non-limit ordinal, α = β + 1 and for each γ ≤ β, qγ is defined,
kerp qγ ≤ kerp hX and γ ≤ γ′ ≤ β ⇒ kerp qγ ≤ kerp qγ′ . Consider the diagram:

kerp qβ
qβ,1 //

qβ,2
// X

qβ // // Yβ
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Transfinite construction of Hausdorff reflection

• Step 2:
Assume α is a non-limit ordinal, α = β + 1 and for each γ ≤ β, qγ is defined,
kerp qγ ≤ kerp hX and γ ≤ γ′ ≤ β ⇒ kerp qγ ≤ kerp qγ′ . Consider the diagram:

Dβ

dβ,1

��

dβ,2

��
kerp qβ

qβ,1 //

qβ,2
// X

qβ // // Yβ

Take: µβ quotient preneighbourhood system on Yβ, Dβ

dβ,1 //

dβ,2
// Yβ = clµβdYβ .
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Transfinite construction of Hausdorff reflection

• Step 2:
Assume α is a non-limit ordinal, α = β + 1 and for each γ ≤ β, qγ is defined,
kerp qγ ≤ kerp hX and γ ≤ γ′ ≤ β ⇒ kerp qγ ≤ kerp qγ′ . Consider the diagram:

Dβ

dβ,1

��

dβ,2

��
kerp qβ

qβ,1 //

qβ,2
// X

qβ // // Yβ

yβ

����
Y ′β
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Transfinite construction of Hausdorff reflection

• Step 2:
Assume α is a non-limit ordinal, α = β + 1 and for each γ ≤ β, qγ is defined,
kerp qγ ≤ kerp hX and γ ≤ γ′ ≤ β ⇒ kerp qγ ≤ kerp qγ′ . Consider the diagram:

Dβ

dβ,1

��

dβ,2

��

//
lβ // kerp yβ

yβ,2

pp yβ,1
ppkerp qβ

qβ,1 //

qβ,2
// X

qβ // // Yβ

yβ

����
Y ′β
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Transfinite construction of Hausdorff reflection

• Step 2:
Assume α is a non-limit ordinal, α = β + 1 and for each γ ≤ β, qγ is defined,
kerp qγ ≤ kerp hX and γ ≤ γ′ ≤ β ⇒ kerp qγ ≤ kerp qγ′ . Consider the diagram:

kerp (yβ◦qβ)

kβ,1

��

kβ,2

��

Dβ

dβ,1

��

dβ,2

��

//
lβ // kerp yβ

yβ,2

pp yβ,1
ppkerp qβ

qβ,1 //

qβ,2
// X

qβ // // Yβ

yβ

����
Y ′β
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Transfinite construction of Hausdorff reflection

• Step 2:
Assume α is a non-limit ordinal, α = β + 1 and for each γ ≤ β, qγ is defined,
kerp qγ ≤ kerp hX and γ ≤ γ′ ≤ β ⇒ kerp qγ ≤ kerp qγ′ . Consider the diagram:

kerp (yβ◦qβ)

kβ,1

��

kβ,2

��

Dβ

dβ,1

��

dβ,2

��

//
lβ // kerp yβ

yβ,2

pp yβ,1
ppkerp qβ

qβ,1 //

qβ,2
// X

qβ // //

qα

����

Yβ

yβ

����
Yα Y ′β
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Transfinite construction of Hausdorff reflection

• Step 2:
Assume α is a non-limit ordinal, α = β + 1 and for each γ ≤ β, qγ is defined,
kerp qγ ≤ kerp hX and γ ≤ γ′ ≤ β ⇒ kerp qγ ≤ kerp qγ′ . Consider the diagram:

kerp (yβ◦qβ)

kβ,1

��

kβ,2

��

Dβ

dβ,1

��

dβ,2

��

//
lβ // kerp yβ

yβ,2

pp yβ,1
ppkerp qβ

qβ,1 //

qβ,2
// X

qβ // //

qα

����

Yβ

yβ

����
kerp qα

qα,1

>>

qα,2

>>

Yα Y ′β

Hausdorff Reflection Partha Pratim Ghosh Frame 14 of 18. . .



,

Hausdorff Preneighbourhood Spaces

Transfinite construction of Hausdorff reflection

• Step 2:
Assume α is a non-limit ordinal, α = β + 1 and for each γ ≤ β, qγ is defined,
kerp qγ ≤ kerp hX and γ ≤ γ′ ≤ β ⇒ kerp qγ ≤ kerp qγ′ . Consider the diagram:

kerp (yβ◦qβ)

kβ,1

��

kβ,2

��

vβ

'' ''
Dβ

dβ,1

��

dβ,2

��

//
lβ // kerp yβ

yβ,2

pp yβ,1
ppkerp qβ

qβ,1 //

qβ,2
//

==

uβ

00

X
qβ // //

qα

����

Yβ

yβ

����
kerp qα

qα,1

>>

qα,2

>>

Yα Y ′β
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Transfinite construction of Hausdorff reflection

• Step 2:
Assume α is a non-limit ordinal, α = β + 1 and for each γ ≤ β, qγ is defined,
kerp qγ ≤ kerp hX and γ ≤ γ′ ≤ β ⇒ kerp qγ ≤ kerp qγ′ . Consider the diagram:

kerp (yβ◦qβ)

kβ,1

��

kβ,2

��

vβ

'' ''
Dβ

dβ,1

��

dβ,2

��

//
lβ // kerp yβ

yβ,2

pp yβ,1
ppkerp qβ

qβ,1 //

qβ,2
//

��

sβ,α

��

==

uβ

00

X
qβ // //

qα

����

Yβ

yβ

����

tβ,α

wwww
kerp qα

qα,1

>>

qα,2

>>

Yα Y ′β

Hence: kerp qβ ≤ kerp qα.
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Transfinite construction of Hausdorff reflection

• Step 2:
Assume α is a non-limit ordinal, α = β + 1 and for each γ ≤ β, qγ is defined,
kerp qγ ≤ kerp hX and γ ≤ γ′ ≤ β ⇒ kerp qγ ≤ kerp qγ′ . Consider the diagram:

kerp hX

hX ,1

))
hX ,2

))

kerp (yβ◦qβ)

kβ,1

��

kβ,2

��
kerp qβ

qβ,1 //

qβ,2
//

OO

OO

X
qβ // //

hX

"" ""

Yβ

wβ

�� ��
hX

Since kerp qβ ≤ kerp hX there exists the morphism wβ such that hX = wβ◦qβ.

Hausdorff Reflection Partha Pratim Ghosh Frame 14 of 18. . .



,

Hausdorff Preneighbourhood Spaces

Transfinite construction of Hausdorff reflection

• Step 2:
Assume α is a non-limit ordinal, α = β + 1 and for each γ ≤ β, qγ is defined,
kerp qγ ≤ kerp hX and γ ≤ γ′ ≤ β ⇒ kerp qγ ≤ kerp qγ′ . Consider the diagram:

kerp qβ
qβ,1 //

qβ,2
// X

qβ // //

hX

�� ��

Yβ

wβ

�� ��

hYβ

�� ��
hX hYβoooo

Since hX is Hausdorff, wβ factors through the Hausdorff reflection hYβ .
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Transfinite construction of Hausdorff reflection

• Step 2:
Assume α is a non-limit ordinal, α = β + 1 and for each γ ≤ β, qγ is defined,
kerp qγ ≤ kerp hX and γ ≤ γ′ ≤ β ⇒ kerp qγ ≤ kerp qγ′ . Consider the diagram:

kerp qβ
qβ,1 //

qβ,2
// X

qβ // //

hX

�� ��

Yβ

yβ

����

wβ

�� ��

hYβ

�� ��

Y ′β

&& &&
hX hYβoooo

Since (dβ,1, dβ,2) ≤ kerp hYβ , hYβ factors through the coequaliser yβ.
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Transfinite construction of Hausdorff reflection

• Step 2:
Assume α is a non-limit ordinal, α = β + 1 and for each γ ≤ β, qγ is defined,
kerp qγ ≤ kerp hX and γ ≤ γ′ ≤ β ⇒ kerp qγ ≤ kerp qγ′ . Consider the diagram:

kerp hX

hX ,1

))
hX ,2

))

kerp (yβ◦qβ)

kβ,1

��

kβ,2

��
kerp qβ

qβ,1 //

qβ,2
// X

qβ // //

qα

����

hX

    

Yβ

yβ

����

wβ

�� ��

hYβ

�� ��

kerp qα

qα,1

>>

qα,2

>>

aa

??

Yα

wα

(( ((

Y ′β

&& &&
hX hYβoooo

Since wβ factors through yβ, hX ◦kβ,1 = wβ◦qβ◦kβ,1 = wβ◦qβ◦kβ,2 = hX ◦kβ2 .
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Transfinite construction of Hausdorff reflection

• Step 2:
Assume α is a non-limit ordinal, α = β + 1 and for each γ ≤ β, qγ is defined,
kerp qγ ≤ kerp hX and γ ≤ γ′ ≤ β ⇒ kerp qγ ≤ kerp qγ′ . Consider the diagram:

kerp hX

hX ,1

((
hX ,2

((
kerp qβ

qβ,1 //

qβ,2
//

OO

OO

X
qβ // //

qα

����

hX

�� ��

Yβ

wβ

�� ��

kerp qα

qα,1

BB

qα,2

BB

bb

??

Yα

wα

&& &&
hX

Hence kerp qα ≤ kerp hX .
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Transfinite construction of Hausdorff reflection

• Step 3:
Assume α is a limit ordinal and for each β < α, qβ is defined, kerp qβ ≤ kerp hX and
γ < γ′ < α⇒ kerp qγ ≤ kerp qγ′ . Consider the diagram:

kerp qβ
qβ,1 //

qβ,2
// X

qβ // // Yβ
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Transfinite construction of Hausdorff reflection

• Step 3:
Assume α is a limit ordinal and for each β < α, qβ is defined, kerp qβ ≤ kerp hX and
γ < γ′ < α⇒ kerp qγ ≤ kerp qγ′ . Consider the diagram:

Kα

kα,1

��

kα,2

��
kerp qβ

qβ,1 //

qβ,2
// X

qβ // //

qα

����

Yβ

Yα

Take Kα
kα,1 //

kα,2
// X =

∨
β<α kerp qβ, qα is the coequaliser of the pair (kα,1, kα,2), µα is the

quotient preneighbourhood system on Yα.
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Transfinite construction of Hausdorff reflection

• Step 3:
Assume α is a limit ordinal and for each β < α, qβ is defined, kerp qβ ≤ kerp hX and
γ < γ′ < α⇒ kerp qγ ≤ kerp qγ′ . Consider the diagram:

Kα

kα,1

��

kα,2

��
kerp qβ

qβ,1 //

qβ,2
//

AA

! uα
//

X
qβ // //

qα

����

Yβ

Yα

Since kerp qβ ≤ Kα, there exists the morphism uα such that qβ,i = kα,i ◦uα for each β < α.
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Transfinite construction of Hausdorff reflection

• Step 3:
Assume α is a limit ordinal and for each β < α, qβ is defined, kerp qβ ≤ kerp hX and
γ < γ′ < α⇒ kerp qγ ≤ kerp qγ′ . Consider the diagram:

Kα

kα,1

��

kα,2

��
kerp qβ

qβ,1 //

qβ,2
//

AA

! uα
//

��

sβ,α

��

X
qβ // //

qα

����

Yβ

tβ,α

xxxx
kerp qα

qα,1

BB

qα,2

BB

Yα

Hence there exists the unique morphism sβ,α and tβ,α such that qβ,i = qα,i ◦sβ,α and
qα = tβ,α◦qβ for each β < α and i = 1, 2.
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Transfinite construction of Hausdorff reflection

• Step 3:
Assume α is a limit ordinal and for each β < α, qβ is defined, kerp qβ ≤ kerp hX and
γ < γ′ < α⇒ kerp qγ ≤ kerp qγ′ . Consider the diagram:

kerp hX

hX ,1

((
hX ,2

((

Kα

kα,1

��

kα,2

��

oooo

kerp qβ
qβ,1 //

qβ,2
//

OO

OO

X
qβ // //

qα

����

hX

&& &&

Yβ

wβ

����
kerp qα

qα,1

BB

qα,2

BB

bb

??

Yα wα
// // hX

Since kerp qβ ≤ kerp hX there exists the morphism wβ such that hX = wβ◦qβ. Hence
(kα,1, kα,2) =

∨
β<α kerp qβ ≤ kerp hX .
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Transfinite construction of Hausdorff reflection

• Step 3:
Assume α is a limit ordinal and for each β < α, qβ is defined, kerp qβ ≤ kerp hX and
γ < γ′ < α⇒ kerp qγ ≤ kerp qγ′ . Consider the diagram:

kerp hX

hX ,1

((
hX ,2

((
kerp qβ

qβ,1 //

qβ,2
//

OO

OO

X
qβ // //

qα

����

hX

&& &&

Yβ

wβ

����
kerp qα

qα,1

BB

qα,2

BB

bb

??

Yα wα
// // hX

Hence kerp qα ≤ kerp hX .
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Transfinite construction of Hausdorff reflection
Transfinite Construction:
Let (X , µ) be an internal preneighbourhood space.
There exists a transfinite sequence

〈
(X , µ)

qα // // (Yα, µα) : α is an ordinal
〉
such that:

(a) µα is the largest preneighbourhood system on Yα such that qα is a preneighbourhood
morphism, and

(b) 0 ≤ β ≤ α⇒ kerp qβ ≤ kerp qα ≤ kerp hX .
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Transfinite construction of Hausdorff reflection

Theorem (see Ghosh, “Internal neighbourhood structures IV: Internal Hausdorff
Spaces”, Theorem 4.2)
In every reflecting zero context with finite product projections in E and stable regular
epimorphisms, there exists a transfinite construction of the Hausdorff reflection of an internal
preneighbourhood space (X , µ) for which SubM(X × X ) is a small set.
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Transfinite construction of Hausdorff reflection
Sketch of proof:
Take the transfinite sequence

〈
(X , µ)

qα // // (Yα, µα) : α is an ordinal
〉
.

Since SubM(X × X ) is a small set, there exists an ordinal β such that kerp qβ = kerp qβ+1.
Hence uβ is an isomorphism.
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Transfinite construction of Hausdorff reflection
Sketch of proof:
Take the transfinite sequence

〈
(X , µ)

qα // // (Yα, µα) : α is an ordinal
〉
.

Since SubM(X × X ) is a small set, there exists an ordinal β such that kerp qβ = kerp qβ+1.
Hence uβ is an isomorphism.
Since (kβ,1, kβ,2) is the pullback of (yβ,1, yβ,2) along qβ, regularity implies vβ is an
epimorphism.

kerp (yβ◦qβ)

kβ,1
��

kβ,2
��

vβ

'' ''
Dβ

dβ,2
��

dβ,1
��

//
lβ // kerp yβ

yβ,2

nn
yβ,1nnkerp qβ

qβ,1 //

qβ,2
//

<<

uβ

'

// //

X
qβ // // Yβ

yβ
����

Y ′β

Hence yβ,1 = yβ,2, implying (dβ,1, dβ,2) = clµβdYβ ≤ kerp yβ ≤ dYβ , i.e., (Yβ, µβ) is
Hausdorff.
Hence kerp hX ≤ kerp qβ ≤ kerp hX implying (Yβ, µβ) =

Ä
hX , µh

ä
.

Hausdorff Reflection Partha Pratim Ghosh Frame 14 of 18. . .



,

Hausdorff Preneighbourhood Spaces

Transfinite construction of Hausdorff reflection

Theorem (see Ghosh, “Internal neighbourhood structures IV: Internal Hausdorff
Spaces”, Theorem 4.2)
In every reflecting zero context with finite product projections in E and stable regular
epimorphisms, there exists a transfinite construction of the Hausdorff reflection of an internal
preneighbourhood space (X , µ) for which SubM(X × X ) is a small set.
This reminds us of a similar proof of the Hausdorff reflection of topological spaces, see, for
example Munster, “Hausdorffization and homotopy”; Munster, “The Hausdorff Quotient”
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Thank you. . .
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