See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/352297123

Towards a correspondence theory in region-based theories of space

Presentation · June 2021

CITATIONS 0		reads 12
1 author:		
	Rafał Gruszczyński Nicolaus Copernicus University 20 PUBLICATIONS 86 CITATIONS SEE PROFILE	
Some of the authors of this publication are also working on these related projects:		
Project Point-free Geometry View project		

A study in Grzegorczyk point-free topology View project

Towards a correspondence theory in region-based theories of space

Rafał Gruszczyński (joint work with Andrzej Pietruszczak)

Department of Logic Nicolaus Copernicus University in Toruń Poland

BLAST 2021

Outline

Regions-based theories of space

Boolean contact algebras

Dualities

Points of Boolean contact algebras

Towards a correspondence theory

Outline

Regions-based theories of space

Boolean contact algebras

Dualities

Points of Boolean contact algebras

Towards a correspondence theory

Regions-based theories of space

Theories of space that are base on the primitive notions of region (chunk of space), part and some version of nearness like contact or non-tangential part.

The framework of this talk: Boolean contact algebras.

Outline

Regions-based theories of space

Boolean contact algebras

Dualities

Points of Boolean contact algebras

Towards a correspondence theory

Boolean contact algebras

A boolean contact algebra is any structure $\langle B, \mathbf{C}, \sqcup, \sqcap, -, 0, 1 \rangle$ such that:

- ⟨B, ⊔, ⊓, -, 0, 1⟩ is a boolean algebra, elements of B are called regions.
- 2. $\mathbf{C} \subseteq B \times B$ is a contact relation satisfying:

$$x \neq 0 \rightarrow x \mathbf{C} x \tag{C1}$$

$$x \mathbf{C} y \to y \mathbf{C} x \tag{C2}$$

 $x \mathbf{C} y \wedge y \leqslant z \to x \mathbf{C} z \tag{C3}$

$$x \mathbf{C} (y \sqcup z) \to z \mathbf{C} y \lor x \mathbf{C} z.$$
 (C4)

Boolean contact algebras

In a standard way we define three auxiliary relations, overlap, incompatibility and non-tangential part:

A canonical interpretation of BCAs is obtained by taking a boolean algebra whose regions are regular open (or regular closed) sets of a topological space, and defining:

$$x \mathbf{C} y : \longleftrightarrow \operatorname{Cl} x \cap \operatorname{Cl} y \neq \emptyset.$$
 (df **C**)

In consequence:

$$x \ll y \longleftrightarrow \operatorname{Cl} x \subseteq y$$
.

Boolean contact algebras

Another standard interpretation identifies contact with overlap:

$$x \mathbf{C} y :\longleftrightarrow x \bigcirc y, \qquad (\mathrm{df} \mathbf{C})$$

In which case:

$$x \ll y \longleftrightarrow x \leqslant y$$
.

We will call such a contact algebra an overlap algebra.

.

Outline

Regions-based theories of space

Boolean contact algebras

Dualities

Points of Boolean contact algebras

Towards a correspondence theory

Motivations:

- find concrete representations of Boolean algebras in order to
- understand BAs in an intuitive way.

Motivations:

- algebraization of the topological notion of compactness,
- the topological notion was the starting point.

Motivations:

- spatial intuition about regions and relations between them,
- spatial intuitions about points as sets of «shrinking» regions,
- a characterization of the notion of point was the starting point.

Outline

Regions-based theories of space

Boolean contact algebras

Dualities

Points of Boolean contact algebras

Towards a correspondence theory

$$\ddagger x \coloneqq \{y \in R \mid y \ll x\}.$$
 (df \)

Definition A proper filter \mathscr{F} of a BCA is round iff for every $x \in \mathscr{F}$: $\mathscr{F} \cap \frac{1}{2}x \neq \emptyset$.

Definition

A filter \mathscr{F} is a maximal round filter (a de Vries point) iff \mathscr{F} is maximal in the family of round filters.

Points (representation theorem for BCAs)

A clan is a non-empty, upward closed set \mathscr{C} of regions such that (a) for $x \sqcup y$ in \mathscr{C} , x is in \mathscr{C} or y is in \mathscr{C} and (b) for all $x, y \in \mathscr{C}$, $x \mathbf{C} y$. A cluster is a maximal clan.

A G-representative (or representative of a point), is any nonempty set Q or regions satisfying the following three conditions:

$$0 \notin Q$$
 (r0)

$$\forall_{x,y\in Q} (x = y \lor x \ll y \lor y \ll x)$$
 (r1)

$$\forall_{x \in Q} \exists_{y \in Q} \ y \ll x \tag{r2}$$

$$\forall_{x,y\in R} (\forall_{u\in Q} (u \bigcirc x \land u \bigcirc y) \to x \mathbf{C} y).$$
 (r3)

Let \mathbf{Q}_G be the set of all G-representatives of a given BCA.

Grzegorczyk points are (proper) filters generated by points representatives:

$$X \in \mathbf{G} : \longleftrightarrow \exists_{Q \in \mathbf{Q}_G} X = \left\{ x \in B \, \middle| \, \exists_{y \in Q} \, y \leq x \right\} \,. \qquad (\mathrm{df} \, \mathbf{G})$$

For a G-point Q, let \mathscr{F}_Q be the G-point generated by Q.

Outline

Regions-based theories of space

Boolean contact algebras

Dualities

Points of Boolean contact algebras

Towards a correspondence theory

Correspondences

- Different sets of points of BCAs can be compared with respect to the inclusion relation.
- Statements about those inclusions are formulated in second-order monadic logic.
- Some of those statements are true in BCAs, e.g.:

every Grzegorczyk point is a De Vries point.

Some are consequences of or correspond to well-understood properties of BCAs.

Theorem

If B is a complete atomless BCA, then no Grzegorczyk point is an ultrafilter.

Proof.

No ultrafilter can be generated by a chain in any complete atomless BA. (Hamkins and Seabold, 2012).

Grzegorczyk contact algebras

Grzegorczyk contact algebras (Grzegorczyk, 1960) are obtained from BCAs by adding two second-order axioms postulating existence of Grzegorczyk points:

$$\forall_{x \in B} \exists_{Q \in \mathbf{Q}_G} x \in Q, \tag{G1}$$

$$x \mathbf{C} y \to \exists_{Q \in \mathbf{Q}_G} \forall_{u \in Q} (u \bigcirc x \land u \bigcirc y).$$
 (G2)

- G1 Every region has a point representative.
- G2 Point representatives are guaranteed to exists where regions touch each other.

Atoms and Grzegorczyk points

Fact

If a is an atom of a Grzegorczyk contact algebra, then $\{a\}$ is a representative of a point.

Proof sketch.

Since every region is in a point representative, there is Q such that $a \in Q$. But then in Q there is x such that $x \ll a$. So x = a and thus $a \ll a$. It follows that all three conditions for point representatives are satisfied for $\{a\}$.

As we have seen:

Theorem

If B is a complete atomless BCA, then no Grzegorczyk point is an ultrafilter.

We can refine it for GCAs:

Theorem

Any complete Grzegorczyk contact algebra is atomless iff $\mathbf{G} \cap \mathbf{Ult} = \emptyset$.

Proof sketch.

If there is an atom a, then $\{a\}$ is a point representative, and the Grzegorczyk point generated by it is an ultrafilter.

Theorem

In every Grzegorczyk contact algebra, $\mathbf{G} \subseteq \mathbf{Ult}$ iff every region is isolated: $x \ll x$.

Proof sketch.

(→) If *x* **C** −*x*, then by (G2) there is a Grzegorczyk point *X* such that for every $y \in X$, $y \bigcirc x$ and $y \bigcirc -x$. So neither *x* nor its complement can be in *X*.

(\leftarrow) If $X \in \mathbf{G} \setminus \mathbf{UIt}$, then there is a region $y \notin \{0, 1\}$ such that $y \notin X$ and $-y \notin X$. Therefore every $u \in X$ must overlap both y and -y, and in consequence $y \mathbf{C} - y$ by properties of G-points.

Theorem

In every complete Grzegorczyk contact algebra the following statements are equivalent:

- 1. There are finitely many regions.
- 2. There are finitely many Grzegorczyk points.
- **3**. Ult ⊆ **G**.
- **4.Ult**=**G**.

Proof sketch.

Using the classical results that (a) every infinite BA has a free ultrafilter and an infinite antichain and (b) no free filter can be generated by a chain.

Fréchet filter of an infinite atomic BA (every region is the supremum of a set of atoms) is a set of all regions that miss finitely many atoms.

The sentence "the Fréchet filter is a Grzegorczyk point" is independent from the axioms of Grzegorczyk contact algebras.

Fréchet filter and Grzegorczyk points

Theorem

In no Grzegorczyk contact algebra with uncountably many atoms the Fréchet filter is a Grzegorczyk point.

Proof idea.

By the fact that in no BA with uncountably many atoms the Fréchet filter can be generated by a chain.

П

Fact

Every atomic overlap algebra is a Grzegorczyk contact algebra. So there are GCAs in which the Fréchet filter is not a Grzegorczyk point.

Fréchet filter and Grzegorczyk points

In a BA with countably infinitely many atoms define: x C y iff *x* overlaps *y* or both *x* and *y* are composed of infinitely many atoms.

Theorem

Any BA with contact as defined above is a Grzegorczyk contact algebra whose Fréchet filter is a Grzegorczyk point.

Proof idea.

The crucial step is to show that the chain:

$$\{-a_0\sqcap\ldots\sqcap-a_n\mid n\in\omega\}$$

is a point representative.

 $\mathcal{P}(\omega)$ is an atomic Boolean algebra, that can be turned into a contact algebra via:

$$x \mathbf{C} y : \longleftrightarrow x \cap y \neq \emptyset \lor (|x| = \aleph_0 \land |y| = \aleph_0)$$
.

According to the theorem from the previous slide this is a Grzegorczyk contact algebra whose Fréchet filter is a Grzegorczyk point.

Fréchet filter and Grzegorczyk points

Consider the sentence:

 $\varphi \coloneqq$ "Fréchet filter is a G-point"

Theorem

If \mathfrak{G} is an infinite GCA that satisfies φ , then:

- 1. 6 has countably many atoms.
- 2. the Fréchet filter is the only G-point that is a free filter.
- 3. **G** has as points (a) all filters generated by atoms and (b) the Fréchet filter (so has countably many points).

Definition

A topological space is a concetric space iff it is T_0 and every its point has a local basis that satisifes the following condition:

$$U = V \lor \mathsf{CI} U \subseteq V \lor \mathsf{CI} V \subseteq U.$$

Theorem (Representation theorem for GCAs)

Every GCA is isomorphic to a dense subalgbera of regular open algebra of a concentric space (whose points are *G*-points).

Fréchet filter and Grzegorczyk points

$$\varphi \coloneqq$$
 "Fréchet filter is a G-point"

Theorem

Let \mathfrak{G} be an infinite atomic GCA satisfying φ . Then its topological space is a continuous image of the Stone space under the function $f: \mathsf{Ult} \to \mathbf{G}$

$$f(U) \coloneqq \begin{cases} U & \text{if } U \text{ is principal,} \\ \text{the Fréchet filter} & \text{if } U \text{ is free.} \end{cases}$$

References I

- de Vries, H. (1962). Compact spaces and compactifications. Van Gorcum and Comp. N.V.
- Dimov, G. and Vakarelov, D. (2006). Contact algebras and region-based theory of space: A proximity approach–I. *Fundamenta Informaticae*, 74(2–3):209–249.
- Dimov, G. D. (2008). A generalization of de Vries duality theorem. Applied Categorical Structures, 17(5):501–516.
- Dimov, G. D. (2010a). A de Vries-type duality theorem for the category of locally compact spaces and continuous maps. I. *Acta Mathematica Hungarica*, 129(4):314–349.
- Dimov, G. D. (2010b). A de Vries-type duality theorem for the category of locally compact spaces and continuous maps. ii. *Acta Mathematica Hungarica*, 130(1):50–77.
- Gruszczyński, R. (2016). Niestandardowe teorie przestrzeni. Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika.
- Gruszczyński, R. and Pietruszczak, A. (2018). A study in Grzegorczyk point-free topology part i: Separation and Grzegorczyk structures. *Studia Logica*, (106):1197–1238.
- Gruszczyński, R. and Pietruszczak, A. (2019). A study in Grzegorczyk point-free topology part ii: Spaces of points. *Studia Logica*, (107):809–843.
- Gruszczyński, R. and Pietruszczak, A. (2020). Grzegorczyk points and filters in Boolean contact algebras. submitted to Review of Symbolic Logic, under reviews.
- Gruszczyński, R. (2021). Mathematical methods in region-based theories of space: the case of whitehead points.

References II

- Grzegorczyk, A. (1960). Axiomatizability of geometry without points. *Synthese*, 12(2–3):228–235.
- Hamkins, J. D. and Seabold, D. E. (2012). Well-founded boolean ultrapowers as large cardinal embeddings.
- Roeper, P. (1997). Region-based topology. Journal of Philosophical Logic, 26(3):251-309.
- Stone, M. H. (1936). The theory of representations for Boolean algebras. Transactions of the American Mathematical Society, 40(1):37–111.