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Regions-based theories of space

Theories of space that are base on the primitive notions of
region (chunk of space), part and some version of nearness
like contact or non-tangential part.

The framework of this talk: Boolean contact algebras.
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Boolean contact algebras

A boolean contact algebra is any structure 〈B ,C,t,u, -, 0, 1〉
such that:

1. 〈B ,t,u, -, 0, 1〉 is a boolean algebra, elements of B are
called regions.

2. C ⊆ B × B is a contact relation satisfying:

0 C/ x (C0)
x , 0→ x C x (C1)
x C y → y C x (C2)

x C y ∧ y 6 z → x C z (C3)
x C (y t z)→ z C y ∨ x C z . (C4)



Boolean contact algebras

In a standard way we define three auxiliary relations,
overlap, incompatibility and non-tangential part:

x © y :←→ x u y , 0 (df©)
x ⊥ y :←→ x u y = 0 (df⊥)
x � y :←→ x C/ −y . (df�)



Boolean contact algebras

A canonical interpretation of BCAs is obtained by taking a
boolean algebra whose regions are regular open (or regular
closed) sets of a topological space, and defining:

x C y :←→ Cl x ∩ Cl y , ∅ . (dfC)

In consequence:

x � y ←→ Cl x ⊆ y .



Boolean contact algebras

Another standard interpretation identifies contact with
overlap:

x C y :←→ x © y , (dfC)

In which case:
x � y ←→ x 6 y .

We will call such a contact algebra an overlap algebra.
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Dualities

Boolean algebras Stone spaces

De Vries algebras compact Hausdorff s.

Roeper algebras locally compact H. s.

Grzegorczyk algebras concentric spaces



Dualities

Boolean algebras Stone spaces

Motivations:
I find concrete representations of Boolean algebras in

order to
I understand BAs in an intuitive way.



Dualities

De Vries algebras compact Hausdorff s.

Motivations:
I algebraization of the topological notion of compactness,
I the topological notion was the starting point.



Dualities

Grzegorczyk algebras concentric spaces

Motivations:
I spatial intuition about regions and relations between

them,
I spatial intuitions about points as sets of «shrinking»

regions,
I a characterization of the notion of point was the starting

point.
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Boolean algebras Stone spaces

ultrafilters



Points

De Vries algebras compact Hausdorff s.

maximal round filters



Points

�x B {y ∈ R | y � x} . (df �)

Definition
A proper filter F of a BCA is round iff for every x ∈ F :
F ∩ �x , ∅.

Definition
A filter F is a maximal round filter (a de Vries point) iff F is
maximal in the family of round filters.



Points (representation theorem for BCAs)

BCAs compact semiregular T0 spaces

clusters

A clan is a non-empty, upward closed set C of regions such
that (a) for x t y in C , x is in C or y is in C and (b) for all
x, y ∈ C , x C y. A cluster is a maximal clan.



Points

Grzegorczyk algebras concentric spaces

Grzegorczyk points
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Grzegorczyk points

A G-representative (or representative of a point), is any
nonempty set Q or regions satisfying the following three
conditions:

0 < Q (r0)
∀x,y∈Q (x = y ∨ x � y ∨ y � x) (r1)

∀x∈Q∃y∈Q y � x (r2)
∀x,y∈R(∀u∈Q (u © x ∧ u © y)→ x C y) . (r3)

Let QG be the set of all G-representatives of a given BCA.



Grzegorczyk points

Grzegorczyk points are (proper) filters generated by points
representatives:

X ∈ G :←→ ∃Q∈QG X =
{
x ∈ B

∣∣∣∃y∈Q y 6 x
}
. (dfG)

For a G-point Q , let FQ be the G-point generated by Q .
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Correspondences

I Different sets of points of BCAs can be compared with
respect to the inclusion relation.

I Statements about those inclusions are formulated in
second-order monadic logic.

I Some of those statements are true in BCAs, e.g.:

every Grzegorczyk point is a De Vries point .

I Some are consequences of or correspond to
well-understood properties of BCAs.



Grzegorczyk points and ultrafilters

Theorem
If B is a complete atomless BCA, then no Grzegorczyk point
is an ultrafilter.

Proof.
No ultrafilter can be generated by a chain in any complete
atomless BA. (Hamkins and Seabold, 2012). �



Grzegorczyk contact algebras

Grzegorczyk contact algebras (Grzegorczyk, 1960) are
obtained from BCAs by adding two second-order axioms
postulating existence of Grzegorczyk points:

∀x∈B ∃Q∈QG x ∈ Q , (G1)
x C y → ∃Q∈QG ∀u∈Q (u © x ∧ u © y) . (G2)

G1 Every region has a point representative.
G2 Point representatives are guaranteed to exists where

regions touch each other.



Atoms and Grzegorczyk points

Fact
If a is an atom of a Grzegorczyk contact algebra, then {a} is
a representative of a point.

Proof sketch.
Since every region is in a point representative, there is Q
such that a ∈ Q . But then in Q there is x such that x � a.
So x = a and thus a � a. It follows that all three conditions
for point representatives are satisfied for {a}. �



Grzegorczyk points and ultrafilters

As we have seen:

Theorem
If B is a complete atomless BCA, then no Grzegorczyk point
is an ultrafilter.
We can refine it for GCAs:

Theorem
Any complete Grzegorczyk contact algebra is atomless iff
G ∩ Ult = ∅.

Proof sketch.
If there is an atom a, then {a} is a point representative, and
the Grzegorczyk point generated by it is an ultrafilter. �



Grzegorczyk points and ultrafilters

Theorem
In every Grzegorczyk contact algebra, G ⊆ Ult iff every
region is isolated: x � x.

Proof sketch.
(→) If x C −x, then by (G2) there is a Grzegorczyk point X
such that for every y ∈ X , y © x and y © −x. So neither x
nor its complement can be in X .
(←) If X ∈ G \ Ult, then there is a region y < {0, 1} such that
y < X and −y < X . Therefore every u ∈ X must overlap both
y and −y, and in consequence y C −y by properties of
G-points. �



Grzegorczyk points and ultrafilters

Theorem
In every complete Grzegorczyk contact algebra the following
statements are equivalent:

1. There are finitely many regions.
2. There are finitely many Grzegorczyk points.
3. Ult ⊆ G.
4. Ult = G.

Proof sketch.
Using the classical results that (a) every infinite BA has a
free ultrafilter and an infinite antichain and (b) no free filter
can be generated by a chain. �



Fréchet filter and Grzegorczyk points

Fréchet filter of an infinite atomic BA (every region is the
supremum of a set of atoms) is a set of all regions that miss
finitely many atoms.
The sentence “the Fréchet filter is a Grzegorczyk point” is
independent from the axioms of Grzegorczyk contact
algebras.



Fréchet filter and Grzegorczyk points

Theorem
In no Grzegorczyk contact algebra with uncountably many
atoms the Fréchet filter is a Grzegorczyk point.

Proof idea.
By the fact that in no BA with uncountably many atoms the
Fréchet filter can be generated by a chain. �

Fact
Every atomic overlap algebra is a Grzegorczyk contact
algebra. So there are GCAs in which the Fréchet filter is not
a Grzegorczyk point.



Fréchet filter and Grzegorczyk points

In a BA with countably infinitely many atoms define: x C y iff
x overlaps y or both x and y are composed of infinitely many
atoms.

Theorem
Any BA with contact as defined above is a Grzegorczyk
contact algebra whose Fréchet filter is a Grzegorczyk point.

Proof idea.
The crucial step is to show that the chain:

{−a0 u . . . u −an | n ∈ ω}

is a point representative. �



Fréchet filter and Grzegorczyk points

P(ω) is an atomic Boolean algebra, that can be turned into a
contact algebra via:

x C y :←→ x ∩ y , ∅ ∨ (|x | = ℵ0 ∧ |y | = ℵ0) .

According to the theorem from the previous slide this is a
Grzegorczyk contact algebra whose Fréchet filter is a
Grzegorczyk point.



Fréchet filter and Grzegorczyk points

Consider the sentence:

ϕ B “Fréchet filter is a G-point”

Theorem
If G is an infinite GCA that satisfies ϕ, then:

1. G has countably many atoms.
2. the Fréchet filter is the only G-point that is a free filter.
3. G has as points (a) all filters generated by atoms and (b)

the Fréchet filter (so has countably many points).



Fréchet filter and Grzegorczyk points

Definition
A topological space is a concetric space iff it is T0 and every
its point has a local basis that satisifes the following
condition:

U = V ∨ ClU ⊆ V ∨ ClV ⊆ U .

Theorem (Representation theorem for GCAs)
Every GCA is isomorphic to a dense subalgbera of regular
open algebra of a concentric space (whose points are
G-points).



Fréchet filter and Grzegorczyk points

ϕ B “Fréchet filter is a G-point”

Theorem
Let G be an infinite atomic GCA satisfying ϕ. Then its
topological space is a continuous image of the Stone space
under the function f : Ult→ G

f(U) B

U if U is principal,
the Fréchet filter if U is free.
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