Group representation for even and odd involutive commutative residuated chains

> Sándor Jeneí University of Pécs, Hungary

BLAST2021 Las Cruces

The Main Result

 We shall present a one-to-one correspondence in a constructive manner between the class of all

> odd or even involutive FL_e-chains and the class of

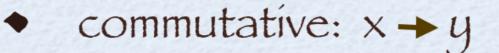
bunches of layer groups (certain direct systems of abelian *o*-groups)

Residuated lattices, FL-algebas

An algebra $\mathbf{A} = (A, \land, \lor, \lor, \lor, \land, \uparrow, \uparrow)$ is called a *full Lambek algebra* or an *FL-algebra*, if

- (A, ∧, ∨) is a lattice (i.e., ∧, ∨ are commutative, associative and mutually absorptive),
- (A, \cdot, t) is a monoid (i.e., \cdot is associative, with unit element t),
- $x \cdot y \leq z$ iff $y \leq x \setminus z$ iff $x \leq z/y$, for all $x, y, z \in A$,
- f is an arbitrary element of A.

Residuated lattices are exactly the f-free reducts of FL-algebras. So, for an FL-algebra $\mathbf{A} = (A, \land, \lor, \lor, \backslash, /, t, f)$, the algebra $\mathbf{A}_r = (A, \land, \lor, \lor, \backslash, /, t)$ is a residuated lattice and f is an arbitrary element of A. The maps \backslash and / are called the *left* and *right division*.



Odd or even involutive FLe-chains

FL_e-algebra : · is commutative
FL_e-chain : ≤ is a linear order
involutive : x'' = x where x' = x -> f
odd : t = f
even : x < t ⇒ x ≤ f

Odd or even involutive FL_e-chains

 IMTL-algebras are semilinear (IMTL-chains)
 Our class is the non-integral analogue of IMTLchains

Direct Systems

In mathematics, a directed set (or a directed preorder or a filtered set) is a nonempty set A together with a reflexive and transitive binary relation \leq (that is, a preorder), with the additional property that every pair of elements has an upper bound.^[1] In other words, for any *a* and *b* in A there must exist *c* in A with $a \leq c$ and $b \leq c$. A directed set's preorder is called a *direction*.

Let $\langle I, \leq \rangle$ be a directed partially ordered set (note that not all authors require *I* to be directed). Let $A_{\bullet} = (A_i)_{i \in I}$ be a family of objects indexed by *I* and $f_{ij}: A_i \to A_j$ be a homomorphism for all $i \leq j$ with the following properties:

- 1. f_{ii} is the identity of A_i , and
- 2. Compatibility condition: $f_{ik} = f_{jk} \circ f_{ij}$ for all $i \leq j \leq k$; that is, $A_i \xrightarrow{f_{ij}} A_j \xrightarrow{f_{jk}} A_k$ is equal to $A_i \xrightarrow{f_{ik}} A_k$.

Then the pair $\langle A_{\bullet}, f_{ij} \rangle$ is called a **direct system over** *I*. The maps f_{ij} are called the **bonding**, **connecting**, **transition**, or **linking maps/morphisms** of the system. If the bonding maps are understood or if there is no need to assign them symbols (e.g. as in the statements of some theorems) then the bonding maps will often be omitted (i.e. not written); for this reason it is common to see statements such as "let A_{\bullet} .

be a direct system."

$\langle G_u, H_u, \varsigma_{u \to v} \rangle \langle \Omega, \Psi, \Theta, \leq_{\kappa} \rangle$

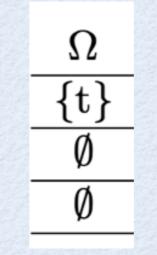
$\langle G_u, H_u, \varsigma_u \rightarrow v \rangle \langle \Omega, \Psi, \Theta, \leq_{\kappa} \rangle$

t

$$\langle G_u, H_u, S_u \to v \rangle \langle \Omega, \Psi, \Theta, \leq_{\kappa} \rangle$$

$$\boldsymbol{G}_u = (G_u, \preceq_u, \cdot_u, \ ^{-1_u}, u)$$

$\langle G_u, H_u, \varsigma_u \rightarrow v \rangle \langle \Omega, \Psi, \Theta, \leq_{\kappa} \rangle$



$\langle G_u, H_u, \varsigma_u \rightarrow v \rangle \langle \Omega, \Psi, \Theta, \leq_{\kappa} \rangle$

Ω Ø Ø {t} Ø

$\langle G_u, H_u, \varsigma_u \to v \rangle \langle \Omega, \Psi, \Theta, \leq_{\kappa} \rangle$

for $u \in \Psi$, G_u is discrete,

$\langle G_u, H_u, S_{u \to v} \rangle \langle \Omega, \Psi, \Theta, \leq_{\kappa} \rangle$

for $u \in \Psi$, G_u is discrete, for $u \in \Psi$, $\varsigma_{u \to v}(u) = \varsigma_{u \to v}(u_{\downarrow u})$

$\langle G_u, H_u, \varsigma_u \to v \rangle \langle \Omega, \Psi, \Theta, \leq_{\kappa} \rangle$

for $u \in \Theta$, $H_u \leq G_u$

$\langle G_u, H_u, S_{u \to v} \rangle \langle \Omega, \Psi, \Theta, \leq_{\kappa} \rangle$

for $u \in \Theta$, $H_u \leq G_u$ for $v \in \Theta$, $\varsigma_{u \to v}$ maps into H_v

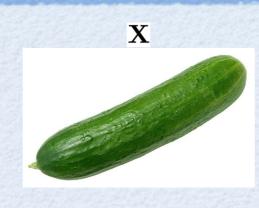
$\langle G_u, H_u, \varsigma_{u \to v} \rangle \langle \Omega, \Psi, \Theta, \leq_{\kappa} \rangle$

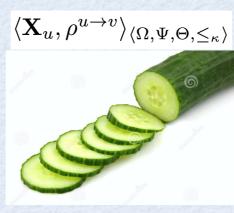
One-to-one correspondences

• the class of odd or even involutive FL_e-chains

the class of bunches of layer algebras (certain direct systems of more specific odd or even involutive FLechains)

the class of bunches of layer groups (certain direct systems of abelian o-groups)

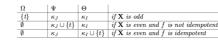




 $\langle G_u, H_u, \varsigma_{u o v}
angle_{\langle \Omega, \Psi, \Theta, \leq_\kappa
angle}$

Lemma 5.2. The following statements hold true.

In the following statements note true: (1) Given an odd or an even involutive $\mathbf{T}_{a,c}$ -chain $\mathbf{X} = (\mathbf{X}, \leq, \bullet, \rightarrow, t, f)$ with residual com-plement operation ', $A_{\mathbf{X}} = (\mathbf{X}_{a,p})^{u \neq uv}|_{(\Omega, \Psi, \Theta, \leq, \iota)}$ is a bunch of layer algebras, called the bunch of layer algebras of \mathbf{X} , where $\tau(\mathbf{x}) = \mathbf{x} \rightarrow \mathbf{z}, \mathbf{x} \in \{\tau(\mathbf{x}) : \mathbf{x} \in \mathbf{X}\}, \leq_{\mathbf{x}} = \leq \cap (\kappa \times \kappa),$ $\kappa_I = \{u \in \kappa, \{\ell\} : u' \text{ is idempotent}\}, \mathbf{x}_J = \{u \in \kappa, \{\{\} : u' \text{ is not idempotent}\}, \Omega, \Psi, \Theta$



for $u \in \kappa$

(5.3)

(5.4)

 $\mathbf{X}_{u} = (X_{u}, \leq_{u}, \bullet_{u}, \rightarrow_{\bullet_{u}}, u, u^{p}),$ $where \; X_u = \{x \in X: \tau(x) = u\}, \; \leq_u = \leq \cap \; (X_u \times X_u), \; \mathbf{e}_u = \mathbf{e}_{|X_u \times X_u}, \; \rightarrow_{\mathbf{e}_u} = \rightarrow_{\mathbf{e}|X_u \times X_u}, \; \forall \mathbf{e}_u = \mathbf{e}_{|X_u \times X_u}, \; \forall \mathbf{e}_u \in X_u, \; \forall \mathbf{e}_u \in X_u, \; \forall \mathbf{e}_u \in X_u, \; \forall \mathbf{e}_$ for $x \in X_u$, $x^{\tilde{r}} = x \rightarrow_* u'$, and for $u, v \in \kappa$, $u <_{\kappa} v$, $\rho^{u \rightarrow v} : X_u \rightarrow X_v$ is given by $\rho^{u \to v}(x) = v \bullet x.$

(2) Given a bunch of layer algebras A = (X_u, ρ^{u→v})_(Ω,Ψ,Θ,≤_s), X_u = (X_u, ≤_u, *_u, →_{*_u}, u, u^p with $x^{\mu} = x \rightarrow_{\bullet_{\mu}} u^{\mu}$, $\mathcal{X}_{\mathcal{A}} = (X, \leq, \bullet, \rightarrow_{\bullet}, t, t')$ is an involutive FL_{e} -chain, called the involutive FL -chain derived from A. where $X = \bigcup_{u \in u} X_u$ (5.5)for $v \in \kappa$, $\rho_v : X \to X$ is defined by $\rho_v(x) = \begin{cases} \rho^{u \to v}(x) & \text{ if } u <_{\kappa} v \text{ and } x \in X_u \\ x & \text{ if } u \ge_{\kappa} v \text{ and } x \in X_u \end{cases}$ (5.6)by denoting for $u, v \in \kappa$, $uv = \max_{\kappa}(u, v)$ for short, for $x \in X_u$ and $y \in X_v$ $\int u = v \text{ and } x \leq_u y$ (5.7) $u <_{\kappa} v$ and $\rho_v(x) \leq_v y$ $u >_{\kappa} v$ and $x <_{u} \rho_{u}(y)$ $x \bullet y = \rho_{uv}(x) \bullet_{uv} \rho_{uv}(y),$ (5.8) $x' = x^{\mu}$, (5.9) $x \to_{\bullet} y = (x \bullet y')',$ and t is the least element of κ . $\mathcal{X}_{\mathcal{A}}$ is odd if $t \in \Omega$, even with a non-idempotent falsum i $t \in \Psi$, and even with an idempotent falsum if $t \in \Theta$. (3) For a bunch of layer algebras \mathcal{A} , $\mathcal{A}_{(\mathcal{X}_{\mathcal{A}})} = \mathcal{A}$, and for an odd or even involutive FL_{e} -cha

Lemma 7.2. The following statements hold true. (1) Given a bunch of layer algebras $\mathcal{A} = \langle \mathbf{X}_u, \rho_{u \to v} \rangle_{\kappa}$ with $\kappa = \langle \Omega, \Psi, \Theta, \leq_{\kappa} \rangle$, $\mathcal{G}_{\mathcal{A}} = \langle \mathbf{G}_{u}, \mathbf{H}_{u}, \varsigma_{u \to v} \rangle_{\kappa}$ is bunch of layer groups, where $\iota(\mathbf{X}_u)$ if $u \in \Omega$ (72) $\iota (\mathbf{X}_{u_{\uparrow}})$ if $u \in \Psi$

(7.3)

 $\boldsymbol{H}_{u} = (H_{u}, \preceq_{u}, \cdot_{u}, \ ^{-1_{u}}, u) = \iota(\pi_{2}(\mathbf{X}_{u})),$ $\kappa = \Omega \cup \Psi \cup \Theta$, and for $u, v \in \kappa$ such that $u \leq_{\kappa} v, \varsigma_{u \to v} : G_u \to G_v$ is defined by $\zeta_{u \to v} = \rho_{u \to v}|_{G_u}$

Call $\mathcal{G}_{\mathcal{A}}$ the bunch of layer groups derived from \mathcal{A} .

(2,) Given a bunch of layer groups $\mathcal{G} = \langle \mathbf{G}_u, \mathbf{H}_u, \varsigma_{u \to v} \rangle_{\kappa}$ with $\kappa = \langle \Omega, \Psi, \Theta, \leq_{\kappa} \rangle$, $\mathcal{A}_{\mathcal{G}} = \langle \mathbf{X}_u, \rho_{u \to v} \rangle_{\kappa}$ is bunch of layer algebras, called the bunch of layer algebras derived from \mathcal{G} , where
(7.5)	$\mathbf{X}_{u} = (X_{u}, \leq_{u}, \cdot_{u}, \rightarrow_{u}, u, u^{r}) = \begin{cases} \iota(\mathbf{G}_{u}) & \text{if } u \in \Omega \\ \iota(\mathbf{G}_{u})_{\downarrow} & \text{if } u \in \Psi \\ Sp(\iota(\mathbf{G}_{u}), \iota(\mathbf{H}_{u})), & \text{if } u \in \Theta \end{cases},$
	$\kappa=\Omega\cup\Psi\cup\Theta,$ and for $u,v\in\kappa$ such that $u\leq_{\kappa}v,\ \rho_{u\to v}:X_u\to X_v$ is defined by
(7.6)	$\rho_{u \to v} = \begin{cases} \varsigma_{u \to v} & \text{if } u \notin \Theta \\ \varsigma_{u \to v} \circ h_u & \text{if } v > u \in \Theta \\ \text{id}_{X_u} & \text{if } v = u \in \Theta \end{cases} ,$

where h_u is the canonical homomorphism of X_u

 $\mathbf{X}, \mathcal{X}_{A_{\mathbf{X}}} = \mathbf{X}$

Lemma 5.2. The following statements hold true.

(1) Given an odd or an even involutive FL_e -chain $\mathbf{X} = (X, \leq, \mathfrak{s}, \rightarrow_{\mathfrak{s}}, t, f)$ with residual complement operation ', $\mathcal{A}_{\mathbf{X}} = \langle \mathbf{X}_{u}, \rho^{u \to v} \rangle_{\langle \Omega, \Psi, \Theta, \leq_{\kappa} \rangle}$ is a bunch of layer algebras, called the bunch of layer algebras of **X**, where $\tau(x) = x \rightarrow x$, $\kappa = \{\tau(x) : x \in X\}, \leq_{\kappa} = \leq \cap (\kappa \times \kappa),$ $\kappa_I = \{u \in \kappa \setminus \{t\} : u' \text{ is idempotent}\}, \ \kappa_J = \{u \in \kappa \setminus \{t\} : u' \text{ is not idempotent}\}, \ \Omega, \ \Psi, \Theta$ are defined by

Ω	$ \Psi $	Θ	
$\{t\}$	κ_J	κ_I	$if \mathbf{X} is odd$
Ø	$\kappa_J \cup \{t\}$	κ_I	if \mathbf{X} is even and f is not idempotent
Ø	κ_J	$\kappa_I \cup \{t\}$	if \mathbf{X} is even and f is idempotent

for $u \in \kappa$,

$$\mathbf{X}_{u} = (X_{u}, \leq_{u}, \boldsymbol{\ast}_{u}, \rightarrow_{\boldsymbol{\ast}_{u}}, u, u'^{\mu})$$

 $\rho^{u \to v}(x) = v \ast x.$

where $X_u = \{x \in X : \tau(x) = u\}, \leq_u = \leq \cap (X_u \times X_u), \ \mathfrak{s}_u = \mathfrak{s}_{|X_u \times X_u}, \rightarrow_{\mathfrak{s}_u} = \rightarrow_{\mathfrak{s}|X_u \times X_u},$ for $x \in X_u$, $x'' = x \to_{*} u'$, and for $u, v \in \kappa$, $u <_{\kappa} v$, $\rho^{u \to v} : X_u \to X_v$ is given by

(5.4)

chains)

the class of bunches of $\langle \pmb{G}_u, \pmb{H}_u, \varsigma_{u
ightarrow v}
angle_{\langle \Omega, \Psi, \Theta, \leq_\kappa
angle}$ layer groups (certain direct systems of abelian *o*-groups)

Lemma 7.2. The following statements hold true.
(1) Given a bunch of layer algebras
$$\mathcal{A} = \langle \mathbf{X}_{u}, \rho_{u \to v} \rangle_{\kappa}$$
 with $\kappa = \langle \Omega, \Psi, \Theta, \leq_{\kappa} \rangle$,
 $\mathcal{G}_{\mathcal{A}} = \langle \mathbf{G}_{u}, \mathbf{H}_{u}, \varsigma_{u \to v} \rangle_{\kappa}$ is bunch of layer groups, where
(7.2) $\mathbf{G}_{u} = (\mathbf{G}_{u}, \preceq_{u}, \cdot_{u}, -1^{u}, u) = \begin{cases} \iota(\mathbf{X}_{u}) & \text{if } u \in \Omega \\ \iota(\mathbf{X}_{u}) & \text{if } u \in \Psi \\ \iota(\pi_{1}(\mathbf{X}_{u})) & \text{if } u \in \Theta \end{cases}$
(7.3) $\mathbf{H}_{u} = (\mathbf{H}_{u}, \preceq_{u}, \cdot_{u}, -1^{u}, u) = \iota(\pi_{2}(\mathbf{X}_{u})),$
 $\kappa = \Omega \cup \Psi \cup \Theta$, and for $u, v \in \kappa$ such that $u \leq_{\kappa} v, \varsigma_{u \to v} : \mathbf{G}_{u} \to \mathbf{G}_{v}$ is

	Given a bunch of layer algebras $\mathcal{A} = \langle \mathbf{X}_u, \rho^{u \to v} \rangle_{(\Omega, \Psi, \Theta, \leq_n)}, \mathbf{X}_u = (X_u, \leq_u, \bullet_u, \to_{\bullet_u}, u, u^p)$ with $x^p = x \to_{\bullet_u} u^p$, $\mathcal{X}_{\mathcal{A}} = (X, \leq_*, \bullet_*, t, t^{\prime})$ is an involutive FL_e -chain, called the involutive FL_e -chain derived from \mathcal{A} , where
(5.5)	$X = \bigcup_{u \in \kappa} X_u,$
	for $v \in \kappa$, $\rho_v : X \to X$ is defined by
(5.6)	$\rho_v(x) = \left\{ \begin{array}{ll} \rho^{u \to v}(x) & \text{ if } u <_\kappa v \ and \ x \in X_u \\ x & \text{ if } u \ge_\kappa v \ and \ x \in X_u \end{array} \right.,$
	by denoting for $u, v \in \kappa$, $uv = \max_{\kappa}(u, v)$ for short, for $x \in X_u$ and $y \in X_v$,
(5.7)	$x \leq y \text{ iff } \begin{cases} u = v \text{ and } x \leq_u y \\ u <_{\kappa} v \text{ and } \rho_v(x) \leq_v y \\ u >_{\kappa} v \text{ and } x <_u \rho_u(y) \end{cases},$
(5.8)	$x ullet y = ho_{uv}(x) ullet_{uv} ho_{uv}(y),$
(5.9)	$x^{\prime}=x^{ m \prime}$,
(5.10)	$x \to_{\bullet} y = (x \bullet y')',$
(3)	and t is the least element of κ . X_A is odd if $t \in \Omega$, even with a non-idempotent falsum if $t \in \Psi$, and even with an idempotent falsum if $t \in \Theta$. For a bunch of layer algebras A , $A_{(X_A)} = A$, and for an odd or even involutive FL_e -chain \mathbf{X} , $X_{A_{\mathbf{X}}} = \mathbf{X}$.

(2) Given a bunch of layer groups G = ⟨G _u , H _u , s _{u→v} ⟩ _κ with κ = ⟨Ω, Ψ, Θ, ≤ _κ ⟩, A _G = ⟨X _u , ρ _{u→v} ⟩ _κ is bunch of layer algebras, called the bunch of layer algebras derived from G, where
(7.5) $\mathbf{X}_{u} = (X_{u}, \leq_{u}, \cdot_{u}, \rightarrow_{u}, u, u^{p}) = \begin{cases} \iota(\mathbf{G}_{u}) & \text{if } u \in \Omega \\ \iota(\mathbf{G}_{u})_{\downarrow} & \text{if } u \in \Psi \\ Sp(\iota(\mathbf{G}_{u}), \iota(\mathbf{H}_{u})), & \text{if } u \in \Theta \end{cases},$
$\kappa = \Omega \cup \Psi \cup \Theta$, and for $u, v \in \kappa$ such that $u \leq_{\kappa} v$, $\rho_{u \to v} : X_u \to X_v$ is defined by
(7.6) $\rho_{u \to v} = \begin{cases} \varsigma_{u \to v} & \text{if } u \notin \Theta \\ \varsigma_{u \to v} \circ h_u & \text{if } v > u \in \Theta \\ \text{id}_{X_u} & \text{if } v = u \in \Theta \end{cases},$
where h_{μ} is the canonical homomorphism of \mathbf{X}_{μ} .

One-to-one correspondences

X

• the class of odd or even involutive FL_e-chains

the class of bunches of Lemma 7.2. The following statements hold true.

(1) Given a bunch of layer algebras $\mathcal{A} = \langle \mathbf{X}_u, \rho_{u \to v} \rangle_{\kappa}$ with $\kappa = \langle \Omega, \Psi, \Theta, \leq_{\kappa} \rangle$, $\mathcal{G}_{\mathcal{A}} = \langle \mathbf{G}_u, \mathbf{H}_u, \varsigma_{u \to v} \rangle_{\kappa}$ is bunch of layer groups, where

(7.2)
$$\boldsymbol{G}_{u} = (\boldsymbol{G}_{u}, \preceq_{u}, \cdot_{u}, \ ^{-1_{u}}, u) = \begin{cases} \iota(\mathbf{X}_{u}) & \text{if } u \in \Omega \\ \iota\left(\mathbf{X}_{u}\right) & \text{if } u \in \Psi \\ \iota(\pi_{1}(\mathbf{X}_{u})) & \text{if } u \in \Theta \end{cases},$$

for $u \in \Theta$,

(7.3)
$$\boldsymbol{H}_{u} = (H_{u}, \preceq_{u}, \cdot_{u}, \ ^{-1_{u}}, u) = \iota(\pi_{2}(\mathbf{X}_{u})),$$

 $\kappa = \Omega \cup \Psi \cup \Theta$, and for $u, v \in \kappa$ such that $u \leq_{\kappa} v, \varsigma_{u \to v} : G_u \to G_v$ is defined by

(7.4)
$$\varsigma_{u \to v} = \rho_{u \to v}|_{G_u}.$$

Call $\mathcal{G}_{\mathcal{A}}$ the bunch of layer groups derived from \mathcal{A} .

 $\mathbf{X}_u = (X_u, \leq_u, \bullet_u, \rightarrow_{\bullet_u}, u, u^{''}),$

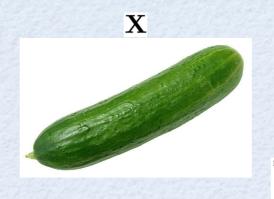
(2)	Given a bunch of layer algebras $\mathcal{A} = \langle \mathbf{X}_u, \rho^{u \to v} \rangle_{(\Omega, \Psi, \Theta, \leq_n)}, \mathbf{X}_u = (X_u, \leq_u, \Phi_u, \rightarrow_{\bullet_u}, u, u^p)$ with $x^p = x \to_{\bullet_u} u^p$, $\mathcal{X}_{\mathcal{A}} = (X, \leq_{\bullet}, \bullet_{\bullet}, t, t')$ is an involutive FL_e -chain, called the involutive FL_e -chain derived from \mathcal{A} , where
5.5)	$X = \dot{\bigcup}_{u \in \kappa} X_u,$
	for $v \in \kappa$, $\rho_v : X \to X$ is defined by
5.6)	$\rho_v(x) = \left\{ \begin{array}{ll} \rho^{u \to v}(x) & \mbox{if } u <_\kappa v \ \mbox{and } x \in X_u \\ x & \mbox{if } u \geq_\kappa v \ \mbox{and } x \in X_u \end{array} \right.,$
	by denoting for $u, v \in \kappa$, $uv = \max_{\kappa}(u, v)$ for short, for $x \in X_u$ and $y \in X_v$,
5.7)	$x \leq y \text{ iff } \begin{cases} u = v \text{ and } x \leq_u y \\ u <_{\kappa} v \text{ and } \rho_v(x) \leq_v y \\ u >_{\kappa} v \text{ and } x <_u \rho_u(y) \end{cases}$
5.8)	$x ullet y = ho_{uv}(x) ullet_{uv} ho_{uv}(y),$
5.9)	$x'=x^{\mu}$,
5.10)	$x \to_{\bullet} y = (x \bullet y')',$
	and t is the least element of κ . $\mathcal{X}_{\mathcal{A}}$ is odd if $t \in \Omega$, even with a non-idempotent falsum if $t \in \Psi$, and even with an idempotent falsum if $t \in \Theta$.
(2)	For a hunch of layer algebras A A $-A$ and for an odd or even involutive EL shain

 $\mathbf{X}, \mathcal{X}_{\mathcal{A}_{\mathbf{X}}} = \mathbf{X}.$

(2)	Given a bunch of layer groups $\mathcal{G} = \langle \mathbf{G}_u, \mathbf{H}_u, \varsigma_{u \to v} \rangle_{\kappa}$ with $\kappa = \langle \Omega, \Psi, \Theta, \leq_{\kappa} \rangle$, $\mathcal{A}_{\mathcal{G}} = \langle \mathbf{X}_u, \rho_{u \to v} \rangle_{\kappa}$ is bunch of layer algebras, called the bunch of layer algebras derived from \mathcal{G} , where
(7.5)	$\mathbf{X}_{u} = (X_{u}, \leq_{u}, \cdot_{u}, \rightarrow_{u}, u, u^{^{p}}) = \left\{ \begin{array}{ll} \iota(\mathbf{G}_{u}) & \text{if } u \in \Omega \\ \iota(\mathbf{G}_{u})_{\downarrow} & \text{if } u \in \Psi \\ Sp(\iota(\mathbf{G}_{u}), \iota(\mathbf{H}_{u})), & \text{if } u \in \Theta \end{array} \right.,$
	$\kappa=\Omega\cup\Psi\cup\Theta,$ and for $u,v\in\kappa$ such that $u\leq_{\kappa}v,\ \rho_{u\to v}:X_u\to X_v$ is defined by
(7.6)	$\rho_{u \to v} = \begin{cases} \varsigma_{u \to v} & \text{if } u \notin \Theta \\ \varsigma_{u \to v} \circ h_u & \text{if } v > u \in \Theta \\ \text{id}_{X_u} & \text{if } v = u \in \Theta \end{cases},$
	where h_u is the canonical homomorphism of \mathbf{X}_u .

One-to-one correspondences

• the class of odd or even involutive FL_e-chains



series 5.2. The following statements hold true. (1) Given an odd or an even involutive FL_c -chain $\mathbf{X} = (X, \leq, \bullet, \rightarrow_{\bullet}, t, f)$ with residual complement operation ', $A_{\mathbf{X}} = \langle \mathbf{X}_u, \rho^{u \to v} \rangle_{(\Omega, \Psi, \Theta, \leq_n)}$ is a bunch of layer algebras, called the bunch of layer algebras of \mathbf{X} , where $\tau(x) = x \to x, \kappa \in \{\tau(x) : x \in X\}, \leq_{\kappa} = \leq \cap (\kappa \times \kappa),$ $\kappa_I = \{u \in \kappa \setminus \{t\} : u' \text{ is idempotent}\}, \kappa_J = \{u \in \kappa \setminus \{t\} : u' \text{ is not idempotent}\}, \Omega, \Psi, \Theta$ are defined by

(2) Given a bunch of layer groups $\mathcal{G} = \langle \mathbf{G}_u, \mathbf{H}_u, \varsigma_{u \to v} \rangle_{\boldsymbol{\kappa}}$ with $\boldsymbol{\kappa} = \langle \Omega, \Psi, \Theta, \leq_{\boldsymbol{\kappa}} \rangle$, $\mathcal{A}_{\mathcal{G}} = \langle \mathbf{X}_u, \rho_{u \to v} \rangle_{\boldsymbol{\kappa}}$ is bunch of layer algebras, called the bunch of layer algebras derived from \mathcal{G} , where

(7.5)
$$\mathbf{X}_{u} = (X_{u}, \leq_{u}, \cdot_{u}, \rightarrow_{u}, u, u'') = \begin{cases} \iota(\mathbf{G}_{u}) & \text{if } u \in \Omega \\ \iota(\mathbf{G}_{u})_{\downarrow} & \text{if } u \in \Psi \\ Sp(\iota(\mathbf{G}_{u}), \iota(\mathbf{H}_{u})), & \text{if } u \in \Theta \end{cases},$$

 $\kappa = \Omega \cup \Psi \cup \Theta$, and for $u, v \in \kappa$ such that $u \leq_{\kappa} v$, $\rho_{u \to v} : X_u \to X_v$ is defined by

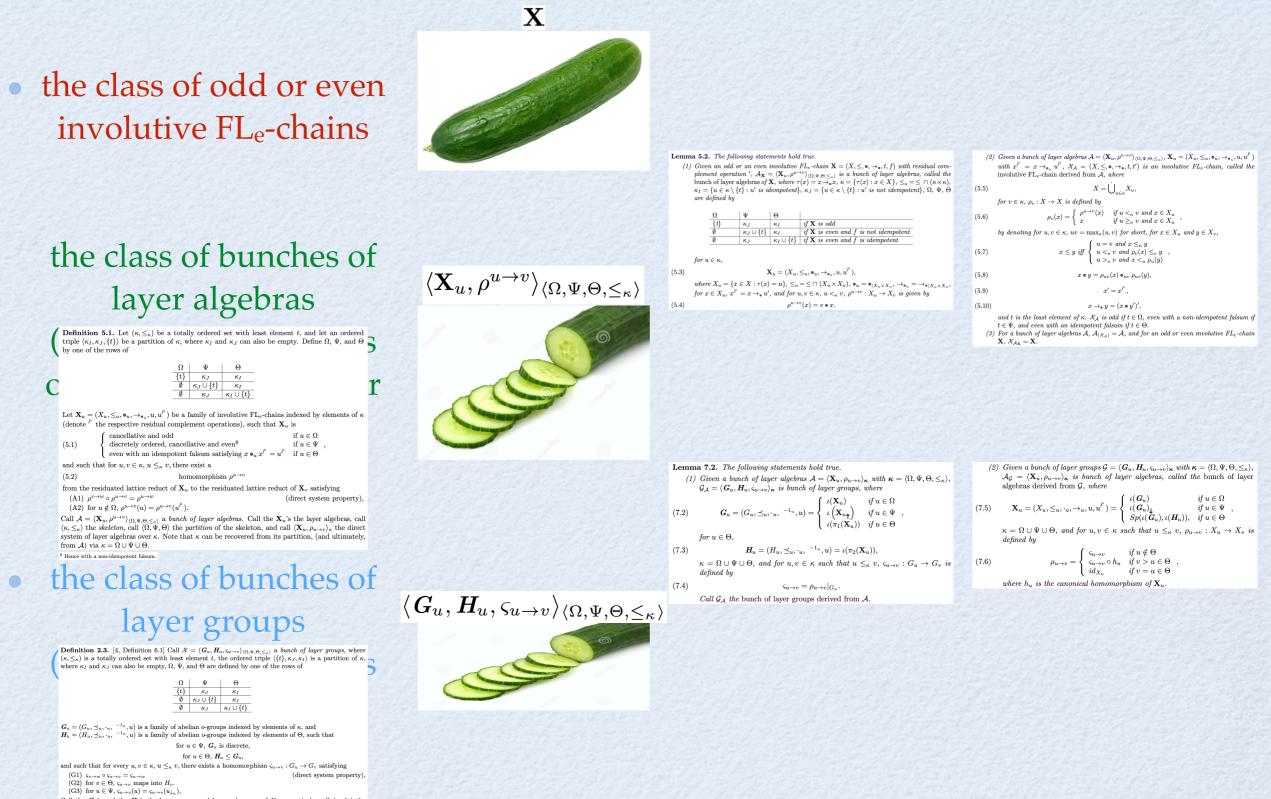
(7.6)
$$\rho_{u \to v} = \begin{cases} \varsigma_{u \to v} & \text{if } u \notin \Theta \\ \varsigma_{u \to v} \circ h_u & \text{if } v > u \in \Theta \\ \text{id}_{X_u} & \text{if } v = u \in \Theta \end{cases},$$

where h_u is the canonical homomorphism of \mathbf{X}_u .

Given a bunch of layer algebras $\mathcal{A} = \langle \mathbf{X}_u, \rho^{u \to v} \rangle_{\langle \Omega, \Psi, \Theta, \leq_\kappa \rangle}, \mathbf{X}_u = (X_u, \leq_u, \mathbf{*}_u, \mathbf{*}_u, u, u')$ (2)with $x'' = x \rightarrow_{\bullet_u} u''$, $\mathcal{X}_{\mathcal{A}} = (X, \leq, \bullet, \rightarrow_{\bullet}, t, t')$ is an involutive FL_e -chain, called the involutive FL_e -chain derived from \mathcal{A} , where $X = \bigcup_{u \in u} X_u,$ (5.5)for $v \in \kappa$, $\rho_v : X \to X$ is defined by $\rho_{v}(x) = \begin{cases} \rho^{u \to v}(x) & \text{if } u <_{\kappa} v \text{ and } x \in X_{u} \\ x & \text{if } u \ge_{\kappa} v \text{ and } x \in X_{u} \end{cases},$ (5.6)by denoting for $u, v \in \kappa$, $uv = \max_{\kappa}(u, v)$ for short, for $x \in X_u$ and $y \in X_v$, $x \leq y \text{ iff } \begin{cases} u = v \text{ and } x \leq_u y \\ u <_{\kappa} v \text{ and } \rho_v(x) \leq_v y \\ u >_{\kappa} v \text{ and } x <_u \rho_u(y) \end{cases},$ (5.7) $x \ast y = \rho_{uv}(x) \ast_{uv} \rho_{uv}(y),$ (5.8)x'=x''. (5.9)(5.10) $x \to_{*} y = (x * y')',$ and t is the least element of κ . $\mathcal{X}_{\mathcal{A}}$ is odd if $t \in \Omega$, even with a non-idempotent falsum if $t \in \Psi$, and even with an idempotent falsum if $t \in \Theta$. (3) For a bunch of layer algebras \mathcal{A} , $\mathcal{A}_{(\mathcal{X}_{\mathcal{A}})} = \mathcal{A}$, and for an odd or even involutive FL_e -chain $\mathbf{X}, \, \mathcal{X}_{\mathcal{A}_{\mathbf{X}}} = \mathbf{X}.$ (Certain uneu systems

of abelian *o*-groups)

One-to-one correspondences



Call the G_u 's and the H_u 's the layer groups and layer subgroups of \mathcal{X} , respectively, call $\langle \kappa, \leq_\kappa \rangle$ the skeleton of \mathcal{X} , call $\langle \Omega, \Psi, \Theta \rangle$ the partition of the skeleton, and call $\langle G_u, \varsigma_{u \to v} \rangle_\kappa$ the direct system of \mathcal{X} . Note that κ can be recovered from its partition, (and ultimately, from \mathcal{X}) via $\kappa = \Omega \cup \Psi \cup \Theta$.

Definition 5.1. Let (κ, \leq_{κ}) be a totally ordered set with least element t, and let an ordered triple $\langle \kappa_I, \kappa_J, \{t\} \rangle$ be a partition of κ , where κ_I and κ_J can also be empty. Define Ω, Ψ , and Θ by one of the rows of

Ω	Ψ	Θ
$\{t\}$	κ_J	κ_I
Ø	$\kappa_J \cup \{t\}$	κ_I
Ø	κ_J	$\kappa_I \cup \{t\}$

Let $\mathbf{X}_u = (X_u, \leq_u, \ast_u, \rightarrow_{\ast_u}, u, u'')$ be a family of involutive FL_e -chains indexed by elements of κ

e la parte

 $(x_{u}), \mathbf{X}_{u} = (X_{u}, \leq_{u}, \bullet_{u}, \rightarrow_{\bullet_{u}}, u, u)^{\prime}$ i involutive FL_e-chain, called th

with $\kappa = \langle \Omega, \Psi, \Theta, \langle ... \rangle$

 $\substack{:\,\in\,X_u\\:\,\in\,X_u}$

 $x \in X_u$ and $y \in X_v$

 $\begin{array}{ll} (\text{denote}^{\ \mu} \ \text{the respective residual complement operations}), \ \text{such that} \ \mathbf{X}_u \ \text{is} \\ \\ (5.1) & \left\{ \begin{array}{ll} \text{cancellative and odd} & \text{if} \ u \in \Omega \\ \text{discretely ordered, cancellative and even}^8 & \text{if} \ u \in \Psi \\ \text{even with an idempotent falsum satisfying} \ x \ \mathbf{*}_u \ x'^{\mu} = u'^{\mu} & \text{if} \ u \in \Theta \end{array} \right. \\ \text{and such that for} \ u, v \in \kappa, \ u \leq_{\kappa} v, \ \text{there exist a} \end{array}$

(5.2) homomorphism $\rho^{u \to v}$

 \mathbf{C} from the residuated lattice reduct of \mathbf{X}_u to the residuated lattice reduct of \mathbf{X}_v satisfying

(A1)
$$\rho^{v \to w} \circ \rho^{u \to v} = \rho^{u \to w}$$
 (direct system property),
(A2) for $u \notin \Omega$, $\rho^{u \to v}(u) = \rho^{u \to v}(u^{\mu})$.

Call $\mathcal{A} = \langle \mathbf{X}_{u}, \rho^{u \to v} \rangle_{\langle \Omega, \Psi, \Theta, \leq_{\kappa} \rangle}$ a bunch of layer algebras. Call the \mathbf{X}_{u} 's the layer algebras, call $\underset{\forall u \in \Psi, \\ \forall u \in \Psi, \\ \forall u \in \Psi, \\ \forall u \in \Psi \rangle}{\langle \kappa, \leq_{\kappa} \rangle}$ the skeleton, call $\langle \Omega, \Psi, \Theta \rangle$ the partition of the skeleton, and call $\langle \mathbf{X}_{u}, \rho_{u \to v} \rangle_{\kappa}$ the direct $\underset{\forall u \in \Psi, \\ \forall u \in \Psi, \\ \forall u \in \Psi \rangle}{\langle \kappa, \psi, \rho_{u \to v} : X_{u} \to X_{v} \in \Theta \rangle}$ system of layer algebras over κ . Note that κ can be recovered from its partition, (and ultimately, $\underset{\in \Theta}{\langle \Theta, \\ \in \Theta \rangle}$ from \mathcal{A}) via $\kappa = \Omega \cup \Psi \cup \Theta$.

8 Hence with a non-idempotent falsum. Definition 2.3. [4, Definition 6.1] Call $\mathcal{X} = (G_u, H_u, \varsigma_{u \to v})_{(\Omega, \Psi, \Theta, \leq_u)}$ a bunch of layer groups, where $(\kappa, \varsigma_{\omega})$ is a totally ordered set with least element t, the ordered triple $\{\{l\}, \kappa_J, \kappa_I\}$ is a partition of κ , where κ_I and κ_J can also be empty, Ω, Ψ , and Θ are defined by one of the rows of $\frac{\Omega}{\{t\}} \frac{\Psi}{\kappa_J} \frac{\Theta}{\{t\}} \frac{\Theta}{\kappa_J}$ $G_u = (G_u, \varsigma_u, \gamma_u, \neg^{-1u}, u)$ is a family of abelian o-groups indexed by elements of κ , and $H_u = (H_u, \varsigma_u, \gamma_u, \neg^{-1u}, u)$ is a family of abelian o-groups indexed by elements of Θ , such that for $u \in \Theta, H_u \leq G_u$, and such that for every $u, v \in \kappa, u \leq_{\kappa} v$, there exists a homomorphism $\varsigma_{u \to v} : G_u \to G_v$ satisfying (G1) $\varsigma_{v \to w} \circ \sigma_{u \to v} = \varsigma_{u \to w}$ (direct system property), (G2) for $v \in \Theta, \varsigma_{u \to v}$ maps into H_v .

the G_u 's and the H_u 's the layer groups and layer subgroups of \mathcal{X} , respectively, call $\langle \kappa, \leq_n \rangle$ it on of \mathcal{X} , call (Ω, Ψ, Θ) the partition of the skeleton, and call $(G_u, \varsigma_{u\to n})_n$ the direct system of that κ can be recovered from its partition. (and ultimately, from \mathcal{X}) via $\kappa = \Omega \cup \Psi \cup \Theta$.

t

0

 $(\lor u, \amalg u, \land u \to v / (\sqcup, \Psi, \Theta, \leq_{\kappa}))$

One-to-one correspondences

 $\langle G_u, H_u, \varsigma_{u \to v} \rangle_{\langle \Omega, \Psi, \Theta, \leq_{\kappa} \rangle}$

Definition 2.3. [4, Definition 6.1] Call $\mathcal{X} = \langle G_u, H_u, \varsigma_{u \to v} \rangle_{\langle \Omega, \Psi, \Theta, \leq_{\kappa} \rangle}$ a bunch of layer groups, where (κ, \leq_{κ}) is a totally ordered set with least element t, the ordered triple $\langle \{t\}, \kappa_J, \kappa_I \rangle$ is a partition of κ , where κ_I and κ_J can also be empty, Ω, Ψ , and Θ are defined by one of the rows of

Ω	Ψ	Θ
{t}	κ_J	κ_I
Ø	$\kappa_J \cup \{t\}$	κ_I
Ø	κ_J	$\kappa_I \cup \{t\}$

 $G_u = (G_u, \preceq_u, \cdot_u, \stackrel{-1_u}{}, u)$ is a family of abelian *o*-groups indexed by elements of κ , and $H_u = (H_u, \preceq_u, \cdot_u, \stackrel{-1_u}{}, u)$ is a family of abelian *o*-groups indexed by elements of Θ , such that

for $u \in \Psi$, G_u is discrete,

for $u \in \Theta$, $H_u \leq G_u$,

and such that for every $u, v \in \kappa, u \leq_{\kappa} v$, there exists a homomorphism $\zeta_{u \to v} : G_u \to G_v$ satisfying

(direct system property),

(G2) for $v \in \Theta$, $\varsigma_{u \to v}$ maps into H_v .

(G1) $\varsigma_{v \to w} \circ \varsigma_{u \to v} = \varsigma_{u \to w}$

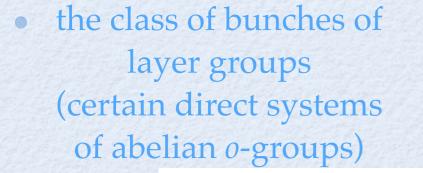
(G3) for
$$u \in \Psi$$
, $\varsigma_{u \to v}(u) = \varsigma_{u \to v}(u_{\downarrow_u})$,

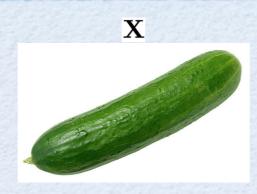
Call the G_u 's and the H_u 's the layer groups and layer subgroups of \mathcal{X} , respectively, call $\langle \kappa, \leq_{\kappa} \rangle$ the skeleton of \mathcal{X} , call $\langle \Omega, \Psi, \Theta \rangle$ the partition of the skeleton, and call $\langle G_u, \varsigma_{u \to v} \rangle_{\kappa}$ the direct system of \mathcal{X} . Note that κ can be recovered from its partition, (and ultimately, from \mathcal{X}) via $\kappa = \Omega \cup \Psi \cup \Theta$.

One-to-one correspondences

• the class of odd or even involutive FL_e-chains

the class of bunches of layer algebras (certain direct systems of more specific odd or even involutive FLechains)



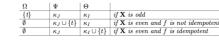


 $\langle \mathbf{X}_u, \rho^{u \to v} \rangle_{\langle \Omega, \Psi, \Theta, \leq_{\kappa} \rangle}$

 $\langle G_u, H_u, \varsigma_{u \to v} \rangle_{\langle \Omega, \Psi, \Theta, \leq_{\kappa} \rangle}$

Lemma 5.2. The following statements hold true.

(1) Given an odd or an even involutive FL_c-chain $\mathbf{X} = (X, \leq, \bullet, \rightarrow_{\bullet}, t, f)$ with residual com-plement operation ', $A_{\mathbf{X}} = (\mathbf{X}_{\omega_{i}})^{\mu \to \pi})_{(\Omega, \Psi, \Theta, \zeta_{\omega_{i}})}$ is a bunch of layer algebras, called the bunch of layer algebras of \mathbf{X} , where $\tau(\mathbf{x}) = x \rightarrow_{\bullet} x$, $\kappa = \{\tau(\mathbf{x}) : x \in \mathbf{X}\}$, $\varsigma_{\kappa} = \leq \cap (\kappa \times \kappa)$, $\kappa_{I} = \{u \in \kappa \setminus \{t\}\}$: if is idempotent), $\kappa_{I} = \{u \in \kappa \setminus \{t\}\}$: if is not idempotent), Ω, Ψ, Θ



for $u \in \kappa$

(5.3)

(5.4)

 $\mathbf{X}_{u} = (X_{u}, \leq_{u}, \bullet_{u}, \rightarrow_{\bullet_{u}}, u, u^{p}),$ $where \; X_u = \{x \in X: \tau(x) = u\}, \; \leq_u = \leq \cap \; (X_u \times X_u), \; \mathbf{e}_u = \mathbf{e}_{|X_u \times X_u}, \; \rightarrow_{\mathbf{e}_u} = \rightarrow_{\mathbf{e}|X_u \times X_u}, \; \forall \mathbf{e}_u = \mathbf{e}_{|X_u \times X_u}, \; \forall \mathbf{e}_u \in X_u, \; \forall \mathbf{e}_u = \mathbf{e}_{|X_u \times X_u}, \; \forall \mathbf{e}_u =$ for $x \in X_u$, $x^{r} = x \rightarrow_* u'$, and for $u, v \in \kappa$, $u <_{\kappa} v$, $\rho^{u \rightarrow v} : X_u \rightarrow X_v$ is given by $a^{u \to v}(x) = v \bullet x$

(2) Given a bunch of layer algebras A = (X_u, ρ^{u→v})_(Ω,Ψ,Θ,≤_s), X_u = (X_u, ≤_u, *_u, →_{*_u}, u, u^p with $x^{\mu} = x \rightarrow_{\bullet_{\mu}} u^{\mu}$, $\mathcal{X}_{\mathcal{A}} = (X, \leq, \bullet, \rightarrow_{\bullet}, t, t')$ is an involutive FL_{e} -chain, called the involutive FL -chain derived from A. where $X = \bigcup_{u \in u} X_u$ (5.5)for $v \in \kappa$, $\rho_v : X \to X$ is defined by $\rho_v(x) = \begin{cases} \rho^{u \to v}(x) & \text{ if } u <_{\kappa} v \text{ and } x \in X_u \\ x & \text{ if } u \ge_{\kappa} v \text{ and } x \in X_u \end{cases}$ (5.6)by denoting for $u, v \in \kappa$, $uv = \max_{\kappa}(u, v)$ for short, for $x \in X_u$ and $y \in X_v$ $u = v \text{ and } x \leq_u y$ (5.7) $u <_{\kappa} v$ and $\rho_v(x) \leq_v y$ $u >_{\kappa} v$ and $x <_{u} \rho_{u}(y)$ $x \bullet y = \rho_{uv}(x) \bullet_{uv} \rho_{uv}(y),$ (5.8) $x' = x^{p}$. (5.9) $x \rightarrow_{\bullet} y = (x \bullet y')',$ and t is the least element of κ . $\mathcal{X}_{\mathcal{A}}$ is odd if $t \in \Omega$, even with a non-idempotent falsum i $t \in \Psi$, and even with an idempotent falsum if $t \in \Theta$. (3) For a bunch of layer algebras $\mathcal{A}, \mathcal{A}_{(\chi_A)} = \mathcal{A}$, and for an odd or even involutive FL_e -

Lemma 7.2. The following statements hold true. (1) Given a bunch of layer algebras $\mathcal{A} = \langle \mathbf{X}_u, \rho_{u \to v} \rangle_{\kappa}$ with $\kappa = \langle \Omega, \Psi, \Theta, \leq_{\kappa} \rangle$, $\mathcal{G}_{\mathcal{A}} = \langle \mathbf{G}_{u}, \mathbf{H}_{u}, \varsigma_{u \to v} \rangle_{\kappa}$ is bunch of layer groups, where $\iota(\mathbf{X}_u)$ if $u \in \Omega$ (72) $G_{n} = (G_{n}, \prec_{n}, \cdot_{n})$ $\iota (\mathbf{X}_{u_{\uparrow}})$ if $u \in \Psi$

 $\boldsymbol{H}_{u} = (H_{u}, \preceq_{u}, \cdot_{u}, \ ^{-1_{u}}, u) = \iota(\pi_{2}(\mathbf{X}_{u})),$ (7.3)

 $\kappa = \Omega \cup \Psi \cup \Theta$, and for $u, v \in \kappa$ such that $u \leq_{\kappa} v, \varsigma_{u \to v} : G_u \to G_v$ is defined by (7.4) $\varsigma_{u \to v} = \rho_{u \to v}|_{G_u}$

Call $\mathcal{G}_{\mathcal{A}}$ the bunch of layer groups derived from \mathcal{A} .

(2)	Given a bunch of layer groups $\mathcal{G} = \langle \mathbf{G}_u, \mathbf{H}_u, \varsigma_{u \to v} \rangle_{\kappa}$ with $\kappa = \langle \Omega, \Psi, \Theta, \leq_{\kappa} \rangle$, $\mathcal{A}_{\mathcal{G}} = \langle \mathbf{X}_u, \rho_{u \to v} \rangle_{\kappa}$ is bunch of layer algebras, called the bunch of layer algebras derived from \mathcal{G} , where
(7.5)	$\mathbf{X}_{u} = (X_{u}, \leq_{u}, \cdot_{u}, \rightarrow_{u}, u, u^{r}) = \begin{cases} \iota(\mathbf{G}_{u}) & \text{if } u \in \Omega \\ \iota(\mathbf{G}_{u})_{\downarrow} & \text{if } u \in \Psi \\ Sp(\iota(\mathbf{G}_{u}), \iota(\mathbf{H}_{u})), & \text{if } u \in \Theta \end{cases},$
	$\kappa=\Omega\cup\Psi\cup\Theta,$ and for $u,v\in\kappa$ such that $u\leq_{\kappa}v,\ \rho_{u\to v}:X_u\to X_v$ is defined by
(7.6)	$\rho_{u \to v} = \left\{ \begin{array}{ll} \varsigma_{u \to v} & \mbox{if } u \notin \Theta \\ \varsigma_{u \to v} \circ h_u & \mbox{if } v > u \in \Theta \\ \mbox{id}_{X_u} & \mbox{if } v = u \in \Theta \end{array} \right. ,$

where h_u is the canonical homomorphism of X_u

 $\mathbf{X}, \mathcal{X}_{A_{\mathbf{X}}} = \mathbf{X}$

The (direct) Representation Theorem

(A) Given an odd or an even involutive FL_e -chain $\mathbf{X} = (X, \leq, \cdot, \rightarrow, t, f)$ with residual complement operation ',

$$\mathcal{X}_{\mathbf{X}} = \langle \boldsymbol{G}_{u}, \boldsymbol{H}_{u}, \varsigma_{u o v}
angle_{\langle \Omega, \Psi, \Theta, \leq_{\kappa}
angle}$$

is bunch of layer groups, called the bunch of layer groups of \mathbf{X} , where

$$\kappa = \{x \rightarrow x : x \in X\} = \{u \ge t : u \text{ is idempotent}\} \text{ is ordered by } \leq,$$

$$\kappa_I = \{ u \in \kappa \setminus \{t\} : u' \text{ is idempotent} \},\$$

 $\kappa_J = \{ u \in \kappa \setminus \{t\} : u' \text{ is not idempotent} \},$

 Ω, Ψ, Θ are defined by

Ω	$ \Psi $	Θ	
$\{t\}$	κ_J	κ_I	$if \mathbf{X} is odd$
Ø	$\kappa_J \cup \{t\}$	κ_I	if \mathbf{X} is even and f is not idempotent
Ø	κ_J	$\kappa_I \cup \{t\}$	if \mathbf{X} is even and f is idempotent

for $u \in \kappa$,

$$G_{u} = (G_{u}, \leq, \cdot, \stackrel{-1}{,} u) \quad \text{if } u \in \kappa,$$

$$H_{u} = (H_{u}, \leq, \cdot, \stackrel{-1}{,} u) \quad \text{if } u \in \Theta,$$
where $X_{u} = \{x \in X : x \to x = u\}, H_{u} = \{x \in X_{u} : xu' < x\}, \stackrel{\bullet}{H}_{u} = \{xu' : x \in H_{u}\},$

$$G_{u} = \begin{cases} X_{u} & \text{if } u \notin \Theta \\ X_{u} \setminus H_{u}^{\bullet} & \text{if } u \in \Theta \end{cases}$$
(8.1)

 $x^{-1} = x \to u$,

(8.2)

(8.3)

and for $u, v \in \kappa$ such that $u \leq v, \varsigma_{u \to v} : G_u \to G_v$ is defined by $\varsigma_{u \to v}(x) = vx.$

(B) Given a bunch of layer groups
$$\mathcal{X} = \langle \boldsymbol{G}_u, \boldsymbol{H}_u, \varsigma_{u \to v} \rangle_{\langle \Omega, \Psi, \Theta, \leq_\kappa \rangle}$$
 with $\boldsymbol{G}_u = (\boldsymbol{G}_u, \preceq_u, \cdot_u, \ ^{-1_u}, u)$
 $\mathbf{X}_{\mathcal{X}} = (X, \leq, \cdot, \rightarrow, t, t')$

is an involutive FL_e -chain with residual complement ', called the involutive FL_e -chain of \mathcal{X} , where $\kappa = \Omega \cup \Psi \cup \Theta$, for $u \in \kappa$,

$$X_u = \begin{cases} G_u & \text{if } u \notin \Theta, \\ G_u \cup H_u^{\bullet} & \text{if } u \in \Theta, \end{cases}$$

(where $H_u^{\bullet} = \{h^{\bullet} : h \in H_u\}$ is a copy of H_u which is disjoint from G_u),

(8.5)
$$X = \bigcup_{u \in \kappa} X_u,$$

if $u \notin \Theta$ then $\leq_u = \preceq_u$, if $u \in \Theta$ then \leq_u extends \preceq_u to X_u by letting

 $(8.6) a^{\bullet} <_{u} b^{\bullet} and x <_{u} a^{\bullet} <_{u} y \text{ if } a, b \in H_{u}, x, y \in G_{u}, a \prec_{u} b, x \prec_{u} a \preceq_{u} y,$

for $v \in \kappa$, $\rho_v : X \to X$ is defined by

 $\begin{array}{lll}
\rho_v(x) &= \begin{cases} \varsigma_{u \to v}(x) & \text{if } x \in G_u \text{ and } u <_{\kappa} v, \\ x & \text{if } x \in G_u \text{ and } u \ge_{\kappa} v, \\ \varsigma_{u \to v}(x) & \text{if } x^{\bullet} \in H^{\bullet}_u \text{ and } \Theta \ni u <_{\kappa} v, \\ x^{\bullet} & \text{if } x^{\bullet} \in H^{\bullet}_u \text{ and } \Theta \ni u \ge_{\kappa} v, \end{cases}$ (8.7)by denoting for $u, v \in \kappa$, $uv = \max_{\kappa}(u, v)$, for $x \in X_u$ and $y \in X_v$, $x \leq y$ iff $\rho_{uv}(x) \leq_{uv} \rho_{uv}(y)$ except if $u >_{\kappa} v$ and $\rho_{uv}(x) = \rho_{uv}(y)^{11}$, (8.8)for $u \in \Theta$, $h_u : X_u \to G_u$, $h_u(x) = x \quad \text{if } x \in G_u, \\ h_u(x^{\bullet}) = x \quad \text{if } x^{\bullet} \in H_u^{\bullet},$ (8.9)for $x, y \in X_u$, $x \cdot_u y = \begin{cases} (h_u(x) \cdot_u h_u(y))^{\bullet} & \text{if } u \in \Theta, \ h_u(x)h_u(y) \in H_u \ and \ \neg(x, y \in H_u) \\ h_u(x) \cdot_u h_u(y) & \text{if } u \in \Theta, \ h_u(x)h_u(y) \notin H_u \ or \ x, y \in H_u \\ x \cdot_u y & \text{if } u \notin \Theta \end{cases}$ (8.10)for $x \in X_u$ and $y \in X_v$, (8.11) $xy = \rho_{uv}(x) \cdot_{uv} \rho_{uv}(y),$ for $x \in X$, $\begin{array}{lll} (x^{\bullet})' & = & \left\{ \begin{array}{ll} x^{-1} & \text{if } u \in \Theta \ \text{and} \ x^{\bullet} \in H_u^{\bullet} \\ \left\{ \begin{array}{ll} \left(x^{-1}\right)^{\bullet} & \text{if } u \in \Theta \ \text{and} \ x \in H_u \\ x^{-1} & \text{if } u \in \Theta \ \text{and} \ x \in G_u \setminus H_u \\ x^{-1} & \text{if } u \in \Omega \ \text{and} \ x \in G_u \\ x^{-1} & \text{if } u \in \Psi \ \text{and} \ x \in G_u \end{array} \right. \end{array}$ (8.12)for $x, y \in X$, (8.13) $x \rightarrow y = (xy')'$ \rightarrow is the residual operation of \cdot , t is the least element of κ , (8.14)f is the residual complement of t, and is given by $t' = \begin{cases} (t^{-1})^{\bullet} & \text{if } u \in \Theta \\ t^{-1} & \text{if } u \in \Omega \\ t^{-1} & \text{if } u \in \Psi \end{cases}$

In addition,

(8.15)

$$\rho_v(x) = vx \text{ for } v \in \kappa \text{ and } x \in X,$$

 $\mathbf{X}_{\mathcal{X}}$ is odd if $t \in \Omega$, even with a non-idempotent falsum if $t \in \Psi$, and even with an idempotent falsum if $t \in \Theta$.

¹¹Alternatively, one may write the ordering on X in a lexicographic fashion by x < y iff $\rho_{uv}(x) <_{uv} \rho_{uv}(y)$ or $\rho_{uv}(x) = \rho_{uv}(y)$ and $u <_{\kappa} v$.

The densely ordered case

If **X** is densely ordered then for $u \in \Omega$

$$oldsymbol{H}_u = igcup_{\kappa
i s <_\kappa u} arsigma^{s
ightarrow u}(oldsymbol{G}_s)$$

and hence the representation of ${\bf X}$ by layer groups can be written in a simpler form:

$$\langle \boldsymbol{G}_{u}, \varsigma^{u \to v} \rangle_{\langle \Omega, \Psi, \Theta, \leq_{\kappa} \rangle}.$$

Examples

• If G is a totally ordered abelian group then $G = \mathcal{X}_{\mathcal{A}_{\mathcal{G}}}$ where

 $\mathcal{G} = \langle \boldsymbol{G}, \emptyset, \emptyset
angle_{\langle \{t\}, \emptyset, \emptyset, \leq_\kappa
angle}.$

Denote by 1 the trivial (one-element) group.

- Totally ordered even Sugihara monoids are exactly the algebras $\mathcal{X}_{\mathcal{A}_{\mathcal{G}}}$, where $\mathcal{G} = \langle \mathbb{1}_{u}, \mathbb{1}_{u}, \varsigma^{u \to v} \rangle_{\langle \emptyset, \emptyset, \kappa, \leq_{\kappa} \rangle}.$
 - Totally ordered odd Sugihara monoids are exactly the algebras $\mathcal{X}_{\mathcal{A}_{\mathcal{G}}}$, where

$$\mathcal{G} = \langle \mathbb{1}_u, \mathbb{1}_u, \varsigma^{u \to v} \rangle_{\langle \{t\}, \emptyset, \kappa \setminus \{t\}, \leq_\kappa \rangle}.$$

 Finite partial sublex products of totally ordered abelian groups have been shown in [24] to be exactly those odd involutive FL_e-chains which have finitely many positive idempotent elements. These are exactly the algebras X_{A_q}, where κ is finite in

$$\mathcal{G} = \langle \boldsymbol{G}_u, \boldsymbol{H}_u, \varsigma^{u \to v} \rangle_{\langle \{t\}, \kappa_J, \kappa_I, \leq_\kappa \rangle}.$$

- [24] S. Jenei, The Hahn embedding theorem for a class of residuated semigroups, Studia Logica (2020) 108: 1161–1206
 - Algebras which can be constructed by the involutive ordinal sum construction of [22] are exactly the algebras $\mathcal{X}_{\mathcal{A}_{\mathcal{G}}}$, where

$$\mathcal{G} = \langle \mathbf{G}_u, \mathbb{1}_u, \varsigma^{u \to v} \rangle_{\langle \{t\}, \emptyset, \kappa \setminus \{t\}, \leq_{\kappa} \rangle}.$$

[22] S. Jenei, Co-rotation, co-rotation-annihilation, and involutive ordinal sum constructions of residuated semigroups, Proceedings of the 19th International Conference on Logic for Programming, Artificial Intelligence and Reasoning, 2013, Stellenbosch, South Africa, paper 73

Summary

• A representation theorem (via a one-to-one correspondence) has been presented in a constructive manner for the class of all

odd or even involutive FL_e-chains by means of

bunches of layer algebras (certain direct systems of more specific odd or even involutive FL_e-chains) and the class of

> bunches of layer groups (certain direct systems of abelian *o*-groups)

• The ArXiv link of the related paper along with the link to a more detailed talk on the very same subject are in the abstract

https://sites.google.com/view/nonclassicallogicwebinar/talks

Amalgamation in classes of involutive commutative residuated lattices

• Nonclassical Logic Webinar, February 5, 2021

Thank you for your attention!

