
Some topics in domain theory

Achim Jung
University of Birmingham, UK

9–11 June 2021

BLAST 2021 (online)



Motivation — or, why give this tutorial?

1. Domains were introduced by Dana Scott in 1969 to provide a general
and intuitive model of computation. Despite the success of this
approach (viz. the programming language Haskell), fundamental
questions about the nature of computation remain open.

2. Domains exhibit intriguing interactions between order and topology.

3. Domains and domain-theoretic methods appear on both sides of Stone
duality.

4. Domain theory presents a number of attractive open problems.

NB. The aim of these lectures is to provide an introduction and to tell a
particular story from domain theory, not to give a comprehensive overview.
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The origins

In 1900, David Hilbert asked for a general finite procedure to determine
the solvability of Diophantine equations (“Hilbert’s 10th problem”).

Around 1928 he and Wilhelm Ackermann asked for a general finite
procedure to decide logical entailment in first-order logic
(“Entscheidungsproblem”).

The Entscheidungsproblem was tackled by Post, Herbrand, Gödel,
Church, and Turing and shown to be unsolvable. To be able to make such
a negative statement, they needed to give a convincing definition of what
counts as a “general finite procedure” (and what does not).

There are now many proposals, but as far as Hilbert’s problems are
concerned, they are all equivalent (“Church Turing thesis”).
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Turing machines

Turing’s approach is the most convincing, as it is modelled directly on the
mathematician computing with pencil and paper.

tape

read/write head

a b a

finite control unit

Modern computer hardware is still quite close to this model of computing
in the sense that writing to and reading from memory is a key feature.
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Turing machine programs

But there is a problem: Turing machines are hard to understand:

δ a b

q0 = 0 (1, r) (1, r) (1, r)

1 (2, ) (12, ) (20, l)

2 (2, ) (2, ) (3, l)

3 (3, l) (3, l) (4, l)

4 (4, l) (4, l) (5, a)

5 (5, r) (5, r) (6, r)

6 (6, r) (6, r) (0, a)

12 (12, ) (12, ) (13, l)

13 (13, l) (13, l) (14, l)

14 (14, l) (14, l) (15, b)

15 (15, r) (15, r) (16, r)

16 (16, r) (16, r) (0, b)

20 (1, ) (1, ) stop
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Layers of abstraction

Of course, this problem is addressed in computer science and the solution
is to bundle primitive operations together into more complex, “higher
level” functional units. This results in “layers of abstraction”, ubiquitous
in computing.

But now two new problems arise:

1. The higher-level functional units should be general and customizable,
i.e., applicable in and adaptable to many situations.

2. At the same time, they should be precisely specified and
comprehensible to the programmer.

Much of computer science is concerned with finding the right balance
between these two competing requirements.
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Algebra of computable functions

We take certain mathematical operations as basic, such as incrementing a
number by one.

Then we focus on the following processes, related to the first item on the
last slide:

• combining “primitive” functions to “higher-level” ones;

• parameterizing functions to make them more general.

Computation will be done symbolically, exactly as we do in algebra,
reducing complex expressions to combinations of the basic operations.
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Using λ-calculus to define functions

Example:

t := 3 + 4 a term that evaluates to 7

ϕ := λx.x+ 4 a function that adds 4 to its argument

ψ := λxy.x+ y a function that adds its two arguments

Γ := λfxy.f x y a functional that evaluates a function of two
arguments at x and y

t −→ 7
ϕ(3) −→ 7

ψ(3, 4) −→ 7
Γ(+, 3, 4) −→ 7
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Recursion

A key ingredient of an algebra of computable function is some form of
iteration or recursion. This can be achieved by naming expressions.

Example:

add(x,y) := if (x=0) then y

else add(x-1,y+1)

Note that this is a circular definition, not normally considered meaningful
in mathematics.

It is meaningful if we read the “equation” as a re-write rule from left to
right:

add(3,5) −→ add(2,6) −→ add(1,7) −→ add(0,8) −→ 8
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Fixpoints

Recursion is neatly (and fully) captured by a fixpoint combinator. First
note that add is a fixpoint of the operation Φ

f 7→ λxy. if (x = 0) then y else f(x− 1, y + 1)

which takes an arbitrary function of two arguments (called f) and returns
another function of two arguments.

Let Y be the operator (“combinator”) which returns the fixpoint of such
an operation, so

add := Y(Φ)

and the definition of add is no longer circular.

For our re-writing interpretation, the only rule we need for Y is

Y(Φ) −→ Φ(Y(Φ))
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Dana Scott’s algebra LCF of computable functions

Names for types (objects):

σ ::= bool | nat | σ → σ | σ × σ

Names for terms (elements & morphisms):

tt, ff : bool ifσ : bool→ σ → σ → σ

0, 1, . . . : nat succ, pred : nat→ nat zero? : nat→ bool

xσ, yσ, . . . : σ λxσ. M MN

Yσ : (σ → σ)→ σ

As an example, the operator Φ from the last slide has type

(nat2 → nat)→ (nat2 → nat) and so add = Y (Φ) has type nat2 → nat.
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How good is this language?

Theorem. The (partial) functions of type nat→ nat definable in LCF
are precisely the Turing machine computable ones.

This says that the language is expressive but we also want to know
whether it is comprehensible to the programmer.

If every expression in LCF is a combination of the basic
operations, is it also the case that the meaning of every expression
can be seen as a combination of the meanings of the basic
operations?

In other words, does this language have a compositional
semantics?
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A compositional semantics for LCF

We need semantic spaces for every type.

σ ::= bool | nat | σ → σ | σ × σ

Naturally, we choose B = {true, false} and N for the basic types, and the
set of all functions and cartesian product for the two constructions. This
works for everything except the fixpoint combinator Y .

In categorical language we say that the category Set is cartesian closed
but it contains endomorphisms without fixpoints.

And indeed, we know that in order to capture computable functions we
must allow for partial functions as well because recursion may lead to
non-terminating expressions.
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From partial functions to total monotone functions

Scott deals with partiality elegantly by adding one extra element to the
mathematical sets B and N:
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What to do with ⊥?

If all sets have a bottom element added, then this must also be mapped
somewhere. Scott introduces an order relation in which ⊥ is smaller than
every other element:

⊥

ttff

⊥

0 1 2 3

N⊥ B⊥

and stipulates that functions must preserve the order.

Observation. The category POS of posets and monotone functions is
cartesian closed.

How about fixpoints?
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More complicated orders

The semantics of nat→ nat is the monotone function space [N⊥ → N⊥].
It “contains” all of [N→ N] and [N⇀ N], so in particular, has
uncountably many elements.
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More complicated orders

The semantics of nat→ nat is the monotone function space [N⊥ → N⊥].
It “contains” all of [N→ N] and [N⇀ N], so in particular, has
uncountably many elements.

It also contains infinite ascending chains:

0 7→ 0 ≤ 0 7→ 0
1 7→ 1

≤ 0 7→ 0
1 7→ 1
2 7→ 4

≤ 0 7→ 0
1 7→ 1
2 7→ 4
3 7→ 9

≤ . . .
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Scott’s thesis

How big is [[N⊥ → N⊥]→ N⊥?

Scott observed that a terminating computation of type
(nat→ nat)→ nat can query its argument only finitely often.

Thus only a finite part of the graph of the argument is needed.

This was known to recursion theorists as the Myhill-Shepardson Theorem.

Scott formulated and generalized this as follows:

If f is computable and if the input is of the form
∨↑xi then the

output f(x) can be computed as
∨↑f(xi), or as a formula

f(
∨↑xi) =

∨↑f(xi)

We say that functions should be Scott-continuous.
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Scott domains

These considerations lead us to the category S of Scott domains which
stands at the beginning of domain theory. We will define it formally in a
moment, but to conclude this introduction to denotational semantics, let
us write down that S can serve as a semantic universe for the language
LCF:

Theorem. The category S is cartesian closed. Every endomorphism in S
has a (least) fixpoint, computed as

lfp(f) :=
∨↑

n∈N f
n(⊥)
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Summary

1. The “algebraic” approach to programming uses names for basic
computable functions and combinators to express arbitrary computable
functions.

2. To make this meaningful, basic functions and the combinators need to
be given an interpretation in a mathematical universe. Scott’s category
S is such a universe, in particular, it contains lfp as a meaningful
interpretation of the recursion operator Y .

3. Many deep connections between LCF and S have been found.

4. However, this is not the final answer to the question “What is
computation?”
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Directed sets and dcpos

Definition. A non-empty subset A of an ordered set D is called
directed, if every pair of elements of A has an upper bound in A.

Definition. An ordered set D is called a directed-complete partial order
or dcpo if every directed subset A of D has a supremum (which we write
as

∨↑A).

The dcpo is called pointed if it has a least element ⊥.

We recall that suprema of directed sets (countable chains actually) were
used to define the least fixpoint operator:

lfp(f) :=
∨↑

n∈N f
n(⊥)
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Examples

1. Every finite directed set has a largest element. Consequently, every
finite poset is a dcpo.

2. Every (non-empty) totally ordered set (“chain”) is directed.

3. The unit interval [0, 1] is a pointed dcpo but R is neither pointed nor a
dcpo. Every successor ordinal is a dcpo.

4. Every complete lattice is a dcpo.

5. The compact non-empty subsets of a Hausdorff topological space form
a dcpo under reverse inclusion.
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Finite elements

Definition. An element c of a dcpo D is called compact or finite if
whenever c ≤

∨↑A for a directed set A ⊆ D, then c ∈ ↓A.

Definition. A dcpo is called algebraic, or an algebraic domain if every
element is the directed sup of the compact elements below it.
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Examples

1. Every element of a finite poset is compact. Consequently, every finite
poset is an algebraic domain.

2. The compact elements of a powerset lattice are exactly the finite sets.
Powerset lattices are algebraic lattices.

3. The finitely generated subalgebras of any (universal) algebraic
structure are the compact elements of the subalgebra lattice, which
therefore is an algebraic lattice. Similarly for congruence lattices.

4. The set of ideals (the “ideal completion”) of any poset is an algebraic
domain.

5. Only 0 is compact in the unit interval. This is therefore not algebraic.

6. Only ∅ is compact in the open set lattice of Q. This complete lattice is
therefore not algebraic.
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Scott domains

Definition. A Scott domain is an algebraic domain in which

1. every bounded subset has a supremum;

2. there are at most countably many finite elements.

Examples.

1. The “flat domains” B⊥ and N⊥.

2. Algebraic lattices.

3. The partial functions [N⇀ N] (ordered by graph inclusion).
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Categories of domains

Definition. A monotone map f between dcpos is called
Scott-continuous if it preserves suprema of directed sets:

f(
∨↑A) =

∨↑
a∈A f(a)

NB. Even when the dcpos are pointed we do not usually require a
Scott-continuous map to preserve the least element. Also, when we
consider Scott-domains, we do not require the morphisms to preserve
bounded suprema.

Using Scott-continuous maps as morphisms, we obtain the categories

1. DCPO of pointed dcpos;

2. ALG of pointed algebraic domains;

3. S of Scott-domains.
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Categorical properties

1. DCPO, ALG, and S have finite products.

2. Endomorphisms in DCPO, ALG, and S have least fixpoints.

3. DCPO and S have exponentials, and are cartesian closed:

[A×B → C] ∼= [A→ [B → C]]

NB. ALG is not cartesian closed. For example, the function space
[Z− → Z−] contains no compact elements at all.

4. There is an adjunction between POS (posets and monotone maps)
and ALG given by ideal completion and (non-full) inclusion.
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Going beyond pure functional languages

Mathematically interesting challenges arise if we want to extend Scott’s
approach to programming languages that allow for some choice, either
nondeterministic or probabilistic:

P or Q P orp Q

To keep the Tarskian approach to semantics, we need an algebraic
structure on domains that reflects these operators. Concretely, we need to
consider sets of possible outcomes, or distributions over outcomes.
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The Egli-Milner order

The most natural order between sets M and N of possible outcomes is
given by

M ≤ N :⇐⇒ ∀m ∈M∃n ∈ N.m ≤ n and
∀n ∈ N∃m ∈M.m ≤ n

M

N
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The Plotkin powerdomain

Definition. Given an algebraic domain D, define P(D) as the ideal
completion of the finite (non-empty) powerset of the set of compact
elements of D, equipped with the Egli-Milner ordering.

This gives again an algebraic domain (since ideal completions always do)
and it can be shown that it adds a semantic “choice” operation freely:

Theorem. The Plotkin powerdomain of an algebraic domain is the free
domain semilattice over that domain. In other words, it carries a
Scott-continuous operation + satisfying the equations

1. x+ y = y + x;

2. x+ (y + z) = (x+ y) + z;

3. x+ x = x.
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Beyond Scott domains

There is a problem with the Plotkin powerdomain construction: applied to
a Scott domain we may not get a Scott domain again. Specifically, the
resulting domain may not have suprema for all bounded subsets.

B⊥×B⊥
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Beyond Scott domains

There is a problem with the Plotkin powerdomain construction: applied to
a Scott domain we may not get a Scott domain again. Specifically, the
resulting domain may not have suprema for all bounded subsets.

A

U

B

V

We see that A,B ≤EM U, V but U and V are incomparable.
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Bifinite domains

So we find that the Plotkin powerdomain works for ALG but ALG is not
cartesian closed. On the other hand, S is cartesian closed but the Plotkin
powerdomain construction is not closed on it.

The solution lies in the observation that the Plotkin powerdomain of a
finite poset is again a finite poset. So we define bifinite domains as limits
of ω-chains of finite posets, where the connecting morphisms have lower
adjoints.

P0 ←− P1 ←− P2 · · ·

We get a cartesian closed category B of algebraic domains that is also
closed under the Plotkin powerdomain construction.

S ⊂ B ⊂ ALG ⊂ DCPO
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The category B is canonical

Theorem. [Michael B. Smyth, 1983] B is the largest cartesian closed
category of algebraic domains which have at most countably many
compact elements.

A similar theorem was shown in 1988 for general algebraic domains,
removing the size limitation.
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What have we achieved?

We have exhibited a category of structures, which

1. are familiar: not that different from algebraic lattices;

2. are useful: they do capture computable functions;

3. are remarkable: cartesian closed and fixpoints for endofunctions (and
fixpoints for endofunctors);

4. accommodate free constructions in the sense of universal algebra;

5. have several more interesting properties, as we will see in the
remainder of this tutorial.
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Recap of Part I
1. Domains provide the semantic universe of mathematical objects which

programs are “measured against”. For example, the space of
Scott-continuous functions [N⊥ → N⊥] contains the computable
first-order functions which are the subject of classical computability
theory.

2. Scott identified the category S of Scott domains as a suitable semantic
universe for higher-order functional programming, and showed how the
paradigmatic language LCF (based on the λ-calculus) can be
interpreted in S. Crucial ingredients for his compositional semantics
are the following:

(a) S is cartesian closed (ie, it has exponentials and products, and these
are adjoint to each other);

(b) every map f : D → D in S has a least fixpoint, calculated as∨↑
n∈N f

n(⊥);
(c) every object of S is algebraic and this allows us to analyse the

relationship between language (LCF) and semantics (S) (but we did
not have time to go into this).
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3. Extending the language with a choice operator requires domains that
carry a semantic analogue of this, ie, a binary operation. Plotkin
showed that this is not possible in S and defined the category B of
bifinite domains, inverse limits of finite posets. He also showed that B
still has all the desirable properties listed above, and allows one to add
a choice operator freely. His construction is called the Plotkin
powerdomain, with connections to the Vietoris construction in
topology and modal logic.

4. Smyth showed that B is the maximal cartesian closed subcategory
consisting of algebraic domains.

5. In the hierarchy aLat ⊂ S ⊂ B ⊂ ALG ⊂ DCPO, only S and B are
serious contenders for a “semantic universe”.
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Retracts

One can observe that while DCPO is closed under (Scott-continuous)
retracts, ALG is not. We’ll see some examples in a moment. On the
positive side, we have the following:

Theorem. If the category C is cartesian closed, then so is its Karoubi
envelope rC, the category of (formal) retracts.

This means that we don’t have to worry about losing our interpretation of
the λ-calculus part, and it suggests that the categories raLat, rS, rB and
rALG should be of interest to us.
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Example: The unit interval

We consider P = [0, 1] ∩Q, the chain of rational numbers in the unit
interval. We already know that its ideal completion is an algebraic Scott
domain, whereas [0, 1] is not.

We define a Scott-continuous retraction on the set of ideals:

r : I 7→ {a ∈ I | ∃b ∈ I. a < b} ∪ {0}

The image of r is the set of round ideals, ie, those ideals which do not
have a largest element (unless the ideal consists of 0 alone).

The set of round ideals is easily seen to be isomorphic to [0, 1].

We see that rS contains the unit interval (which is a nice space to have).
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Continuous domains

It turns out that the retracts of algebraic domains can be characterised
intrinsically. We begin with a slight generalisation of the notion of
“compact element”:

Definition. For x, y elements of a dcpo D, say that x is way-below y
(and write x� y) if whenever y ≤

∨↑A for some directed set A, then
x ∈ ↓A.

We see that an element x of a dcpo is compact exactly if x� x.

Definition. A dcpo D is called continuous, or a continuous domain if
every element of D is the supremum of a directed family of elements
way-below it.

Equivalently, we could request that the set ↓↓y = {x ∈ D | x� y} be
directed with supremum y.
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CONT and ALG

Theorem. Continuous domains are exactly the retracts of algebraic
domains.

Proof. [Sketch] Assume e : D � E : r is an embedding-retraction pair
and E is algebraic. For y ∈ D we know that e(y) is the supremum of a
directed family of compact elements in E. Now show that the images of
these compact elements under r are way-below y in D and that y is their
supremum.

Conversely, if D is continuous, then its ideal completion is algebraic and
D is easily shown to be a retract of its ideal completion. The embedding
is given by x 7→ ↓↓x.

So from now on we may write CONT instead of rALG.
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Examples

1. In a finite poset we have x� y iff x ≤ y, so all finite posets are
continuous domains.

2. All algebraic domains are also continuous (use the identity retraction).

3. The set of closed subintervals of [0, 1], ordered by reverse inclusion is a
continuous domain. We have [a, b]� [a′, b′] iff [a′, b′] is contained in
the interior of [a, b].

4. The lattice of open sets of a locally compact topological space.

5. The lattice of compact subsets of a locally compact Hausdorff space,
ordered by reverse inclusion.
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Enter topology

Definition. A subset O of a dcpo D is called Scott-open if it is an
upper set, ↑O = O, and if it is inaccessible by directed joints,∨↑A ∈ O ⇒ A ∩O 6= ∅. The set of Scott-open subsets is denoted σD.

Observation. 1. The Scott topology satisfies the T0 separation axiom,
but not T1 or T2.

2. If D is an algebraic domain, then for every y ∈ O there is a compact
element c ≤ y contained in O. Likewise, if D is a continuous domain,
then for every y ∈ O there is an element x� y contained in O.

3. if D is a continuous domain and O a Scott-open subset, then
O =

⋃
x∈O
↑↑x, and each ↑↑x is itself a Scott-open set.

Theorem. A function between dcpos is Scott-continuous if and only if it
is continuous with respect to the Scott topologies.

Corollary. The categories rS and rB are cartesian closed full
subcategories of TOP. Ditto for the category of continuous lattices.
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More on the Scott topology

Theorem. Continuous lattices equipped with the Scott topology are
exactly the injective T0 spaces.

Continuous Scott domains equipped with the Scott topology are exactly
the densely injective T0 spaces.
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Proof. [Sketch.] Let Y ⊆ X be topological spaces and f : Y → D
continuous where D is a continuous lattice with the Scott topology.
Define f̄ : X → D by f̄(x) :=

∨↑
O∈N (x)

∧
{f(y) | y ∈ O ∩ Y }. The

function f̄ is always Scott continuous and the continuity of D ensures
that it extends f .

Conversely, it is easy to see that Sierpiński space 2 is injective, and that
products and retracts of injective spaces are again injective. Every T0

space (X,ΩX) can be topologically embedded into the algebraic lattice
2ΩX, equipped with the Scott topology. If X is assumed to be injective,
then this embedding has a right inverse, so X is a continuous retract of
an algebraic lattice, ie, a continuous lattice.
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Cartesian closed subcategories of CONT

We saw in the first lecture that the category of algebraic domains is not
cartesian closed, so it is not surprising that CONT is neither.

On the other hand, we already mentioned that the Karoubi envelope
construction preserves cartesian closure. Thus we have cartesian closed
subcategories cLat, rS and rB of CONT.

Since B is the maximal ccc inside ALG, it is natural to conjecture that rB
is the maximal ccc inside CONT.

This is a surprisingly hard problem which is as yet unsolved!

BLAST 2021 (online) 56



Cartesian closed subcategories of CONT

We saw in the first lecture that the category of algebraic domains is not
cartesian closed, so it is not surprising that CONT is neither.

On the other hand, we already mentioned that the Karoubi envelope
construction preserves cartesian closure. Thus we have cartesian closed
subcategories cLat, rS and rB of CONT.

Since B is the maximal ccc inside ALG, it is natural to conjecture that rB
is the maximal ccc inside CONT.

This is a surprisingly hard problem which is as yet unsolved!

BLAST 2021 (online) 56



The classification of continuous domains

The open problem from the previous slide is even more astonishing, as we
now know the largest ccc inside CONT (but we don’t know whether it is
the same as rB).

Definition. Let D be a dcpo. A Scott-continuous function f ≤ idD is
called

• an idempotent deflation if f has finite image and f ◦ f = f ;

• a deflation if f has finite image;

• finitely separated if there exists a finite set M ⊆ D such that
∀x ∈ D ∃m ∈M. f(x) ≤ m ≤ x.

Definition. A sequence of functions fn : D → D is called an
approximate identity if

∨↑
n∈N fn = idD.

BLAST 2021 (online) 57



FS-domains

Theorem. A dcpo is

1. bifinite, exactly if it carries an approximate identity consisting of
idempotent deflations;

2. a retract of a bifinite domain, exactly if it carries an approximate
identity consisting of deflations.

Definition. We call a dcpo an FS-domain if it carries an approximate
identity consisting of finitely separated functions. We denote the
corresponding category FS.

Clearly, B ⊂ rB ⊂ FS

Theorem. FS is a maximal cartesian closed full subcategory of CONT.

So, the open problem from above boils down to rB
?
= FS.
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Jimmie Lawson’s example

The set of closed discs in the plane, ordered by reversed inclusion.

1/ǫ

ǫ

This dcpo belongs to FS but we don’t know whether or not it belongs to
rB.
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Another approach

Theorem. If D is an rB-domain and E is an arbitrary continuous
pointed domain then [D → E] is continuous.

Whether the same is true for D being an FS-domain is not known.

We will meet yet another potential source for discriminating examples in a
moment.

Fundamentally, the problem is that there is no characterisation of
FS-domains other than the one given in the definition.
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Abstract bases

Definition. A set B carrying a binary relation ≺ is called an abstract
basis if

1. ≺ ◦ ≺ ⊆ ≺ (transitivity);

2. M ≺ a ⇒ ∃b.M ≺ b ≺ a (strong interpolation).

A subset A of an abstract basis (B;≺) is called a round ideal if

1. {b ∈ B | b ≺ a ∈ A} ⊆ A (downward closure);

2. A is directed wrt ≺.

Proposition. For (B;≺) an abstract basis, the set of round ideals is a
continuous domain, and every continuous domain arises in this way.
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Free continuous domain algebras

Theorem. Let D be a continuous domain, Σ a signature (in the sense
of universal algebra), and E a set of (in)equations. Then the free
continuous (Σ, E)-algebra exists.

Proof. [Sketch.] Pick an abstract basis (B;≺) for D and construct the
term algebra TΣ(B) with respect to Σ. On TΣ(B) consider the smallest
transitive binary relation that contains ≺ extended to terms, and the order
relation resulting from E . Then show that an abstract basis is obtained.
The round ideal completion is the desired free domain algebra.

Note the use of abstract bases in the proof, analogous to the
corresponding result for free algebras over algebraic domains.
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However...

We have to remember that while CONT has many nice properties, we are
really interested in cartesian closed categories of domains, and CONT is
not.

This raises the question of when the free domain algebra of an rB-domain
or an FS-domain is again in rB or FS, respectively.

Embarrassingly, no general answer to this question exists (in contrast to
the situation for bifinite domains).

On the positive side, the Plotkin powerdomain construction can be shown
to be closed on both rB and FS.
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Valuations

Definition. A function v from σD to [0, 1] is called a valuation if

• v(∅) = 0

• v(
⋃↑

Ui) = sup v(Ui) (Scott continuity)

• v(U ∪ V ) = v(U) + v(V )− v(U ∩ V ) (modularity)

A probability valuation furthermore satisfies v(D) = 1.

Definition. The set of all probability valuations on a dcpo D, ordered
pointwise, is called the probabilistic powerdomain of D, and denoted by
V(D).

Fact. If D is a continuous domain then the probability valuations on D
are in one-to-one correspondence with probability Radon measures on the
Borel algebra generated by the Scott-topology σD.
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Closure properties of V

Proposition. The probabilistic powerdomain of a dcpo is again a dcpo.

Theorem. [Jones 1990] The probabilistic powerdomain of a continuous
domain is again a continuous domain.

Definition. A continuous domain is called coherent if it is stably
compact as a topological space.

Fact. rB- and FS-domains are coherent.

Theorem. [Jung & Tix 1998] The probabilistic powerdomain of a
coherent domain is again coherent.

Theorem. [Jean Goubault-Larrecq 2021] The probabilistic
powerdomain of a quasi-continuous domain is again quasi-continuous.
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The Jung-Tix problem

No cartesian closed category of continuous domains is known for which
the probabilistic powerdomain construction is closed. In particular:

Is the probabilistic powerdomain of an FS-domain again an
FS-domain?
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What we know

Theorem. [Jung & Tix 1998] The probabilistic powerdomain of a
finite tree belongs to rB.

Theorem. [Jung & Tix 1998] The probabilistic powerdomain of a
finite upside-down tree belongs to FS.

So any domain arising as the probabilistic powerdomain of an
upside-down finite tree is a candidate for showing rB 6= FS.

BLAST 2021 (online) 69



What we know

Theorem. [Jung & Tix 1998] The probabilistic powerdomain of a
finite tree belongs to rB.

Theorem. [Jung & Tix 1998] The probabilistic powerdomain of a
finite upside-down tree belongs to FS.

So any domain arising as the probabilistic powerdomain of an
upside-down finite tree is a candidate for showing rB 6= FS.

BLAST 2021 (online) 69



Another open problem

If the probabilistic powerdomain of every finite poset belongs to FS,
does it follow that FS is closed under V?
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Summary

1. Continuous domains are a natural generalisation of algebraic ones and
share many of the nice properties of the latter.

2. It is continuous domains that appear naturally in other mathematical
contexts.

3. Many questions of interest are in fact unsolved for continuous domains.
At the heart of these is our lack of understanding of how to exploit the
rB- and FS-conditions.
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Part III: Duality
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Recap of Part II

1. Retracts of algebraic domains give us continuous domains, a wider
class and one with more pleasing closure properties.

2. Among the domains now available, we have the continuous Scott
domain [I→ I], the function space of the interval domain. This plays
the central role in Mart́ın Escardó’s work on real-number computation
with results paralleling those of Scott and Plotkin for computation on
natural numbers.

3. We also have the continuous domain [V(N⊥)→ V(N⊥)] which seems
the natural setting to study machine learning algorithms. This is an
active area of investigation.

4. We have the hierarchy cLat ⊂ cS ⊂ rB ⊂ FS ⊂ CONT.

5. We saw two of the most prominent open problems in this area:

rB
?
= FS and V(FS)

?
⊂ FS.
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Stone 1937

M. H. Stone. Topological representation of distributive lattices and
Brouwerian logics. Časopis pro pěstováńı matematiky a fysiky, 67:1–25,
1937/38.

Definition. Let L be a bounded distributive lattice. A subset A of L is
called a prime filter if it is

1. nonempty: 1 ∈ A;

2. an upper set: ↑A = A;

3. filtered (“downward directed”): ∀a, b ∈ A ∃c ∈ A. c ≤ a, b;
4. inaccessible by finite joins:

∨
M ∈ A ⇒ M ∩A 6= ∅ for all finite

M ⊆ L.

We call the set of all prime filters the spectrum of L, denoted spec(L).
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Order and topology on the spectrum

Proposition. A directed union of prime filters is again a prime filter.

Corollary. Equipped with the inclusion order, spec(L) is a dcpo.

Proposition. Equipped with the usual spectral topology, generated by
the sets Φ(x) := {A ∈ spec(L) | x ∈ A}, the spectrum is a spectral
space, to wit, it is

1. compact;

2. locally compact;

3. stably compact: finite intersections of compact upper sets are compact;

4. well-filtered:
⋂
↓Ki ⊆ O ⇒ ∃i0.Ki0 ⊆ O for filtered families of

compact upper sets and an open set O;

5. zero-dimensional: there is a basis of compact open subsets.

Furthermore, the topology is contained in the Scott topology derived from
the order.
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Spectral domains

The basic opens Φ(x) := {A ∈ spec(L) | x ∈ A} arising from Stone
duality are always compact (a consequence of the prime filter theorem).

Among dcpos, algebraic domains are such that there is an abundance of
compact open subsets, namely, all sets of the form ↑M with M a finite
set of compact elements. In general, however, the set of compact open
sets may fail to be closed under intersection. An algebraic domain is called
spectral exactly if the intersection of compact open sets is again compact.

Returning to the other side again, we see that the compact open set
lattices of algebraic domains are special in that each such set is the finite
join of principal upsets ↑c where c is compact. Such sets are clearly join
prime. So we see that we get a lattice in which every element is the join
of finitely many join primes.

Theorem. Stone’s duality between bounded distributive lattices and
spectral spaces restricts to a duality between join-prime generated lattices
and spectral algebraic domains.
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Domain theory meets Stone duality

spectral

spaces

algebraic

domains

spectral

algebraic

domains
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Spectral domains

A pleasing fact:

Theorem. Algebraic lattices, Scott domains, and bifinite domains are all
spectral.

Proposition. The spectral topology equals the Scott topology for
spectral algebraic domains.

As an aside, there does exist a cartesian closed category of algebraic
domains whose objects are not spectral spaces.
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Abramsky’s programme

S. Abramsky. Domain theory in logical form. Annals of Pure and Applied
Logic, 51:1–77, 1991.

The connection given by Stone duality suggests that we can study
domains via lattices.

While mathematically intriguing, we would also hope for some “payback”
for our enterprise of analysing computability.

The key insight (first put forward by Mike Smyth in 1983) is that
topologically open sets can be coded as continuous maps into 2 and
hence as “semi-decidable properties” (exploiting the idea that continuity
is an approximation of computability).
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Example

We look at D = [N⇀ N], the archetypical semantic domain.

The set of partial functions that are defined for input x = 5 form a
Scott-open subset (remember, the order is graph extension).

Whether a program belongs to this open set is semi-decidable: We run
the program on input x = 5 and wait to see whether it terminates. If it
does, the result of the test is affirmative. If it doesn’t, we may never find
out, but this is the essence of semi-decidability.
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Different approaches to semantics

P : a program (fragment)

1. operational: How to evaluate P?

2. denotational: What (mathematical entity) does P denote?

3. logical: What properties does P have?
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The semantic triangle

program fragment

P : σ

semantic space

Dσ

program logic

Lσ

logical interpretation
denotational interpretation

So if you are an algebraist or topologist, you take the right-hand side as
the lattice of compact open subsets, while if you are a logician, you take
it to be a positive propositional theory.
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Capturing equality

For any distributive lattice L we obviously have for prime filters F and G:

F = G iff (∀a ∈ L. a ∈ F ⇔ a ∈ G)

Under Stone duality, this turns to the following for any two elements x
and y of a spectral space (X; τ)

x = y iff (∀O ∈ τ. x ∈ O ⇔ y ∈ O)

Reading open sets as propositions, this becomes Leibniz equality:

x = y iff (∀ϕ. x � ϕ ⇔ y � ϕ)

Samson Abramsky adds to this:

Two programs are considered equal if they satisfy the same
effective tests.
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Constructing domains logically

We start with the one-point domain 1 for which the Stone dual is the
two-element lattice and the corresponding propositional theory is all
positive propositional expressions formed from true and false.

More elaborate domains (including B⊥ and N⊥) can be built from 1 by
the “type constructors” ×, ⊥, →, P, ⊕, and bilim.

B dLat PL

D ←→ L ←→ L
↓ ↓ ↓
∇D ←→ ∇L ←→ ∇L
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Example: Plotkin powerdomain

From a positive propositional theory L construct its Plotkin power
theory P(L) by

generators {�ϕ | ϕ ∈ L} ∪ {♦ϕ | ϕ ∈ L}

axioms
tt ↔ � tt ff ↔ ♦ ff

�(ϕ ∧ ψ) ↔ �ϕ ∧�ψ ♦(ϕ ∨ ψ) ↔ ♦ϕ ∨ ♦ψ
�(ϕ ∨ ψ) → �ϕ ∨ ♦ψ �ϕ ∧ ♦ψ → ♦(ϕ ∧ ψ)

rules
ϕ→ ψ

�ϕ→ �ψ

ϕ→ ψ

♦ϕ→ ♦ψ
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Example: Plotkin powerdomain

Theorem. If D is the Stone dual of the theory L, then P(D) is the
Stone dual of the theory P(L).

So now we have three characterisations of the Plotkin powerdomain:

1. the ideal completion of the finite powerset of the set of compact
elements;

2. the free algebraic theory of semilattices;

3. a modal logic like propositional theory.
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The difficulties

1. The category of spectral algebraic domains is not closed under the
function space construction, so not cartesian closed. We identified
previously the category B of bifinite domains as a cartesian closed
category also closed under the Plotkin powerdomain construction.
The duality must be restricted to B and a suitable category of
theories/lattices.

2. Stone’s duality links lattice homomorphisms with “proper” continuous
maps between the spectra. Scott-continuous maps are not proper.

3. The function space construction is crucial for semantics, yet this is the
one that is most unsatisfactory in Domain Theory in Logical Form as it
requires an encoding of the domains inside the propositional theories.

4. What about continuous domains?
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Frames

Spectral spaces are zero-dimensional but continuous domains are not. We
move to frame duality to capture them.

On the side of the algebras, we use frames, complete lattices satisfying
the frame distributivity law:

b ∧
∨
A =

∨
a∈A b ∧ a

Frame homomorphisms preserve finite meets and arbitrary joins.

Prime filters are replaced with completely prime filters, which in addition
to being prime, are also Scott-open. Alternatively, they are filters
inaccessible by arbitrary joins.

NB. There is no “completely prime filter theorem”!
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Frame duality

Theorem. There is a dual adjunction between the category of frames
and frame homomorphisms, and the category of topological spaces and
continuous maps. It assigns to a topological space (X; τ) the frame
Ω(X) := (τ ;

⋃
,∩), and to a frame L the set spec(L) of completely prime

filters topologized with opens Φ(a) := {F ∈ spec(L) | a ∈ F}, a ∈ L.

Definition. A frame is called spatial if it is isomorphic to Ω(X) for
some topological space (X; τ).

A topological space is called sober if it is homeomorphic to spec(L) for
some frame L.

Theorem. The dual adjunction between frames and spaces restricts to a
duality between spatial frames and sober spaces.
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Domain continuity in frame duality

As with Stone duality for distributive lattices, we easily get that sober
spaces carry a dcpo-order and that the spectral topology is contained in
the Scott topology with respect to that order.

Theorem. Continuous domains with their Scott topology are sober
spaces. Continuous distributive lattices are spatial frames.

Even better:

Theorem. [Jimmie Lawson 1979, Rudolf-Eberhard Hoffmann 1981]
The frame duals of continuous domains with their Scott topology are
precisely the completely distributive lattices.
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Proof. [Sketch.] Both directions make use of George Raney’s
characterisation of completely distributive lattices, which says that a
complete lattice is completely distributive if every element is the
supremum of elements “far below” it, where x≪ y iff
y ≤

∨
A ⇒ x ∈ ↓A.

If D is a continuous domain then every open set O is the union of sets of
the form ↑↑a for a ∈ O. Clearly, ↑↑a≪ O in the frame σD.

If L is a completely distributive lattice then one can show that there is an
abundance of completely prime filters of the form

⋃
n∈N ↑an where

. . .≪ a2≪ a1≪ a0: If F is completely prime and a ∈ F , then there is
b ∈ F with b≪ a. By interpolation one gets a chain
b≪ . . . a2≪ a1≪ a0 = a and the filter

⋃
n∈N ↑an is clearly way-below

F in spec(L).

This also shows that if O is Scott-open and F ∈ O in spec(L) then there
is some

⋃
n∈N ↑an ⊆ ↑b ⊆ F which also belongs to O. We get that

F ∈ Φ(b) ⊆ O which shows that the Scott topology is contained in the
spectral topology.
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The Hofmann-Mislove theorem

Theorem. [ Karl Heinrich Hofmann & Michael Mislove 1981] For
(X; τ) a sober topological space there is a bijection between Scott-open
filters of the lattice τ and the compact upper sets of X.

Proof. [Sketch.] One immediately sees that the neighbourhood filter of
a compact set is Scott-open.

For the converse one shows — using the Axiom of Choice — that a
Scott-open filter in a frame is the intersection of the completely prime
filters it is contained in.
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Using frame duality

We see that frame duality for continuous domains is particularly pleasing.
In addition, we have

1. a characterisation of the frame of opens of the probabilistic
powerdomain (given by Reinhold Heckmann in 1994);

2. a description of the frame of opens for the function space construction
(given by Martin Hyland in 1981);

3. many years of experience of working with the infinitary (“geometric”)
logic of frames through the work of Peter Johnstone, Steve Vickers,
and others.
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On the other hand...

1. geometric logic is infinitary, so quite likely less useful to a computer
scientist;

2. we don’t have a frame-theoretic characterisation of FS-domains, the
canonical candidates for continuous semantic domains;

3. we don’t know whether the probabilistic powerdomain construction is
closed on FS, so cannot be sure we stay within exponentiable frames.

(A good starting point for further research on these problems is the proof
that FS is cartesian closed and to attempt a translation into geometric
logic.)
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Returning to Stone duality

We remember Stone’s characterisation of spectral spaces, to with, spaces
which are

1. compact;

2. locally compact;

3. stably compact: finite intersections of compact upper sets are compact;

4. well-filtered:
⋂
↓Ki ⊆ O ⇒ ∃i0.Ki0 ⊆ O for filtered families of

compact upper sets and an open set O;

5. zero-dimensional: there is a basis of compact open subsets.

All of these properties agree with the objects in our target category FS,
except for the last one. The first four properties define precisely stably
compact spaces. One can show:

Theorem. FS-domains equipped with the Scott topology are stably
compact.
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Stably compact spaces are well-behaved wrt V

Theorem. [Jung 2004] The category SCS of stably compact spaces is
closed under the probabilistic powerspace construction.

For this to make sense, we need to define a topology on the set of
valuations (before we focused on the order). Subbasic opens are
{ν ∈ V(X) | ν(O) > r} for O an open set of the space (X; τ) and
r ∈ [0, 1].
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A finitistic Stone dual for stably compact spaces

Definition. A strong proximity lattice is a distributive lattice
(L;∧,∨, 1, 0) equipped with a binary relation ≺ which satisfies the logical
axioms

(≺–1) x ≺ 1
(0–≺) 0 ≺ x
(≺–∧) x ≺ y, x ≺ y′ ⇐⇒ x ≺ y ∧ y′
(∨–≺) x ≺ y, x′ ≺ y ⇐⇒ x ∨ x′ ≺ y

and the strong interpolation axioms

(∧–≺) a ∧ x ≺ y =⇒ ∃a′ ∈ X. a ≺ a′ and a′ ∧ x ≺ y
(≺–∨) x ≺ y ∨ a =⇒ ∃a′ ∈ X. a′ ≺ a and x ≺ y ∨ a′

(Note that choosing ≤ for ≺ turns any distributive lattice into a strong
proximity lattice.)
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Duality

Theorem. [Jung & Sünderhauf 1995] The Stone duals of strong
proximity lattices are precisely the stably compact spaces.

Lattices to spaces: set of round prime filters, F = ↑F

Spaces to lattices: pairs of an open and a compact upper set O ⊆ K with
the operations

(U,K) ∨ (U ′,K ′) := (U ∪ U ′,K ∪K ′) 0 := (∅, ∅)
(U,L) ∧ (U ′,K ′) := (U ∩ U ′,K ∩K ′) 1 := (X,X)

(U,K) ≺ (U ′,K ′) :⇐⇒ K ⊆ U ′

Morphisms on SCS: adjoint pairs of approximable relations.
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The logic of the probabilistic powerdomain

Given a strong proximity lattice L, construct VL by

generators 〈ϕ, r〉 for all ϕ ∈ L and all r ∈ (0, 1) ∩Q
with the intended reading: probability of ϕ is greater than r.

axioms
〈0, p〉 ≺ 0

ϕ ∨ ψ ≺ ρ ϕ ∧ ψ ≺ σ p+ q > r + s

〈ϕ, p〉 ∧ 〈ψ, q〉 ≺ 〈ρ, r〉 ∨ 〈σ, s〉

ϕ ≺ ρ ∧ σ ψ ≺ ρ ∨ σ p+ q > r + s

〈ϕ, p〉 ∧ 〈ψ, q〉 ≺ 〈ρ, r〉 ∨ 〈σ, s〉
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Theorem. [Heckmann 1994; J & Moshier 2002]

If L is a domain logic that is sound and complete for the stably compact
space X, then logic VL is sound and complete for the probabilistic power
space V(X).
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Illustrating the soundness of the first modularity law
(over-simplified)

ψ

ϕ

p+ q > r + s

〈ϕ, p〉 ∧ 〈ψ, q〉 ≺ 〈ϕ ∨ ψ, r〉 ∨ 〈ϕ ∧ ψ, s〉
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The vexed issue of the function space

The success with the probabilistic power space construction on stably
compact spaces should not blind us and make us forget that it is still an
open problem to characterise those strong proximity lattices which arise as
Stone duals of FS-domains, and consequently, that to date there is no
satisfactory logical treatment of the function space construction.

In the meantime, there have been numerous attempts to “circumvent”
the problem of combining higher-order computation and probability:

Ehrhard, Pagani & Tasson (2015)
Heunen, Kammar, Staton & Yang (2017)
Goubault-Larrecq (2019)
Jia, Lindenhovius, Mislove & Zamdzhiev (2021)
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The bitopological nature of Stone duality

Strong proximity lattices give rise to two topologies, an “upper” topology
given by round ideals and a “lower” topology given by round filters. This
insight is the starting point for a bitopological reading of much of Stone
duality:

A. Jung and M. A. Moshier. On the bitopological nature of Stone duality.
Technical Report CSR-06-13, School of Computer Science, The University
of Birmingham, 2006. 110 pages.

... but this was the topic for a BLAST tutorial previously.
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