Conjunctive Join-Semilattices

Joint Work with Charles N. Delzell (LSU), Oghenetega Ighedo(UNISA)

James J. Madden, Louisiana State University

BLAST, June 11, 2021

イロン 不得 とうほう イロン 二日

1/14

The road to conjunctive join-semilattices ... and beyond.

LSU Seminar on Ordered Algebraic Structures:

Tega Ighedo, visiting LSU from UNISA (Fall 2019–Spring 2020), focuses seminar on *z*-ideals.

We studied Banaschewski (Functorial maximal spectra, 2002), Johnstone (Almost maximal ideals, 1984), Isbell (subfittness, 1973), Wallman (disjunctivity, 1938) and related papers, and sought a setting in which we could unify ideas from this stream.

Fall 2020—Spring 2021. A new theme took shape in responding to suggestions and criticisms of the referee of the paper: the profound role of distributivity.

https://drive.google.com/file/d/1cLbco8h472qaAi5Wkis8qArkGiamrbrF/v

Join-semilattices, Ideals, Prime Ideals

Definition. A *join-semilattice* is a set *L* equipped with an associative, commutative and idempotent operation \lor with identity 0. The relation \leq on *L* is defined by $a \leq b \iff b = a \lor b$.

Fact. \leq is a partial order in which $a \lor b$ is the l.u.b. of a and b.

Remarks

The theory can be developed without 0, but ... the additional generality so obtained is not deep & many theorems become messy to state.

- In general, we do not require a top element 1.
- Any lattice (or frame) with 0 is a join-semilattice.

Definition. An *ideal* of *L* is a non-empty down-set that is closed under \lor . An ideal is *prime* if its complement is downward directed.

Conjunctivity and Ideal Conjunctivity

Definition. We say a join-semilattice *L* is *conjunctive* if: (*i*) *L* has a top element 1, and (*ii*) for every pair of elements $a, b \in L$: **either** $b \le a$, **or** there is $w \in L$ such that $b \lor w = 1$ and $a \lor w \neq 1$.

Remarks. If $b \lor w = 1$, we say w is an upper complement of b. There are numerous ways to rephrase (*ii*), e.g., "Distinct elements of L have different sets of upper complements," or more indirectly, "For all $a, b \in L$ such that a < b, there is $w \in L$ such that $b \lor w = 1$ and $a \le w < 1$."

Definition. We say a join-semilattice *L* is *ideally conjunctive* if: for every pair of elements $a, b \in L$: either $b \leq a$, or there is a proper ideal $W \subseteq L$ containing *a* such that $b \lor W = L$.

Remarks. A Yosida frame (Martinez-Zenk) is the frame of ideals of an ideally conjunctive distributive lattice. Ideally conjunctive join-semilattices generalize Yosida frames in two ways: djstributive lattice \rightarrow join-semilattice. Nonetheless, much of the Martinez-Zenk theory carries over, and follows from the theory of ideally conjunctive join-semilattices. In particular, every principal ideal is an intersection of maximal ideals.

Examples

Example. The two-element join-semilattice $2 := \{0, 1\}$ is conjunctive.

Proposition. Let X be set, and let L be a sub-join-semilattice of 2^X that contains the point-complements $X \setminus \{y\}$, $y \in X$. Then L is conjunctive.

Proof. If $A, B \in L$ and $B \not\subseteq A$, then there is $b \in B \setminus A$. Let $C := X \setminus \{b\}$. Then $A \subseteq C \neq X$ and $B \cup C = X$.

Fact. A product of conjunctive join-semilattices is conjunctive.

Example. (Deadly! See below.) A retract of a conjunctive join-semilattice *need not be conjunctive*. Let $r: 2 \times 2 \rightarrow \{(0,0), (1,0), (1,1)\} \subseteq 2 \times 2$ be the identity map, except r(0,1) = (1,1).

Definition. Let *L* be a join-semilattice with 1.

 $R^1_L := \{ (a, b) \in L \times L \mid \forall x \in L \quad x \lor a = 1 \iff x \lor b = 1 \}.$

Fact. R_L^1 is the strongest join-semilattice congruence on L in which $\{1\}$ is a class. L/R_L^1 is conjunctive.

See R S Pierce. Ann. of Math. 59 (1954), 287-291.

Fact. The class of conjunctive join-semilattices is closed **neither** under limits **nor** colimits.

Proof. If *r* is a retraction of an algebra *A* onto a subalgebra $S \subseteq A$, then $r : A \to S$ is the coequalizer of the pair (id_A, r) and the inclusion map $S \subseteq A$ is the equalizer of the same pair.

Corollary. The full subcategory of conjunctive join-semilattices (within the category of join-semilattices with 1 and 1-preserving morphisms) is **neither** reflective **nor** coreflective.

Some Basic Unanswered Questions

Fact. If *L* is ideally conjunctive and $a \in L$, then $\downarrow a$ is conjunctive. (Thus, if *L* has 1 and is ideally conjunctive, then *L* is conjunctive.)

Question. Suppose L is a join-semilattice, $a, b \in L$ and $\downarrow a$ and $\downarrow b$ are conjunctive. Is $\downarrow (a \lor b)$ conjunctive?

Question. (My favorite!) Suppose *L* is a join-semilattice without 1 and $\downarrow a$ is conjunctive for all $a \in L$. Is *L* ideally conjuctive?

Question. How many non-isomorphic conjunctive join-semilattices of cardinality n are there? How may different sub-join-semilattices of 2^n are there that contain the point-complements? Same question for the sub-join-semilattices stable under permutations of n (or your favorite subgroup of S_n).

Conjunctive Means Enough Maximal Ideals

Proposition. Let *L* be a join-semilattice with 1. Then *L* is conjunctive if and only if, for every $a, b \in L$, if $b \not\leq a$, there is a maximal ideal that contains *a* and does not contain *b*.

Proof. (\Rightarrow) Suppose $b \leq a$. Select w so that $b \lor w = 1$ and $a \lor w \neq 1$. Applying Zorn's lemma, we obtain a maximal ideal $\mathfrak{m} \subseteq L$ containing $a \lor w$. Then \mathfrak{m} contains a but not b.

(⇐) Suppose $\mathfrak{m} \subseteq L$ is a maximal ideal that contains *a* but not *b*. Then $w \lor b = 1$ for some $w \in \mathfrak{m}$, while $w \lor a \in \mathfrak{m}$.

The maximal ideals of a conjunctive join-semilattice *need not be prime*. M_3 is conjunctive, but the maximal ideals (e.g., the one in red) are not prime:

Representations of Arbitrary Join Semilattices

Lemma/Definition. Suppose $\phi: L \to 2 = \{0, 1\}$ is a 0-V-morphism. Then $\phi^{-1}(0_L)$ is an ideal. Conversely, if $I \subset L$ is an ideal, then

$$\phi_I : L \to 2$$
, defined by $\phi_I(a) = 0 \iff a \in I$,

is a $0-\vee$ -morphism.

Definition. Suppose X is a set of ideals of L.

► The canonical representation on X, denoted $\phi_X : L \to 2^X$, is defined by $\phi_X(a)(I) = \phi_I(a)$.

•
$$coz_X a := (\phi_X(a))^{-1} (1) = \{ I \in X \mid a \notin I \}.$$

Remark. The map $a \to coz_X a$ is a 0-V-morphism from L to the set of subsets of X. Evidently, ϕ_X and coz_X are notational variants of one another. The coz notation is used widely in other representation theories e.g., Yosida Theorem.

Example. The *principal representation* π is the canonical representation on the set of principal ideals: $\pi(a)(\downarrow b) = 0 \iff a \le b$.

Spectra

Definition. Let X be a set of ideals of L. Then $Spec_X L$ denotes X with the topology generated by $\{ coz_X a \mid a \in L \}$.

Some Elementary Facts about $Spec_X L$:

- 1. For all L and all sets X of ideals of L, $Spec_X L$ is T_0 .
- 2. Spec_X L is T_1 if and only if X is an antichain.
- { coz_X a | a ∈ L } is a base (not merely a subbase) for Spec_X L if and only if every element of X is prime.
- 4. Let $a \in L$ and let $B \subseteq L$. Then $coz \ a \subseteq \bigcup \{ coz \ b \mid b \in B \}$ if and only if $a \in \bigcap \{ I \in X \mid B \subseteq I \}$ (= the "X-radical of B").

Representations on the Set of Maximal Ideals

Theorem. Assume *L* has 1. Let M_L denote the set of maximal ideals of *L*. Then:

(i)
$$Spec_{M_1} L$$
 is a compact T_1 space.

(*ii*) ker coz_{M_L} is the Pierce congruence, R_L^1 .

(iii) If K is a \lor -closed subbase for a compact T_1 topological space Y, then $y \mapsto \{ a \in K \mid y \notin a \} : Y \to Spec_{M_K} K$ is a homeomorphism, and coz_{M_K} is 0- \lor -isomorphism.

Comments

- ▶ By (*ii*), the representation of L on M_L is injective iff L is conjunctive.
- The hardest part of the proof is compactness, which boils down to showing that, for any subset B ⊆ L, 1 ∈ ∩{m ∈ M_L | B ⊆ m} if and only if 1 is in the ideal generated by B. Note that coz_{M_L} a need not be compact when a ≠ 1.
- ► Research problem: Investigate the representation of L on the set of "values of L," i.e., { q ∈ Id L | ∃a ∈ L such that q is maximal missing A }.

Representation: Functoriality

Suppose $\psi: L \to S$ is a morphism of join-semilattices with 1. We say that ψ is a *conjunctive morphism* if $\psi(1_L) = 1_S$, and $\psi^{-1}(\mathfrak{s})$ is an intersection of maximal ideals of L whenever \mathfrak{s} is a maximal ideal of S.

Definition. $Q_{\psi}: Spec_{M_{S}} S \Rightarrow Spec_{M_{I}} L$ is the multi-valued function

$$\{ (\mathfrak{s}, \mathfrak{l}) \in Spec_{M_S} S imes Spec_{M_l} L \mid \psi^{-1}(\mathfrak{s}) \subseteq \mathfrak{l} \}.$$

For $a \in L$, we write $\widehat{a} := \phi_{M_L}(a)$.

Proposition. If $\psi: L \to S$ is a conjunctive morphism between conjunctive join-semilattices, then for all $a \in L$ and all $\mathfrak{s} \in Spec_{M_S}S$

$$\bigvee \widehat{\mathsf{a}} \circ \mathsf{Q}_\psi(\mathfrak{s}) = \widehat{\psi(\mathsf{a})}(\mathfrak{s}).$$

If all the maximal ideals of L are prime, then Q_{ψ} is lower semicontinuous in the sense that $(Q_{\psi})^{-1}(U)$ is open in $Spec_{M_s}S$ for all open $U \subset Spec_{M_t}L$.

Distributivity

Definition. Suppose L is a join-semilattice with 0 and $u \in L$.

$$\begin{array}{lll} D_L(u) & :\equiv & \forall a, b \in L : \ u \leq a \lor b \implies u = a' \lor b' \ \text{for some } a' \leq a, \ b' \leq b. \\ V_L(u) & :\equiv & \forall a \in L : \ \{ x \in L \mid u \leq x \lor a \} \ \text{is a filter.} \end{array}$$

Note that *L* is *distributive* (in the senses of Grätzer-Schmidt and of Katriňák, which coincide if $0 \in L$) if and only if: $\forall u \in L D_L(u)$.

Theorem.

- (i) $V_L(u)$ if and only if every u-maximal ideal of L is prime.
- (*ii*) $\forall v \leq u \ D_L(v)$ implies $V_L(u)$
- (*ii*) $V_L(u)$ implies $D_L(u)$

There is a non-distributive conjunctive join-semilattice in which all maximal ideals are prime.

Let $\mathbb{N}^* = \mathbb{N} \cup \{\infty\}$, with $\infty \notin \mathbb{N}$. Let K be the collection of all subsets of \mathbb{N}^* of the following kinds: (1) the finite subsets of \mathbb{N} ; (2) the complements in \mathbb{N}^* of the finite subsets of \mathbb{N} ; (3) itself. Then K is conjunctive and satisfies $V_K(1)$. The ideal $q \subseteq K$ of all finite subsets of \mathbb{N} is maximal missing \mathbb{N} . But let $b := (\mathbb{N}^* \setminus \{0\})$. Then, $\mathbb{N} \cap \downarrow b \subseteq q$, but neither $\downarrow \mathbb{N}$ nor $\downarrow b$ is contained in q, so q fails to be prime.