Some research directions in the theory of lattice-ordered groups

Vincenzo Marra Dipartimento di Matematica "Federigo Enriques" Università degli studi di Milano, Italy

vincenzo.marra@unimi.it

BLAST 2021 New Mexico State University 11th of June, 2021

W. C. Holland (1935–2020)

J. Martinez (1945-2020)

WHAT DOES BIRKHOFF GET US FOR FREE?

Lattice-ordered groups (*l*-groups) are a variety, so Birkhoff's Subdirect Representation Theorem applies.

Congruences on l-groups are representable by l-ideals, i.e. kernels of homomorphisms.

 $G - \ell$ -group.

 $I \subseteq G - \ell$ -ideal: sublattice and normal subgroup that is convex, i.e., $x \leq y \leq z$ and $x, y \in C$ entails $y \in C$.

Idl G — lattice of l-ideals of G.

Not that much

Subdirectly irreducible *l*-groups can be quite complicated.

(Compare with Heyting algebras.)

Congruences are too coarse to afford a revealing structure theory.

We replace Idl G with a larger lattice.

We use convex sublattice subgroups which are not necessarily normal; for these, there is a useful notion of primeness.

Note from the outset that in subvarieties things may be—and in important cases are—different.

Obvious example: Abelian *l*-groups: every subgroup normal, subdirectly irreducible entails totally ordered.

PRIME SUBGROUPS

- Cnv G lattice of convex sublattice subgroups.
- Given $C \in Cnv G$, order G/C, the set of (right) cosets of C in G, by $Cx \leq Cy$ iff $cx \leq y$ for some $c \in C$.

Then G/C is a lattice, and the map $x \mapsto Cx$ is a lattice homomorphism.

 $P \subseteq G$ – prime: convex sublattice subgroup such that G/P is totally ordered (or a "chain"). Equivalently, $x \land y = 1$ entails $x \in P$ or $y \in P$.

Spec G — set of all primes, or spectrum of G.

 $\mathfrak{p}, \mathfrak{q}$ — notation for primes.

ORDERED PERMUTATION GROUPS, AND PRIMES

If Ω is any chain, write Aut Ω for the group of all automorphisms (order-preserving bijections) $\Omega \rightarrow \Omega$.

Aut Ω is an ℓ -group under the pointwise ordering:

$$f \leq g$$
 iff for all $x \in \Omega$, $fx \leq gx$.

A prime $p \subseteq G$ induces a permutation representation of *G*, its (right) regular representation.

$$g \in G \xrightarrow{} \widehat{g} \in \operatorname{Aut} G/\mathfrak{p}$$
$$\widehat{g}(\mathfrak{p}x) \coloneqq \mathfrak{p}xg$$

This is a lattice-group homomorphism (*l*-homomorphism):

$$\widehat{-}: G \longrightarrow \operatorname{Aut} \Omega.$$

If we let P range in Cnv G and consider the induced map to the product

$$G \xrightarrow{\qquad} \prod_{\mathfrak{p} \in \operatorname{Spec} G} \operatorname{Aut} G/\mathfrak{p}$$

we get a faithful representation of G: "any l-group has enough primes". (Observe parallel with subdirect representation.)

Can we make the codomain an $\operatorname{Aut} \Omega ?$ Set

$$\Omega \coloneqq \bigsqcup_{\mathfrak{p} \in \operatorname{Spec} G} G/\mathfrak{p}$$

Totally order Ω so as to make each G/P convex.

Note: This order on Ω has apparently very little to do with *G*.

HOLLAND'S THEOREM

As before, we get an injective *l*-homomorphism

 $G \xrightarrow{} \operatorname{Aut} \Omega$

which is a faithful representation of G.

Theorem (W.C. Holland, 1963) For every l-group G there is a chain Ω together with an injective l-homomorphism $G \rightarrow \operatorname{Aut} \Omega$.

One can try to tie Ω to *G* more closely (transitivity). This direction has been extensively pursued.

In another deeply studied direction we look at right orders on groups, generalising ordered groups.

RIGHT ORDERS

A total order \leq on a group *G* is a right order if for all $x, y, t \in G$, $x \leq y$ implies $xt \leq yt$.

If G is partially ordered, we only look at those right orders that extend the partial order of G.

Dropping antisymmetry, we get right preorders on G; notation: \leq .

We can extend the right regular representation $G \rightarrow \operatorname{Aut} G/\mathfrak{p}$ to the setting of right preordered groups.

The relation \leq induces the equivalence relation: $x \equiv y$ iff $x \leq y$ and $y \leq x$. The quotient set G/\leq is totally ordered by $[x] \leq [y]$ iff $x \leq y$.

We get a map

$$\widehat{-}: G \xrightarrow{} \operatorname{Aut} G/ \leq$$

defined by

$$\widehat{g}([x]) \coloneqq [xg].$$

Then

$$\widehat{-}: G \longrightarrow \operatorname{Aut} G/ \leq$$

is an order-preserving group homomorphism.

Its image \widehat{G} need not be an ℓ -subgroup of Aut G/\leq . But look at the ℓ -subgroup that \widehat{G} generates in Aut G/\leq , denoted $\llbracket \widehat{G} \rrbracket$.

Remark

Important portions of the theory of *l*-groups are tied to the passage

$$G \longmapsto \llbracket \widehat{G} \rrbracket$$

from right-ordered groups to lattice-ordered ones.

What is the relationships between right orders on groups and *l*-groups? And what about right orders in their own right?

Free *l*-groups

V a variety of l-groups, G a (partially ordered) group, $F_V G$ the free l-group generated by G in V; always exists, in some sources called "universal".

Universal arrow

$$\eta \colon G \longrightarrow F_V G$$

characterised by universal property

with f an order-preserving group homomorphism to l-group H in variety V, and h an l-homomorphism.

- η injective \Leftrightarrow there exists injective f to some H in V.
- η order-embedding ⇔ there exists order-embedding f to some H in V.

Research suggestion

Study η as the mathematically tangible obstruction to embedding *G* into some ℓ -group in V.

P. Conrad, Free lattice-ordered groups, J. Algebra, 1970.

RIGHT ORDERS, AGAIN

Important portions of the theory of *l*-groups are tied to the passage

from right-ordered groups to lattice-ordered ones.

A right preorder \leq on *G* is a right V-preorder if the *l*-group $\llbracket \widehat{G} \rrbracket$ lies in V.

 $G \longmapsto \widehat{G}$

► For V=representable *l*-groups, these are the "representable right preorders":

$$\forall a \in G \begin{cases} \text{either} & \forall b \in G \quad 1 \le bab^{-1}, \\ \text{or} & \forall b \in G \quad bab^{-1} \le 1 \end{cases}$$

► For V=Abelian ℓ-groups, these are the "Abelian right preorders":

 $\forall a, b \in G \quad 1 \leq [a, b] \leq 1.$

RIGHT ORDERS IN THEIR OWN RIGHT

A. Clay and D. Rolfsen, *Ordered groups and topology*, American Mathematical Society, 2016.

E. Ghys, *Groups acting on the circle*, Enseign. Math. 47, 329–407, 2001.

Folklore: A countable group is right-orderable precisely when it has a faithful representation as a group of orientation-preserving homeomorphisms of the real line.

Space of right preorders

A. Sikora, *Topology on the spaces of orderings of groups*, Bull. London Math. Soc. 36, 519–526, 2004.

Write $\mathscr{P}_V G$ for the set of all right V-preorders on *G* that extend the partial order of *G*. Given $g \in G$, define

$$\mathbb{P}g \coloneqq \left\{ \leq \in \mathscr{P}_{\mathsf{V}} G \mid 1 \leq g \text{ and } 1 \nleq g^{-1} \right\}.$$

We equip $\mathscr{P}_{V} G$ with the smallest topology containing all sets $\mathbb{P}g$'s as g ranges in G.

Then $\mathscr{P}_V G$ is the space of right V-preorders on *G*. It is a poset, too: order it by specialisation of right preorders.

Spectrum of an ℓ -group

```
If H is an \ell-group, A \subseteq H, define
```

```
\mathbb{S}A := \{ \mathfrak{p} \in \operatorname{Spec} H \mid A \not\subseteq \mathfrak{p} \},\
```

whose complements in $\operatorname{Spec} H$ are

```
\mathbb{V}A := \{ \mathfrak{p} \in \operatorname{Spec} H \mid A \subseteq \mathfrak{p} \}.
```

Endow Spec *H* with the topology whose open sets are precisely the supports SA, as *A* ranges overs subsets of *H*.

Then Spec *H* is the spectrum, or spectral space, of *H*.

Given l-group H, write Min H for the subspace of Spec H consisting of minimal primes.

Spec H is a completely normal generalised spectral space.

UNITS, AND COMPACTNESS OF SPECTRA

P. Conrad and J. Martinez, *Complemented lattice-ordered groups*, Indag. Math., N.S., 1, 281–298, 1990

For any l-group H:

- ► Spec *H* is compact precisely when *H* has a strong unit.
- ▶ Min *H* compact precisely when *H* is complemented: for every $x \in H^+$ there is $y \in H^+$ with $x \land y = 1$ and $x \lor y$ a weak unit.

Can we spectrally characterise l-groups that admit a weak unit? (Cf. the case of strong units.)

A prime $\mathfrak{p} \in \operatorname{Spec} H$ is minimal precisely when

$$\mathfrak{p} = \bigcup \left\{ x^{\perp} \mid x \notin \mathfrak{p} \right\}.$$

(Here, x^{\perp} is the set of elements *y* orthogonal to *x*, i.e such that $|x| \wedge |y| = 1$.) A prime $p \in \text{Spec } H$ is quasiminimal if

$$\mathfrak{p} = \bigcup \left\{ x^{\perp \perp} \mid x \in \mathfrak{p} \right\}.$$

Write $\operatorname{Qin} H$ for the subspace $\operatorname{Spec} H$ consisting of quasiminimal primes.

$$\operatorname{Min} H \subseteq \operatorname{Qin} H \subseteq \operatorname{Spec} H.$$

Inclusions are proper, in general.

A. Colacito and VM, Orders on groups, and spectral spaces of *lattice-groups*, Algebra Universalis 81, 30 pp., 2020

Theorem (A. Colacito and VM, 2020) An *l*-group *H* has a weak unit precisely when Qin *H* is compact.

The nature of these results on units and compactness of spectra is essentially lattice-theoretic. For instance, for weak units:

T. Speed, *Some remarks on a class of distributive lattices*, J. Aust. Math. Soc. 9, 289–296, 1969.

Research suggestion

Abstract the theorem above to distributive lattices with bottom.

FROM RIGHT PREORDERS TO *l*-groups...

$$\eta \colon G \xrightarrow{} F_V G$$
$$\mathscr{P}_V G \qquad \qquad \text{Spec } F_V G.$$

We send each $\leq \in \mathscr{P}_V G$ to a prime $\mathfrak{p} \in \operatorname{Spec} F_V G$.

Start from $G \to \llbracket \widehat{G} \rrbracket$; the universal arrow η yields an ℓ -group homomorphism $h: \operatorname{F}_{\mathsf{V}} G \to \llbracket \widehat{G} \rrbracket$.

Let \mathfrak{q} be the stabiliser of the identity in $[\widehat{G}]$, which is a prime; pull it back along *h*:

 $\mathfrak{p} \coloneqq h^{-1}[\mathfrak{q}].$

This gives a map

$$\kappa \colon \mathscr{P}_{\mathsf{V}}G \longrightarrow \operatorname{Spec} \mathsf{F}_{\mathsf{V}}G.$$

...AND BACK

We send each $p \in \operatorname{Spec} F_V G$ to a right preorder $\leq \mathcal{P}_V G$. Start from p, and use η to define the following relation \leq on G:

$$x \leq y$$
 iff $p\eta a \leq p\eta b$.

Then it can be proved that $\leq \in \mathscr{P}_V G$.

This gives a map

$$\pi: \operatorname{Spec} F_{\mathsf{V}} G \longrightarrow \mathscr{P}_{\mathsf{V}} G.$$

Free ℓ -groups and right preorders

Theorem (A. Colacito and V.M., 2020)

The maps κ and π are mutually inverse homeomorphisms and order-isomorphisms.

S. McCleary, *An even better representation for free lattice-ordered groups*, Trans. Am. Math. Soc. 290, 81–100, 1985.

Would-be correspondence theory

Representable right preorders:

$$\forall a \in G \begin{cases} \text{either} & \forall b \in G \quad 1 \le bab^{-1}, \\ \text{or} & \forall b \in G \quad bab^{-1} \le 1 \end{cases}$$

Abelian right preorders:

$$\forall a, b \in G \quad 1 \leq [a, b] \leq 1.$$

Research suggestion

For which V is the class of right V-preorders first-order definable in the language of groups with a binary relation \leq ?

TAKING SUBVARIETIES SERIOUSLY

 $\operatorname{Spec}^{*} H := \operatorname{Idl} H \cap \operatorname{Spec} H$ is the normal spectrum of *H*.

A right preorder on G is just a preorder if it is antisymmetric. Write

$\mathscr{B}G$

for the set of preorders on G that extend the partial order of G.

Then if V=representable l-groups, the maps κ and π descend as follows:

TAKING SUBVARIETIES SERIOUSLY

 $\operatorname{Spec}^{*} H := \operatorname{Idl} H \cap \operatorname{Spec} H$ is the normal spectrum of H.

A right preorder on G is just a preorder if it is antisymmetric. Write

 $\mathscr{B}G$

for the set of preorders on G that extend the partial order of G.

Research suggestion

For significant V's, identify "V-convex sublattice subgroups" and develop their theory.

Would-be geometry of representable *l*-groups

- G_n —the free *n*-generated group (no order).
- A_n —the free *n*-generated Abelian group (\mathbb{Z}^n).
- F G_n —the free *n*-generated representable ℓ -group.
- FA_n —the free *n*-generated Abelian ℓ -group.

There is a very significant theory of the geometric representation of FA_n by piecewise-linear functions.

This is known as Baker-Beynon Duality, and applies to all finitely presented Abelian *l*-groups.

Research suggestion

Can F G_n be represented by piecewise-linear actions on $\mathbb{S}^{n-1} \subseteq \mathbb{R}^n$?

W. C. Holland (1935–2020)

J. Martinez (1945-2020)

W. C. Holland (1935–2020)

J. Martinez (1945-2020)

Thank you for your attention.