Some research directions in the theory of lattice-ordered groups

Vincenzo Marra
Dipartimento di Matematica “Federigo Enriques”
Università degli studi di Milano, Italy
vincenzo.marra@unimi.it

BLAST 2021
New Mexico State University
11th of June, 2021
W. C. Holland (1935–2020)

J. Martinez (1945–2020)
What does Birkhoff get us for free?

Lattice-ordered groups (ℓ-groups) are a variety, so Birkhoff’s Subdirect Representation Theorem applies.

Congruences on ℓ-groups are representable by ℓ-ideals, i.e. kernels of homomorphisms.

$G - \ell$-group.

$I \subseteq G - \ell$-ideal: sublattice and normal subgroup that is convex, i.e., $x \leq y \leq z$ and $x, y \in C$ entails $y \in C$.

$\text{Idl } G$ — lattice of ℓ-ideals of G.
Subdirectly irreducible ℓ-groups can be quite complicated.

(Compare with Heyting algebras.)

Congruences are too coarse to afford a revealing structure theory.

We replace Idl \(G \) with a larger lattice.

We use convex sublattice subgroups which are not necessarily normal; for these, there is a useful notion of primeness.

Note from the outset that in subvarieties things may be—and in important cases are—different.

Obvious example: Abelian ℓ-groups: every subgroup normal, subdirectly irreducible entails totally ordered.
Prime subgroups

$\text{Cnv } G$ — lattice of convex sublattice subgroups.

Given $C \in \text{Cnv } G$, order G/C, the set of (right) cosets of C in G, by $Cx \leq Cy$ iff $cx \leq y$ for some $c \in C$.

Then G/C is a lattice, and the map $x \mapsto Cx$ is a lattice homomorphism.

$P \subseteq G$ — prime: convex sublattice subgroup such that G/P is totally ordered (or a “chain”). Equivalently, $x \land y = 1$ entails $x \in P$ or $y \in P$.

$\text{Spec } G$ — set of all primes, or spectrum of G.

p, q — notation for primes.
Ordered permutation groups, and primes

If Ω is any chain, write $\text{Aut} \Omega$ for the group of all automorphisms (order-preserving bijections) $\Omega \to \Omega$.

$\text{Aut} \Omega$ is an ℓ-group under the pointwise ordering:

$$f \leq g \quad \text{iff} \quad \text{for all } x \in \Omega, \quad fx \leq gx.$$

A prime $p \subseteq G$ induces a permutation representation of G, its (right) regular representation.

$$g \in G \quad \overset{\sim}{\longrightarrow} \quad \widehat{g} \in \text{Aut} G / p$$

$$\widehat{g}(px) := pxg$$

This is a lattice-group homomorphism (ℓ-homomorphism):

$$\widehat{\sim} : G \longrightarrow \text{Aut} \Omega.$$
If we let P range in $\text{Conv} G$ and consider the induced map to the product
\[
G \longrightarrow \prod_{p \in \text{Spec } G} \text{Aut } G/p
\]
we get a faithful representation of G: “any ℓ-group has enough primes”. (Observe parallel with subdirect representation.)

Can we make the codomain an $\text{Aut } \Omega$? Set
\[
\Omega := \bigsqcup_{p \in \text{Spec } G} G/p
\]
Totally order Ω so as to make each G/P convex.

Note: This order on Ω has apparently very little to do with G.
Holland’s Theorem

As before, we get an injective ℓ-homomorphism

\[G \longrightarrow \text{Aut} \, \Omega \]

which is a faithful representation of G.

Theorem (W.C. Holland, 1963)

For every ℓ-group G there is a chain Ω together with an injective ℓ-homomorphism $G \rightarrow \text{Aut} \, \Omega$.

One can try to tie Ω to G more closely (transitivity). This direction has been extensively pursued.

In another deeply studied direction we look at right orders on groups, generalising ordered groups.
Right orders

A total order \(\leq \) on a group \(G \) is a right order if for all \(x, y, t \in G \), \(x \leq y \) implies \(xt \leq yt \).

If \(G \) is partially ordered, we only look at those right orders that extend the partial order of \(G \).

Dropping antisymmetry, we get right preorders on \(G \); notation: \(\preceq \).

We can extend the right regular representation \(G \to \text{Aut } G/\mathcal{P} \) to the setting of right preordered groups.

The relation \(\preceq \) induces the equivalence relation: \(x \equiv y \) iff \(x \preceq y \) and \(y \preceq x \). The quotient set \(G/\preceq \) is totally ordered by \([x] \leq [y]\) iff \(x \leq y \).

We get a map

\[
\hat{\sim} : G \longrightarrow \text{Aut } G/\preceq
\]

defined by

\[
\hat{g}([x]) := [xg].
\]
Then

\[\hat{\sim}: G \longrightarrow \text{Aut} G/\leq \]

is an order-preserving group homomorphism.

Its image \(\hat{G} \) need not be an \(\ell \)-subgroup of \(\text{Aut} G/\leq \). But look at the \(\ell \)-subgroup that \(\hat{G} \) generates in \(\text{Aut} G/\leq \), denoted \([\hat{G}]\).

Remark

Important portions of the theory of \(\ell \)-groups are tied to the passage

\[G \longrightarrow [\hat{G}] \]

from right-ordered groups to lattice-ordered ones.

What is the relationships between right orders on groups and \(\ell \)-groups? And what about right orders in their own right?
Free ℓ-groups

V a variety of ℓ-groups, G a (partially ordered) group, $F_V G$ the free ℓ-group generated by G in V; always exists, in some sources called “universal”.

Universal arrow

$$\eta : G \rightarrow F_V G$$

characterised by universal property

$$
\begin{array}{ccc}
G & \xrightarrow{\eta} & F_V G \\
\downarrow{f} & & \downarrow{h} \\
H & & H
\end{array}
$$

with f an order-preserving group homomorphism to ℓ-group H in variety V, and h an ℓ-homomorphism.
Some research suggestions

\[G \xrightarrow{\eta} F_V G \]

\[\downarrow \quad \downarrow h \]

\[f \quad H \]

- \(\eta \) injective \(\iff \) there exists injective \(f \) to some \(H \) in \(V \).
- \(\eta \) order-embedding \(\iff \) there exists order-embedding \(f \) to some \(H \) in \(V \).

Research suggestion

Study \(\eta \) as the mathematically tangible obstruction to embedding \(G \) into some \(\ell \)-group in \(V \).

Right orders, again

Important portions of the theory of ℓ-groups are tied to the passage

\[G \rightarrow \langle \hat{G} \rangle \]

from right-ordered groups to lattice-ordered ones.

A right preorder \(\leq \) on \(G \) is a right V-preorder if the ℓ-group \(\langle \hat{G} \rangle \) lies in \(V \).

- For \(V= \text{representable} \) ℓ-groups, these are the “representable right preorders”:

 \[\forall a \in G \left\{ \begin{array}{l}
 \text{either} \\
 \text{or}
 \end{array} \right. \forall b \in G \ 1 \leq bab^{-1},
 \forall b \in G \ bab^{-1} \leq 1 \]

- For \(V= \text{Abelian} \) ℓ-groups, these are the “Abelian right preorders”:

 \[\forall a, b \in G \ 1 \leq [a, b] \leq 1. \]
Right orders in their own right

Folklore: A countable group is right-orderable precisely when it has a faithful representation as a group of orientation-preserving homeomorphisms of the real line.
SPACE OF RIGHT PREORDERS

Write $\mathcal{P}_V G$ for the set of all right V-preorders on G that extend the partial order of G. Given $g \in G$, define

$$\mathcal{P}_g := \left\{ \leq \in \mathcal{P}_V G \mid 1 \leq g \text{ and } 1 \not\leq g^{-1} \right\}.$$

We equip $\mathcal{P}_V G$ with the smallest topology containing all sets \mathcal{P}_g's as g ranges in G.

Then $\mathcal{P}_V G$ is the space of right V-preorders on G. It is is a poset, too: order it by specialisation of right preorders.
Spectrum of an ℓ-group

If H is an ℓ-group, $A \subseteq H$, define

$$\mathcal{S}A := \{ p \in \text{Spec } H \mid A \not\subseteq p \} ,$$

whose complements in $\text{Spec } H$ are

$$\mathcal{V}A := \{ p \in \text{Spec } H \mid A \subseteq p \} .$$

Endow $\text{Spec } H$ with the topology whose open sets are precisely the supports $\mathcal{S}A$, as A ranges over subsets of H.

Then $\text{Spec } H$ is the spectrum, or spectral space, of H.

Given ℓ-group H, write $\text{Min } H$ for the subspace of $\text{Spec } H$ consisting of minimal primes.

$\text{Spec } H$ is a completely normal generalised spectral space.
UNITS, AND COMPACTNESS OF SPECTRA

For any ℓ-group H:

- Spec H is compact precisely when H has a strong unit.
- Min H compact precisely when H is complemented: for every $x \in H^+$ there is $y \in H^+$ with $x \wedge y = 1$ and $x \vee y$ a weak unit.
Can we spectrally characterise ℓ-groups that admit a weak unit? (Cf. the case of strong units.)

A prime \(p \in \text{Spec } H \) is minimal precisely when

\[
p = \bigcup \{ x^\perp \mid x \notin p \}.
\]

(Here, \(x^\perp \) is the set of elements \(y \) orthogonal to \(x \), i.e. such that \(|x| \wedge |y| = 1 \).) A prime \(p \in \text{Spec } H \) is quasiminimal if

\[
p = \bigcup \{ x^{\perp \perp} \mid x \in p \}.
\]

Write \(\text{Qin} H \) for the subspace \(\text{Spec } H \) consisting of quasiminimal primes.

\[\text{Min } H \subseteq \text{Qin } H \subseteq \text{Spec } H.\]

Inclusions are proper, in general.

A. Colacito and VM, *Orders on groups, and spectral spaces of lattice-groups*, Algebra Universalis 81, 30 pp., 2020
Theorem (A. Colacito and VM, 2020)

An ℓ-group H has a weak unit precisely when $Q_{\text{in}} H$ is compact.

The nature of these results on units and compactness of spectra is essentially lattice-theoretic. For instance, for weak units:

Research suggestion

Abstract the theorem above to distributive lattices with bottom.
FROM RIGHT PREORDERS TO ℓ-GROUPS...

$$\eta: G \longrightarrow F_V G$$

$$P_V G \quad \text{Spec } F_V G.$$

We send each $\leq \in P_V G$ to a prime $p \in \text{Spec } F_V G$.

Start from $G \rightarrow \llbracket \hat{G} \rrbracket$; the universal arrow η yields an ℓ-group homomorphism $h: F_V G \rightarrow \llbracket \hat{G} \rrbracket$.

Let q be the stabiliser of the identity in $\llbracket \hat{G} \rrbracket$, which is a prime; pull it back along h:

$$p := h^{-1}[q].$$

This gives a map

$$\kappa: P_V G \longrightarrow \text{Spec } F_V G.$$
...AND BACK

$$\eta: G \longrightarrow F_V G$$

$$\mathcal{P}_V G \quad \text{Spec} \ F_V G.$$

We send each $$p \in \text{Spec} \ F_V G$$ to a right preorder $$\leq \in \mathcal{P}_V G.$$

Start from $$p,$$ and use $$\eta$$ to define the following relation $$\leq$$ on $$G:$$

$$x \leq y \quad \text{iff} \quad \forall \eta a \leq \forall \eta b.$$

Then it can be proved that $$\leq \in \mathcal{P}_V G.$$

This gives a map

$$\pi: \text{Spec} \ F_V G \longrightarrow \mathcal{P}_V G.$$
Free ℓ-groups and right preorders

Theorem (A. Colacito and V.M., 2020)

The maps κ and π are mutually inverse homeomorphisms and order-isomorphisms.

WOULD-BE CORRESPONDENCE THEORY

- Representable right preorders:
 \[
 \forall a \in G \begin{cases}
 \text{either} & \forall b \in G \ 1 \leq bab^{-1}, \\
 \text{or} & \forall b \in G \ bab^{-1} \leq 1
 \end{cases}
 \]

- Abelian right preorders:
 \[
 \forall a, b \in G \ 1 \leq [a, b] \leq 1.
 \]

Research suggestion

For which V is the class of right V-preorders first-order definable in the language of groups with a binary relation \leq?
Taking subvarieties seriously

Spec\(^*\) \(H := \text{Idl } H \cap \text{Spec } H\) is the **normal spectrum** of \(H\).

A right preorder on \(G\) is just a **preorder** if it is antisymmetric. Write

\[
\mathcal{B}G
\]

for the set of preorders on \(G\) that extend the partial order of \(G\).

Then if \(V\)=representable \(\ell\)-groups, the maps \(\kappa\) and \(\pi\) descend as follows:

\[
\begin{array}{c}
\mathcal{P}_V G \xleftarrow{\kappa} \text{Spec } F_V G \\
\uparrow \subseteq \uparrow \\
\mathcal{B}G \xleftarrow{\pi} \text{Spec } F_V G
\end{array}
\]

\[
\subseteq
\]

\[
\mathcal{B}G \xrightarrow{\pi} \text{Spec } F_V G
\]
TAKING SUBVARIETIES SERIOUSLY

\[\text{Spec}^* H := \text{Idl } H \cap \text{Spec } H \] is the normal spectrum of \(H \).

A right preorder on \(G \) is just a preorder if it is antisymmetric. Write \(\mathcal{B}G \) for the set of preorders on \(G \) that extend the partial order of \(G \).

Research suggestion

For significant \(V \)’s, identify “\(V \)-convex sublattice subgroups” and develop their theory.
Would-be geometry of representable ℓ-groups

- G_n — the free n-generated group (no order).
- A_n — the free n-generated Abelian group (\mathbb{Z}^n).
- FG_n — the free n-generated representable ℓ-group.
- FA_n — the free n-generated Abelian ℓ-group.

There is a very significant theory of the geometric representation of FA_n by piecewise-linear functions.

This is known as Baker-Beynon Duality, and applies to all finitely presented Abelian ℓ-groups.
Research suggestion

Can FG_n be represented by piecewise-linear actions on $S^{n-1} \subseteq \mathbb{R}^n$?
Thank you for your attention.

W. C. Holland (1935–2020)
J. Martinez (1945–2020)

Thank you for your attention.