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A “square root” problem

® Chang, Jonsson, Tarski, Refinement properties for relational
structures, Fund. Math. 55 (1964):

‘When two direct factorisations of a structure have a common
refinement?’

‘Does A% = B2 entail A > B?’
e Lovasz, Operations with structures, Acta Math. Acad. Sci. Hungar.

18 (1967):
‘If A and B are finite then, for all n € N, A™ = B" entails A = B’
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Homomorphism counting

Here is what Lovasz proved:

Theorem
Let A and B be finite (relational) structures. Then A = B iff

for all finite structures C', |hom(C, A)| = |hom(C, B)|.

Back to the square root problem:

A? = B? & |hom(C, A%)| = |hom(C, B?)| VC
& |hom(C, A)|* = |hom(C, B)|* VC
& |hom(C, A)| = |hom(C, B)| VC
< A= B.
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Homomorphism counting in FMT

Lovész’ result has had a considerable impact in graph theory but also
in finite model theory, where the isomorphism relation is replaced by
equivalence in a logic fragment:

Theorem (Dvorak, 2009 )
For all finite structures A and B,

V finite structures C

AZpory) B <= [bom(C, A)| = [hom(C, B)| - .y tw(C) < k.

Theorem (Grohe, 2020 )

For all finite structures A and B,

Y finite structures C

A EFOk(#) B <— ]hom(C’, A)‘ = |h0m(C’, B)| with td(C) < k.

3/22



In this talk

This talk is about a connection between homomorphism counting
results and Joyal’s polyadic spaces, which are the Stone (pointwise)
duals of Boolean hyperdoctrines.

® Most of what I know about polyadic spaces I have learnt from
André Joyal (e-mail communication).

e Jérémie Marques has been doing quite a lot of interesting work on
polyadic spaces.
® The results pertaining to FMT that I will mention have been

obtained jointly with Anuj Dawar and Tom4&s Jakl (Lovdsz-type
theorems and game comonads, LiCS’21).
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Polyadic spaces



Boolean hyperdoctrines

A basic tool of categorical logic is given by hyperdoctrines (Lawvere,
1969). Fix a first-order theory T'. For all finite contexts 7, let L1 (Z) be

the Lindenbaum-Tarski algebra of formulas with free variables in 7,
modulo T-equiprovability.
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Boolean hyperdoctrines (on Fin)

If the signature contains no function symbols nor constants, then the
category of contexts can be identified with the category Fin of finite
sets and functions.

A Boolean hyperdoctrine on Fin is a functor F': Fin — BA s.t.

1. For all arrows h in Fin, F'h has a left adjoint;
(Existential quantifiers)

2. F takes pushout squares to Beck-Chevalley squares.
(3 commutes with substitutions)
P
Recall that a commutative square J’ ¢ in BA is a BC square
c

S

J

IS8

_k
if 3gok = fod;.
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Polyadic spaces (on Fin)

A polyadic space on Fin is a contravariant functor E: Fin — Stone
satisfying the following conditions:

1. For all arrows h in Fin, Eh is an open map;
(Existential quantifiers)

2. F takes pushout squares to quasi-pullbacks.
(3 commutes with substitutions)

x .y

A commutative square 4 J’h in Stone is a quasi-pullback if

Wt 7
the unique mediating morphism X — Y Xz W is a surjection.
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Notices of the AMS, 1970

*71T-E29. ANDRE JOYAL, Université de Montréal, Montréal, Québec, Canada. Polyadic spaces and

elementary theories. Preliminary report.

Let SO be the category of finite sets. A polyadic space E is a contravariant functor from S0 to the
category C of Stone spaces and continuous mappings satisfying: (1) (n £om) € SO’ E(n) Ei(t) E(m) is open. (2) E
transforms push-out squares in S0 into quasi pull-back squares in ¢ (i.e., the objec§ of the initial corner is
mapped onto the pull-back of the remaining objects of the square). A morphism E 2 E' between two polyadic
spaces is a natural transformation s.t. VI(n£ m) € SO’ the square constructed by using 0 O E(), E'(f) isa
quasi pull-back. With every set X, we associate a polyadic space X as follows: %(n) = p(Xn) (i.e., the
Stone-Cech compactification of Xn); i(i) is defined in the obvious way. A model of E (based on X) isa
morphism '§ - E. Given an elementary theory, we can associate ""canonically" a polyadic space and vice-versa.
Under this correspondence, the two concepts of model coincide. Classical theorems of logic are interpreted and

proven in this context. Polyadic spaces are naturally found in algebraic geometry. (Received November 4, 1970.)
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Amalgamation

A category A has the amalgamation property if any span of morphisms
in A can be completed to a commutative square:

By extension, we say that a functor £: A°® — Stone has the
amalgamation property if so does its category of elements [ E:

The objects of [ E are the pairs (a,z) with a € A and x € E(a), and
an arrow (a,z) — (a’,2’) in [ E is a morphism f: a — @/ in A such
that Ef(2') = x.
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Polyadic spaces (on arbitrary categories)

Generalising Joyal’s definition, let us say that a polyadic space on A is
a contravariant functor £: A — Stone s.t.

1. For all arrows f in A, Ef is an open map;

2. FE has the amalgamation property.

A (finite) polyadic set is a contravariant functor E: A — Set (resp.
A — Fin) with the amalgamation property.

Example
Any representable functor hom(—,a): A°? — Set is a polyadic set.

For the homomorphism counting results we only need (finite) polyadic
sets, but I think it’s worth placing these results in the wider framework

of polyadic spaces (this may suggest further developments).
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Generic elements

Let E: Fin°® — Stone be a polyadic space (or a polyadic set).
An element x € E(n) is called generic if it is not of the form F f(y) for
any proper surjection f: n — m and element y € E(m).

E: Fin®°® — Fin, n — 2" (generic elements in red):

E(0) E(1) EQ)

E: Fin®°® — Set, n — [0, 1]™:

E(0) E() EQ)
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Stirling core

Let E®(n) denote the subspace of F(n) consisting of the generic
elements. Then the polyadic space E: Fin®® — Stone induces a
polyadic space

E*®: Finj,; — Stone
on the category of finite sets and injections. We refer to E*® as the
Stirling core of F.
Proposition (Reconstruction Lemma)
Let E: Fin®® — Stone be a polyadic space. For all n € Fin,

E(n) = J] E*(m)

n—-,m

where the coproduct is indexed by the set of equivalence classes of
surjections with domain n.
(In fact, E is the left Kan extension of E* along Fini,; — Fin.)
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An example

The number of non-equivalent surjections n — m coincides with the
number of ways to partition an n-element set into m non-empty
subsets. This is commonly denoted by S(n,m) and known as the
Stirling number of the second kind associated with the pair (n,m).

Example
For the finite polyadic set E: Fin®® — Fin, n — 2" we have

27> [ S(n,m)E*(m).

o<m<n

Foralln>3,2"=2-5(n,1)+2-5n,2) =2+2-5(n,2).
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The Key Lemma

Two parallel functors E, F': A — B are pointwise isomorphic if, for all
a € A, there is an isomorphism 7,: Fa — Fa in B.

This contrasts with the concept of natural isomorphism between E and
F', whereby the isomorphisms 7, are required to be natural in a.

Lemma (Key Lemma)

Let E, F: Fin®°® — Fin be finite polyadic sets. If E and F' are
pointwise isomorphic, then so are their Stirling cores E® and F*°.

® The Key Lemma generalises to finite polyadic sets on any category
A equipped with a proper factorisation system (Q, M) such that, for
every a € A, the poset of quotients of a is well-founded.

® The proof relies on the Reconstruction Lemma and Rota’s Mobius
inwversion formula.
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Homomorphism counting



Combinatorial categories

A category A is said to be
e locally finite if, for all a,b € A, the set hom(a, b) is finite;

e combinatorial if it is locally finite and, for all a,b € A,

a=b <= |hom(c,a)| =|hom(c,b)| Vece A.

Lovéasz’ theorem states that, if o is a finite relational signature, the
category of finite o-structures and homomorphisms is combinatorial.

Pultr (1973) showed that any finitely well-powered, locally finite
category with (extremal epi, mono) factorisations is combinatorial.
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An abstract homomorphism counting result

Theorem

Let A be a locally finite category admitting a proper factorisation
system (Q, M) such that the poset of quotients of each a € A is
well-founded. Then A is combinatorial.

Proof.

Suppose that | hom(c, a)| = |hom(c,b)| for all ¢ € A. Then

E :=hom(—,a) and F' := hom(—, b) are pointwise isomorphic finite
polyadic sets. By the Key Lemma, E*® is pointwise isomorphic to F'°.
It is not difficult to see that, for all ¢ € A, E*(c) = M(c, a) and

F*(c) = M(c,b). As 0 # M(a,a) = M(a,b), there is i € M(a,b).
Similarly, there is j € M(b,a) and so joi € M(a,a).

But M(a, a) is a finite left-cancellative monoid (zy = zz = y = 2),
hence a group. It follows that j o4 has an inverse, and so 7 is an iso. [J
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Examples

The following categories are combinatorial:

¢ Finite o-structures and homomorphism (for o a relational
signature).

¢ Finite monoids / groups / Abelian groups... and homomorphisms.
® Vi, for any Birkhoff variety of algebras V.

¢ Finite Eilenberg-Moore coalgebras for any comonad on Set, or on
the category of o-structures.

¢ Finite trees / forests and forest morphisms.

Grohe’s theorem can be deduced by looking at the finite EM
coalgebras for an appropriate game comonad on o-structures. This is a
comonad, introduced by Abramsky and Shah, that captures precisely
Eherenfeucht-Fraissé games between structures.
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Beyond locally finite categories



e Can we recover Dvoidk’s result for FO*(#) (in a direct way)?

® What about “small” infinite objects? E.g., is the isomorphism type
of finitely branching trees determined by homomorphism counts?

We will see that a “local” homomorphism counting result holds for
locally finitely presentable categories, which are a generalisation of
algebraic lattices. A poset P is an algebraic lattice if

1. it is \/-complete (hence, a complete lattice), and

2. each x € P is the directed join of compact elements.

An element z € P is compact if, for all directed subsets D C P,
z<\/D = =z <y forsomey € D.

Equivalently, homp(z,\/ D) = vyeD homp(z,y).
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Ifp categories

An object x of a category A is finitely presentable (fp) if the functor
homy (z, —): A — Set preserves directed colimits.

A is locally finitely presentable (Ifp) if
1. it is cocomplete,
2. each = € A is the directed colimit of fp objects,

3. and there is, up to isomorphism, only a set of fp objects.

Examples of Ifp categories include:
¢ Set (but not Fin). Here, fp = finite.
® Category of o-structures. If ¢ is finite, then fp = finite.

® Any variety of algebras, with the usual fp algebras.

Note: Any lfp category admits a proper factorisation system (Q,M).
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Spaces of homomorphisms

Let A be a lfp category. An object x € A has finite type if hom(k, z) is
finite for every fp object k € A.

If = has finite type then, for all y € A, the set hom(y, ) is naturally
equipped with a Stone topology. Just observe that, if y = colim k; then

hom(y, z) = lim hom(k;, ).

Explicitly, its Stone topology is generated by the sets of the form

k
Otuwy = {h € hom(y,z) | hou = v} y Y
y —n

for k a fp object, u € hom(k,y) and v € hom(k, z).

X
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A local homomorphism counting result

Lemma
The following hold for every object x of finite type:
1. hom(z, z) is a profinite monoid w.r.t. composition.

2. M(z,x) is a closed submonoid of hom(z, ).

Theorem
Let A be a lfp category. For any two objects x,y of finite type,

x =y <= |hom(p,z)| = |hom(p,y)| for all fg objects p.

® p is finitely generated (fg) iff hom(p, —) preserves directed colimits
of monomorphisms.

® We can drop the assumption of well-founded posets of quotients.
® The Theorem relies on Numakura’s Lemma: A compact Hausdorff
topological monoid that satisfies the left-cancellation law is a group.
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Examples

The category T of trees and tree morphisms is Ifp. In T, fp = fg =
finite trees. On the other hand, the objects of finite type in T are
precisely the finitely branching trees.

Corollary

For any two finitely branching trees x, vy,

x =y <= |hom(p,x)| = |hom(p,y)| for all finite trees p.

Further, we recover Dvorédk’s result by applying the local
homomorphism counting result to the (Ifp) category of coalgebras for
the so-called pebbling comonad on o-structures (introduced by
Abramsky, Dawar and Wang), which captures pebble games.
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Thank you for your attention!



