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A “square root” problem

• Chang, Jónsson, Tarski, Refinement properties for relational
structures, Fund. Math. 55 (1964):

‘When two direct factorisations of a structure have a common
refinement?’

‘Does A2 ∼= B2 entail A ∼= B?’

• Lovász, Operations with structures, Acta Math. Acad. Sci. Hungar.
18 (1967):

‘If A and B are finite then, for all n ∈ N, An ∼= Bn entails A ∼= B.’
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Homomorphism counting

Here is what Lovász proved:

Theorem
Let A and B be finite (relational) structures. Then A ∼= B iff

for all finite structures C, |hom(C,A)| = | hom(C,B)|.

Back to the square root problem:

A2 ∼= B2 ⇔ | hom(C,A2)| = |hom(C,B2)| ∀C
⇔ | hom(C,A)|2 = |hom(C,B)|2 ∀C
⇔ | hom(C,A)| = | hom(C,B)| ∀C
⇔ A ∼= B.
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Homomorphism counting in FMT

Lovász’ result has had a considerable impact in graph theory but also
in finite model theory, where the isomorphism relation is replaced by
equivalence in a logic fragment:

Theorem (Dvořák, 2009 link )

For all finite structures A and B,

A ≡FOk(#) B ⇐⇒ |hom(C,A)| = | hom(C,B)| ∀ finite structures C
with tw(C) < k.

Theorem (Grohe, 2020 link )

For all finite structures A and B,

A ≡FOk(#) B ⇐⇒ |hom(C,A)| = |hom(C,B)| ∀ finite structures C
with td(C) ≤ k.
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In this talk

This talk is about a connection between homomorphism counting
results and Joyal’s polyadic spaces, which are the Stone (pointwise)
duals of Boolean hyperdoctrines.

• Most of what I know about polyadic spaces I have learnt from
André Joyal (e-mail communication).

• Jérémie Marquès has been doing quite a lot of interesting work on
polyadic spaces.

• The results pertaining to FMT that I will mention have been
obtained jointly with Anuj Dawar and Tomáš Jakl (Lovász-type
theorems and game comonads, LiCS’21).
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Polyadic spaces



Boolean hyperdoctrines

A basic tool of categorical logic is given by hyperdoctrines (Lawvere,
1969). Fix a first-order theory T . For all finite contexts x, let LT (x) be
the Lindenbaum-Tarski algebra of formulas with free variables in x,
modulo T -equiprovability.

LT (∅) LT (x1) LT (x1, x2)

∃x1 ∃x2

∀x1 ∀x2

[ ] [x1] [x1, x2]
〈x1〉〈 〉

>

>

>

>
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Boolean hyperdoctrines (on Fin)

If the signature contains no function symbols nor constants, then the
category of contexts can be identified with the category Fin of finite
sets and functions.

A Boolean hyperdoctrine on Fin is a functor F : Fin→ BA s.t.

1. For all arrows h in Fin, Fh has a left adjoint;
(Existential quantifiers)

2. F takes pushout squares to Beck-Chevalley squares.
(∃ commutes with substitutions)

Recall that a commutative square

a b

c d

f

j g

k

in BA is a BC square

if ∃g ◦ k = f ◦ ∃j .
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Polyadic spaces (on Fin)

A polyadic space on Fin is a contravariant functor E : Fin→ Stone
satisfying the following conditions:

1. For all arrows h in Fin, Eh is an open map;
(Existential quantifiers)

2. F takes pushout squares to quasi-pullbacks.
(∃ commutes with substitutions)

A commutative square

X Y

W Z

f

g h

k

in Stone is a quasi-pullback if

the unique mediating morphism X → Y ×Z W is a surjection.
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Notices of the AMS, 1970
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Amalgamation

A category A has the amalgamation property if any span of morphisms
in A can be completed to a commutative square:

· ·

· ·

By extension, we say that a functor E : Aop → Stone has the
amalgamation property if so does its category of elements

∫
E:

The objects of
∫
E are the pairs (a, x) with a ∈ A and x ∈ E(a), and

an arrow (a, x)→ (a′, x′) in
∫
E is a morphism f : a→ a′ in A such

that Ef(x′) = x.
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Polyadic spaces (on arbitrary categories)

Generalising Joyal’s definition, let us say that a polyadic space on A is
a contravariant functor E : A→ Stone s.t.

1. For all arrows f in A, Ef is an open map;

2. E has the amalgamation property.

A (finite) polyadic set is a contravariant functor E : A→ Set (resp.
A→ Fin) with the amalgamation property.

Example

Any representable functor hom(−, a) : Aop → Set is a polyadic set.

For the homomorphism counting results we only need (finite) polyadic
sets, but I think it’s worth placing these results in the wider framework
of polyadic spaces (this may suggest further developments).
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Generic elements
Let E : Finop → Stone be a polyadic space (or a polyadic set).
An element x ∈ E(n) is called generic if it is not of the form Ef(y) for
any proper surjection f : n� m and element y ∈ E(m).

E : Finop → Fin, n 7→ 2n (generic elements in red): link

E : Finop → Set, n 7→ [0, 1]n:
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Stirling core
Let E•(n) denote the subspace of E(n) consisting of the generic
elements. Then the polyadic space E : Finop → Stone induces a
polyadic space

E• : Fininj → Stone

on the category of finite sets and injections. We refer to E• as the
Stirling core of E.

Proposition (Reconstruction Lemma)

Let E : Finop → Stone be a polyadic space. For all n ∈ Fin,

E(n) ∼=
∐
n�m

E•(m)

where the coproduct is indexed by the set of equivalence classes of
surjections with domain n.
(In fact, E is the left Kan extension of E• along Fininj ↪→ Fin.)
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An example

The number of non-equivalent surjections n� m coincides with the
number of ways to partition an n-element set into m non-empty
subsets. This is commonly denoted by S(n,m) and known as the
Stirling number of the second kind associated with the pair (n,m).

Example

For the finite polyadic set E : Finop → Fin, n 7→ 2n, we have

2n ∼=
∐

0<m≤n
S(n,m)E•(m). link

For all n ≥ 3, 2n = 2 · S(n, 1) + 2 · S(n, 2) = 2 + 2 · S(n, 2).
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The Key Lemma

Two parallel functors E,F : A→ B are pointwise isomorphic if, for all
a ∈ A, there is an isomorphism ηa : Ea→ Fa in B.
This contrasts with the concept of natural isomorphism between E and
F , whereby the isomorphisms ηa are required to be natural in a.

Lemma (Key Lemma)

Let E,F : Finop → Fin be finite polyadic sets. If E and F are
pointwise isomorphic, then so are their Stirling cores E• and F •.

• The Key Lemma generalises to finite polyadic sets on any category
A equipped with a proper factorisation system (Q,M) such that, for
every a ∈ A, the poset of quotients of a is well-founded.

• The proof relies on the Reconstruction Lemma and Rota’s Möbius
inversion formula.
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Homomorphism counting



Combinatorial categories

A category A is said to be

• locally finite if, for all a, b ∈ A, the set hom(a, b) is finite;

• combinatorial if it is locally finite and, for all a, b ∈ A,

a ∼= b ⇐⇒ | hom(c, a)| = | hom(c, b)| ∀c ∈ A.

Lovász’ theorem states that, if σ is a finite relational signature, the
category of finite σ-structures and homomorphisms is combinatorial.

Pultr (1973) showed that any finitely well-powered, locally finite
category with (extremal epi, mono) factorisations is combinatorial.

15 / 22



An abstract homomorphism counting result

Theorem
Let A be a locally finite category admitting a proper factorisation
system (Q,M) such that the poset of quotients of each a ∈ A is
well-founded. Then A is combinatorial.

Proof.
Suppose that |hom(c, a)| = |hom(c, b)| for all c ∈ A. Then
E := hom(−, a) and F := hom(−, b) are pointwise isomorphic finite
polyadic sets. By the Key Lemma, E• is pointwise isomorphic to F •.

It is not difficult to see that, for all c ∈ A, E•(c) = M(c, a) and
F •(c) = M(c, b). As ∅ 6= M(a, a) ∼= M(a, b), there is i ∈M(a, b).
Similarly, there is j ∈M(b, a) and so j ◦ i ∈M(a, a).

But M(a, a) is a finite left-cancellative monoid (xy = xz ⇒ y = z),
hence a group. It follows that j ◦ i has an inverse, and so i is an iso.
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Examples

The following categories are combinatorial:

• Finite σ-structures and homomorphism (for σ a relational
signature).

• Finite monoids / groups / Abelian groups... and homomorphisms.

• Vfin for any Birkhoff variety of algebras V.

• Finite Eilenberg-Moore coalgebras for any comonad on Set, or on
the category of σ-structures.

• Finite trees / forests and forest morphisms.

Grohe’s theorem link can be deduced by looking at the finite EM
coalgebras for an appropriate game comonad on σ-structures. This is a
comonad, introduced by Abramsky and Shah, that captures precisely
Eherenfeucht-Fräıssé games between structures.
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Beyond locally finite categories



• Can we recover Dvořák’s result for FOk(#) (in a direct way)?

• What about “small” infinite objects? E.g., is the isomorphism type
of finitely branching trees determined by homomorphism counts?

We will see that a “local” homomorphism counting result holds for
locally finitely presentable categories, which are a generalisation of
algebraic lattices. A poset P is an algebraic lattice if

1. it is
∨

-complete (hence, a complete lattice), and

2. each x ∈ P is the directed join of compact elements.

An element x ∈ P is compact if, for all directed subsets D ⊆ P ,

x ≤ BB���D =⇒ x ≤ y for some y ∈ D.

Equivalently, homP (x, BB���D) = BB���y∈D homP (x, y).
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lfp categories

An object x of a category A is finitely presentable (fp) if the functor
homA(x,−) : A→ Set preserves directed colimits.

A is locally finitely presentable (lfp) if

1. it is cocomplete,

2. each x ∈ A is the directed colimit of fp objects,

3. and there is, up to isomorphism, only a set of fp objects.

Examples of lfp categories include:

• Set (but not Fin). Here, fp = finite.

• Category of σ-structures. If σ is finite, then fp = finite.

• Any variety of algebras, with the usual fp algebras.

Note: Any lfp category admits a proper factorisation system (Q,M).
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Spaces of homomorphisms

Let A be a lfp category. An object x ∈ A has finite type if hom(k, x) is
finite for every fp object k ∈ A.

If x has finite type then, for all y ∈ A, the set hom(y, x) is naturally
equipped with a Stone topology. Just observe that, if y ∼= colim ki then

hom(y, x) ∼= lim hom(ki, x).

Explicitly, its Stone topology is generated by the sets of the form

O〈u,v〉 := {h ∈ hom(y, x) | h ◦ u = v}
k

y x

u v

h

for k a fp object, u ∈ hom(k, y) and v ∈ hom(k, x).
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A local homomorphism counting result

Lemma
The following hold for every object x of finite type:

1. hom(x, x) is a profinite monoid w.r.t. composition.

2. M(x, x) is a closed submonoid of hom(x, x).

Theorem
Let A be a lfp category. For any two objects x, y of finite type,

x ∼= y ⇐⇒ |hom(p, x)| = |hom(p, y)| for all fg objects p.

• p is finitely generated (fg) iff hom(p,−) preserves directed colimits
of monomorphisms.
• We can drop the assumption of well-founded posets of quotients.
• The Theorem relies on Numakura’s Lemma: A compact Hausdorff

topological monoid that satisfies the left-cancellation law is a group.
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Examples

The category T of trees and tree morphisms is lfp. In T, fp = fg =
finite trees. On the other hand, the objects of finite type in T are
precisely the finitely branching trees.

Corollary

For any two finitely branching trees x, y,

x ∼= y ⇐⇒ |hom(p, x)| = | hom(p, y)| for all finite trees p.

Further, we recover Dvořák’s result link by applying the local
homomorphism counting result to the (lfp) category of coalgebras for
the so-called pebbling comonad on σ-structures (introduced by
Abramsky, Dawar and Wang), which captures pebble games.
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Thank you for your attention!


