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The Archimedean property is one of the most
distinctive and useful features of the field of real
numbers; it grounds both the theory of magnitudes
and classical, as opposed to nonstandard, analysis.

There have been several attempts to define the
concept of an Archimedean algebra for individual
classes of algebras of logic, but there is not a general
definition that subsumes the existing special cases.

In this talk I propose such a definition and single
out a large class in which the Archimedean property
implies commutativity.
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In the 1960s, Paul Conrad launched a general
program, aimed at capturing relevant information
about ℓ-groups by inquiring into the structure of their
lattices of convex ℓ-subgroups. He demonstrated that
many significant properties of ℓ-groups are purely
lattice-theoretic.
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In the 1960s, Paul Conrad launched a general
program, aimed at capturing relevant information
about ℓ-groups by inquiring into the structure of their
lattices of convex ℓ-subgroups. He demonstrated that
many significant properties of ℓ-groups are purely
lattice-theoretic.
A natural continuation of Conrad’s program consists
in extending it from ℓ-groups to residuated lattices (to
be defined below). This extended Conrad program
has led to promising results in the study of semilinear
and Hamiltonian varieties, in the investigation of
normal-valued residuated lattices, in the description
of projectable objects, the construction of the lateral
completion of a residuated lattice, etc.
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Residuated lattices first appeared explicitly in the early
1930’s in the work of Krull, Ward and Dilworth as
abstractions of lattices of ideals of rings. Surprisingly, they
are also the algebraic counterparts of propositional
substructural logics.
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Residuated lattices first appeared explicitly in the early
1930’s in the work of Krull, Ward and Dilworth as
abstractions of lattices of ideals of rings. Surprisingly, they
are also the algebraic counterparts of propositional
substructural logics.

Substructural logics are non-classical logics that are
weaker than classical logic, in the sense that they may lack
one or more of the structural rules of contraction,
weakening and exchange in their Genzen-style
axiomatization. They include many non-classical logics
related to computer science (linear logic), linguistics
(Lambek Calculus), philosophy (relevant logics), and
many-valued reasoning.
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A residuated lattice (RL) is an algebra
A = 〈A,∧,∨, ·, \, /, e〉 such that:

(i) 〈A,∧,∨〉 is a lattice;
(ii) 〈A, ·, e〉 is a monoid; and
(iii) for all x, y, z ∈ A,

xy ≤ z ⇐⇒ x ≤ z/y ⇐⇒ y ≤ x\z.
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a distinguished element of A.
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A residuated lattice (RL) is an algebra
A = 〈A,∧,∨, ·, \, /, e〉 such that:

(i) 〈A,∧,∨〉 is a lattice;
(ii) 〈A, ·, e〉 is a monoid; and
(iii) for all x, y, z ∈ A,

xy ≤ z ⇐⇒ x ≤ z/y ⇐⇒ y ≤ x\z.

An algebra A = 〈A,∧,∨, ·, \, /, e, f〉 is said to be a
pointed residuated lattice (PRL ) provided: (i)
A = 〈A,∧,∨, ·, \, /, e〉 is a residuated lattice; and (ii) f is
a distinguished element of A.

The classes RL (residuated lattices) and PRL (pointed
residuated lattices) are finitely based varieties.
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A lattice-ordered group (ℓ-group) is an algebra
A = 〈A,∧,∨, ·, −1, e〉 such that

(i) 〈A,∧,∨〉 is a lattice;
(ii)〈A, ·, −1, e〉 is a group; and
(iii) multiplication is isotone.
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A lattice-ordered group (ℓ-group) is an algebra
A = 〈A,∧,∨, ·, −1, e〉 such that

(i) 〈A,∧,∨〉 is a lattice;
(ii)〈A, ·, −1, e〉 is a group; and
(iii) multiplication is isotone.

Defining z/y := zy−1 and x\z = x−1z, condition (iii) is
equivalent to

(iiia) For all x, y, z ∈ A,
xy ≤ z ⇐⇒ x ≤ z/y ⇐⇒ y ≤ x\z.

Thus any ℓ-group may be viewed as an RL. In fact, it is
an RL that satisfies the equation x(x\e) ≈ e.
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Notation: If x\y = y/x, we write x → y for the
common value.



Classes of PRLs

7 / 19

Notation: If x\y = y/x, we write x → y for the
common value.

� Heyting algebras: xy ≈ x ∧ y and x ∧ f ≈ f

� Boolean algebras: xy ≈ x ∧ y,
(x → y) → y ≈ x ∨ y (Relative double negation)
and x ∧ f ≈ f

� MV-algebras: xy ≈ yx, (x → y) → y ≈ x ∨ y and
x ∧ f ≈ f

� Pseudo-MV-algebras:
y/(x\y) ≈ x ∨ y ≈ (y/x)\y (Non-commutative
relative double negation) and x ∧ f ≈ f
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The negative cone A− = {a ∈ A : a ≤ e} of an RL
A = 〈A,∧,∨, ·, \, /, e〉 is the universe of an integral RL
A− = 〈A−,∧,∨, ·, \−, /−, e〉 such that for all a, b ∈ A−,
a\−b = (a\b) ∧ e and b/−a = (b/a) ∧ e.
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� Commutativity: xy ≈ yx

� Integrality: x\e ≈ e ≈ e/x

� Divisibility: x(x\y) ≈ x ∧ y ≈ (y/x)x

� Cancellativity: xy/y ≈ x ≈ y\yx

� e-Cyclicity: x\e ≈ e/x

� (Left) Prelinearity: [(x\y) ∧ e)] ∨ [(y\x) ∧ e] ≈ e
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We write C(A) for the algebraic closure system of all
convex subuniverses of an RL A.
C[S]: the convex subuniverse of A generated by
S ⊆ A, as well as the corresponding algebra.

C[a] = C[{a}] is the principal convex subuniverse of
A generated by a ∈ A.
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We write C(A) for the algebraic closure system of all
convex subuniverses of an RL A.
C[S]: the convex subuniverse of A generated by
S ⊆ A, as well as the corresponding algebra.

C[a] = C[{a}] is the principal convex subuniverse of
A generated by a ∈ A.

If A is e-cyclic, then C(A) is a algebraic frame with
the FIP whose compact members are the principal
convex subuniverses of A.
If, in addition, A satisfies the prelinearity equation,
then the prime (meet-prime) convex subuniverses of
A form a root-system.
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A convex subuniverse B ∈ C(A) is said to be normal
if for all a, b ∈ A,

(a\b) ∧ e ∈ B iff (b/a) ∧ e ∈ B.
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A convex subuniverse B ∈ C(A) is said to be normal
if for all a, b ∈ A,

(a\b) ∧ e ∈ B iff (b/a) ∧ e ∈ B.

The congruence relations of A are in bijective
correspondence with and are determined by the
normal convex subuniverses of A.
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An RL A is said to be normal-valued provided it is
e-cyclic and each completely meet-irreducible convex
subuniverse B ∈ C(A) is normal in its cover B♯.
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An RL A is said to be normal-valued provided it is
e-cyclic and each completely meet-irreducible convex
subuniverse B ∈ C(A) is normal in its cover B♯.

Let A be an e-cyclic, prelinear RL. Then A is
normal-valued if and only if it satisfies the following
equations:

|x|2|y|2 ≤ |y||x|

(

(y/x ∧ e)n
∖

|x||y| ∧ e
)2

≤ |x||y|
/

(x\y ∧ e)4n,
(

|x||y|
/

(x\y ∧ e)n ∧ e
)2

≤ (y/x ∧ e)4n
∖

|x||y|,

for all n ∈ N.
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An algebraic frame L with the FIP is said to satisfy the
zero radical compact property if for every compact
element c ∈ L, the meet of all maximal elements in ↓ c is
the bottom element ⊥ of L.
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the bottom element ⊥ of L.
Jorge Martinez (1973) observed that an Abelian ℓ-group
is Archimedean if and only if its lattice of convex
subuniverses has the zero radical compact property. In
this special case, therefore, the Archimedean property is
fully captured in the lattices of convex subuniverses of the
ℓ-groups in question.
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An algebraic frame L with the FIP is said to satisfy the
zero radical compact property if for every compact
element c ∈ L, the meet of all maximal elements in ↓ c is
the bottom element ⊥ of L.
Jorge Martinez (1973) observed that an Abelian ℓ-group
is Archimedean if and only if its lattice of convex
subuniverses has the zero radical compact property. In
this special case, therefore, the Archimedean property is
fully captured in the lattices of convex subuniverses of the
ℓ-groups in question.

However, this is no longer true if non-commutative
ℓ-groups are considered, as there exist Archimedean
ℓ-groups and non-normal-valued ℓ-groups whose lattices
of convex subuniverses are isomorphic.
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We define an RL A to be Archimedean if
(1) it is normal-valued; and
(2) the lattice C(A) has the zero radical

compact property.
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Notation:
|a| = a ∧ e/a ∧ e (the absolute value of a)
a ≪ b : a, b ≤ e and a < bn for all n ∈ N

An RL A is said to be unital if there exists u ∈ A− (called a
strong unit of A) such that C[u] = A.
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Notation:
|a| = a ∧ e/a ∧ e (the absolute value of a)
a ≪ b : a, b ≤ e and a < bn for all n ∈ N

An RL A is said to be unital if there exists u ∈ A− (called a
strong unit of A) such that C[u] = A.

Let A be a (non-trivial) e-cyclic, prelinear RL with a strong
order-unit u ∈ A−. Let Rad(A) be the intersection of the
maximal convex subuniverses of A (i.e., the values of u).

Then:
(1) Rad(A) ⊆ {a ∈ L : u ≪ |a|}.
(2) If, moreover, A is cancellative and the values of u are

normal, then Rad(A) = {a ∈ A : u ≪ |a|}.
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A non-trivial RL A is called strongly simple provided its
only subuniverses are A and {e}.
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A non-trivial RL A is called strongly simple provided its
only subuniverses are A and {e}.
Let L be an arbitrary lattice with a top element, and let L∗

be the free monoid over L. We order L∗ as follows:
 

       e ={ } 
 

W1 = L  
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An Archimedean RL is commutative iff each of its
principal convex subuniverses is commutative.
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member) of V is commutative.
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An Archimedean RL is commutative iff each of its
principal convex subuniverses is commutative.

Given a variety V of normal-valued RLs, we seek
conditions which will imply that every unital
Archimedean member (and hence every Archimedean
member) of V is commutative.

Each such algebra is a subdirect product of strongly
simple algebras. So we seek conditions that will guarantee
that every strongly simple member of V is commutative.

A simplifying condition is that the variety V satisfies the
prelinearity equation [(x\y) ∧ e)] ∨ [(y\x) ∧ e] ≈ e. Under
this condition, the strongly simple RLs in V are totally
ordered.
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Further, we assume that V is a variety of GBL-algebras,
that is, it satisfies the following generalizations of the
divisibility equations:

� x[(x\y) ∧ e] ≈ x ∧ y ≈ [(y/x) ∧ e]x
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specifically, A is the direct sum of its subalgebras B and C,
where B is the ℓ-group of the invertible elements of A and
C is the integral GBL algebra of the integral elements of A.
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Further, we assume that V is a variety of GBL-algebras,
that is, it satisfies the following generalizations of the
divisibility equations:

� x[(x\y) ∧ e] ≈ x ∧ y ≈ [(y/x) ∧ e]x

Now every GBL-algebra A is isomorphic to a direct
product of an ℓ-group and an integral GBL-algebra. More
specifically, A is the direct sum of its subalgebras B and C,
where B is the ℓ-group of the invertible elements of A and
C is the integral GBL algebra of the integral elements of A.

It follows that a strongly simple RL A ∈ V is either a
strongly simple totally ordered ℓ-group or an integral
strongly simple totally ordered GBL-algebra.
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If the former, then it is (isomorphic to a subalgebra) of R,
by Hölder’s theorem, and hence is commutative. If the
latter, then we use the fact that any totally ordered
GBL-algebra is an ordinal sum of pseudo-MV-algebras
and negative cones of ℓ-groups. The strong simplicity of A
implies that it is ordinally indecomposable and hence is a
negative cone of an ℓ-group or a pseudo-MV-algebra.
Another application of Hölder’s theorem implies that A is
isomorphic to a subalgebra of R

− or a subalgebra of the
MV-algebra [0, 1].
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If the former, then it is (isomorphic to a subalgebra) of R,
by Hölder’s theorem, and hence is commutative. If the
latter, then we use the fact that any totally ordered
GBL-algebra is an ordinal sum of pseudo-MV-algebras
and negative cones of ℓ-groups. The strong simplicity of A
implies that it is ordinally indecomposable and hence is a
negative cone of an ℓ-group or a pseudo-MV-algebra.
Another application of Hölder’s theorem implies that A is
isomorphic to a subalgebra of R

− or a subalgebra of the
MV-algebra [0, 1].

Theorem: Any Archimedean, prelinear GBL-algebra is
commutative. Moreover, every strongly simple totally
ordered GBL-algebra is isomorphic to a subalgebra of R,
R

−, or the MV-algebra [0, 1].
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