A hyperarchimedean ℓ -group not embeddable into any hyperarchimedean ℓ -group with strong unit

Philip Scowcroft

Wesleyan University

Blast 2021

In "Settling a number of questions about hyperarchimedean lattice-ordered groups" Conrad and Martinez present the first example of a hyperarchimedean (h.a.) ℓ -group not embeddable into any Archimedean ℓ -group with strong unit. Hager and Johnson, in "Some comments and examples on generation of (hyper-) archimedean ℓ -groups and f-rings," refine the Conrad-Martinez work and exploit their common technique to produce more examples of h.a. ℓ -groups with special properties related to units. This talk will describe an h.a. ℓ -group, not embeddable into an h.a. ℓ -group with unit, built by a different method. This work should become part of an ongoing project with Hager on conditions under which Archimedean ℓ -groups may be embedded in Archimedean ℓ -groups with strong unit.

First note the definition and some characterizations of h.a. ℓ -groups.

<u>Definition</u>. The ℓ -group G is Archimedean just in case for all $x, y \ge 0$ in G, if $nx \le y$ for all $n \in \mathbb{N}$, then x = 0.

All Archimedean ℓ -groups are Abelian. From now on all ℓ -groups will be Abelian.

<u>Definition</u>. An ℓ -group G is hyperarchimedean just in case all of its homomorphic images are Archimedean.

Every h.a. $\ell\text{-group}$ may be embedded in an $\ell\text{-group}\ \mathbb{R}^I.$

<u>Theorem</u>. If G is an ℓ -group, the following conditions are equivalent:

(i) *G* is h.a.;

- (ii) every linearly ordered homomorphic image of G is Archimedean;
- (iii) for all $a \in G$, $G = G(a) \oplus a^{\perp}$;
- (iv) G has an embedding into some \mathbb{R}^I ; and for every embedding $\varphi : G \to \mathbb{R}^J$ and every $a, b \ge 0$ in G, there is a positive integer nwith

 $j \in \operatorname{supp}(\varphi(a)) \Rightarrow n\varphi(a)(j) > \varphi(b)(j).$

If G is any ℓ -group, let

 $\mathsf{Cp}(G) = \{G(a) : a \in G\}.$

 $(Cp(G), \subseteq)$ is a distributive lattice. If G is h.a., $(Cp(G), \subseteq)$ is a generalized Boolean algebra. G.B.a.s correspond to Boolean rings possibly without unit. If the g.B.a. \mathcal{B} corresponds to the Boolean ring R without unit, and a unit is adjoined to R in the usual way to get the Boolean ring S, then B is a maximal ideal of S (and of the corresponding B.a.).

If G is an ℓ -group and $u \in G$, u is a weak unit of G just in case

 $u \ge 0$ and for all $x \in G$, $x \land u = 0 \Rightarrow x = 0$,

and u is a strong unit of G just in case

 $u \geq 0$ and for all $x \in G$, there is $n \in \mathbb{N}$ with $x \leq nu$.

Every strong unit is a weak unit, but the converse fails in general. In an h.a. ℓ -group, every weak unit is a strong unit.

If G is an ℓ -group and $a \in G$, a is basic in G just in case a > 0 and G(a) is linearly ordered. $S \subseteq G$ is a basis of G just in case S consists of pairwise disjoint basic elements and $S^{\perp} = (0)$.

If $0 \leq f, g \in \mathbb{R}^{\mathbb{N}}$, say that

 $f \leq^* g$ iff $f(n) \leq g(n)$ for all sufficiently large $n \in \mathbb{N}$. If $S \subseteq (\mathbb{R}^{\mathbb{N}})^+$, say that S is *-bounded just in case there is $g \geq 0$ in $\mathbb{R}^{\mathbb{N}}$ with

 $f \leq^* g$ for all $f \in S$.

If $|S| \leq \aleph_0$, S is *-bounded: so

 $\mathfrak{b} = \min\{|S| : S \subseteq (\mathbb{R}^{\mathbb{N}})^+ \text{ is not } *-\text{bounded}\}$ is uncountable, but of course at most $\mathfrak{c} = 2^{\aleph_0}$. Viewing b an an initial ordinal, one may consider the ℓ -group $H = \mathbb{R}^{\omega \times b}$. Let $\{b_{\alpha} : \alpha < b\}$ be a *-unbounded subset of $(\mathbb{N} \setminus \{0\})^{\mathbb{N}}$. If $n \in \mathbb{N}$ and $\alpha < b$, let $\chi_{n,\alpha} \in H$ be the characteristic function of $\{(n, \alpha)\}, u_n \in H$ be the characteristic function of $\{n\} \times b$, and $c_{\alpha} \in H$ be given by

$$c_{\alpha}(n,\beta) = \begin{cases} b_{\alpha}(n) & \text{if } \alpha = \beta \\ 0 & \text{if } \alpha \neq \beta \end{cases}$$

(so c_{α} is a copy of b_{α} on row α of $\omega \times \mathfrak{b}$). Let *G* be the sub- ℓ -group of *H* generated by the $\chi_{n,\alpha}s$, u_ns , and $c_{\alpha}s$.

<u>Theorem</u>. G is h.a. but is not embeddable into any h.a. ℓ -group with unit.

Lemma 1. *G* is h.a. with basis $\{\chi_{n,\alpha} : (n,\alpha) \in \omega \times \mathfrak{b}\}.$

<u>Proof sketch</u>. The remark about the basis is clear. *G* is h.a. because if $\varphi : G \to K$ is any homomorphism of *G* onto an ordered group *K*, then *K* is Archimedean, as one may show by considering the following cases:

some $\varphi(\chi_{n,\alpha}) \neq 0$;

every $\varphi(\chi_{n,\alpha}) = 0$ but some $\varphi(u_n) \neq 0$;

every $\varphi(\chi_{n,\alpha}) = 0 = \varphi(u_n)$ but some $\varphi(c_\alpha) \neq 0$.

<u>Lemma 2</u>. G may not be embedded into any h.a. ℓ -group with unit.

<u>Proof</u>. Suppose otherwise. By a fundamental result of Conrad-Martinez—later clarified and refined by Hager-Johnson—there is $v \in \mathbb{R}^{\omega \times \mathfrak{b}}$ such that the sub- ℓ -group K of H generated by $G \cup \{v\}$ is h.a. with unit v. Since K and G share the basis $\{\chi_{n,\alpha} : (n,\alpha) \in \omega \times \mathfrak{b}\}, v$ is positive everywhere on $\omega \times \mathfrak{b}$. If $n < \omega$, then since K is h.a., there is an integer s(n) > 0 such that

 $v(n, \alpha) \leq s(n)u_n(n, \alpha) = s(n)$ for every $\alpha < \mathfrak{b}$. Let $s = (n \in \mathbb{N} \mapsto s(n)) \in (\mathbb{N} \setminus \{0\})^{\mathbb{N}}$. If $\alpha < \mathfrak{b}$, then since K is h.a. and v is a unit of K, v is a strong unit of K, and there is an integer $k(\alpha) > 0$ with

$$c_{\alpha} \leq k(\alpha)v.$$

So for all $n \in \mathbb{N}$

 $b_{\alpha}(n) = c_{\alpha}(n, \alpha) \le k(\alpha)v(n, \alpha) \le k(\alpha)s(n)$

and $b_{\alpha} \leq k(\alpha)s$. The at most countable set $\{k(\alpha)s : \alpha < b\}$ has a *-upper bound $t \in \mathbb{R}^{\mathbb{N}}$, and then $b_{\alpha} \leq t$ always: contradiction.

What is the source of the new example?

Remember that when M is an h.a. ℓ -group, Cp(M) is a generalized Boolean algebra. Bounded Boolean powers of \mathbb{Q} allow one to show that any g.B.a. is isomorphic to a g.B.a. Cp(M) with M an h.a. ℓ -group embeddable in an h.a. ℓ -group with unit.

<u>Definition</u>. The g.B.a. \mathcal{B} is said to be unitembeddable just in case every h.a. ℓ -group Hwith $Cp(H) \cong \mathcal{B}$ may be embedded into an h.a. ℓ -group with unit.

So the interesting question here is: are there unit-embeddable g.B.a.s?

<u>Lemma</u>. If \mathcal{B} is disjointly generated—i.e., there is a pairwise disjoint subset of B that generates \mathcal{B} as an ideal—then \mathcal{B} is unit-embeddable.

Note that countably generated \mathcal{B} are disjointly generated, but not conversely in general.

G.B.a.s are the maximal ideals of Boolean algebras, and for any ideal of a Boolean algebra one may ask whether it is disjointly generated as an ideal.

Lemma (Heindorf). Let \mathcal{P} be a Boolean algebra with Stone space X, \mathcal{I} be an ideal of \mathcal{P} , and U be the open subset of X corresponding to \mathcal{I} .

(i) \mathcal{I} is disjointly generated just in case U is paracompact.

(ii) ${\mathcal I}$ is countably generated just in case U is Lindelöf.

In "Boolean algebras whose ideals are disjointly generated" Heindorf considers "paracompact" Boolean algebras—Boolean algebras, all of whose ideals are disjointly generated—as well as "Lindelöf" Boolean algebras: Boolean algebras, all of whose ideals are countably generated. Let $Z(\omega)$ ($Z(\omega_1)$) be the one-point compactification of the discrete space ω (ω_1), with $p(\omega)$ ($p(\omega_1)$) the point at infinity, and let $p = (p(\omega), p(\omega_1))$. Let $\mathcal{B}(\omega)$ ($\mathcal{B}(\omega_1)$) be the clopen algebra of $Z(\omega)$ ($Z(\omega_1)$). Heindorf points out that though $\mathcal{B}(\omega)$ is Lindelöf and $\mathcal{B}(\omega_1)$ is paracompact, $\mathcal{B}(\omega) * \mathcal{B}(\omega_1)$ is not paracompact, since this is the clopen algebra of $Z = Z(\omega) \times Z(\omega_1)$, and $Z \setminus \{p\}$ is neither normal nor paracompact.

Under CH, $\mathfrak{b} = \omega_1$, and if all the b_{α} s are strictly increasing, there is an h.a. ℓ -group M, of extended real-valued functions on $Z \setminus \{p\}$, with Cp(M) the ideal corresponding to $Z \setminus \{p\}$ and G resulting from M by removing the last row and column from the domain of every element of M. Some references—

P. Conrad and J. Martinez, *Settling a number of questions about hyperarchimedean lattice-ordered groups*, Proc. AMS **109** (1990), 291–296.

A. Hager and D. Johnson, Some comments and examples on generation of (hyper-) archimedean ℓ -groups and f-rings, Ann. Fac. Sci. Toulouse Math. 19 (Fascicule Spécial) (2010), 75–100.

A. Hager and P. Scowcroft, *Adjoining a strong unit to an archimedean lattice-ordered group*, to appear in Order.

A. Hager and P. Scowcroft, *Essential adjunction of a strong unit to an archimedean latticeordered group*, Algebra Univ. **81** : **37** (2020), 17 pp.

L. Heindorf, *Boolean algebras whose ideals are disjointly generated*, Demonstratio Math. 18 (1985), 43–64.