DIHEDRAL AND QUATERNIONIC HOMOLOGY

BY WALL RESOLUTIONS

BY

EDUARDO QUIÑONEZ-RICO, B.S., M.S.

A dissertation submitted to the Graduate School

in partial fulfillment of the requirements

for the degree

Doctor of Philosophy

Major Subject: Mathematics

New Mexico State University

Las Cruces New Mexico

December 1997
“Dihedral and Quaternionic Homology by Wall Resolutions,” a dissertation prepared by
Eduardo Quiñonez-Rico in partial fulfillment of the requirements for the degree, Doctor of
Philosophy, has been approved and accepted by the following:

Roy C. Rodriguez
Interim Dean of the Graduate School

Ross E. Staffeldt
Chair of the Examining Committee

Committee in charge:

Dr. Ross E. Staffeldt, Chair
Dr. Kathleen Brooks
Dr. Gerald J. Dunn
Dr. David R. Finston
Dr. Gerald M. Lodder
DEDICATION

I dedicate this work to my daughter Daniela, my mother Alejandrina, my sister and brothers Gabriela, Jaime, Miguel, and David.
ACKNOWLEDGMENTS

I would like to thank my advisor, Ross E. Staffeldt, for his encouragement, interest, and patience. Personally, I would like to thank him for sharing his knowledge which has enriched my study in topology.
VITA

December 1, 1956 Born at Cd. Juárez, Chihuahua, México

1978-1982 B.S., Universidad Autónoma de México, Mexico City

1982-1984 Teaching Assistant, Facultad de Ciencias, Universidad Autónoma de México.

1987-1989 M.S., New Mexico State University, Las Cruces, New Mexico

1987-1993 Teaching Assistant, Department of Mathematics, New Mexico State University.

PROFESSIONAL AND HONORARY SOCIETIES

American Mathematical Society

PUBLICATIONS [or Papers Presented]

Use the format of your bibliography for these.

FIELD OF STUDY

Major Field: Algebraic Topology
ABSTRACT

DIHEDRAL AND QUATERNIONIC HOMOLOGY

BY WALL RESOLUTIONS

BY

EDUARDO QUIÑONEZ-RICO, B.S., M.S.

Doctor of Philosophy
New Mexico State University
Las Cruces, New Mexico, 1997

Dr. Ross E. Staffeldt, Chair

In this work we present a computation of the Dihedral and Quaternionic Homology of an involutive tensor algebra following ideas introduced by Loday and Quillen in their computation of the cyclic homology of a tensor algebra.

For G a dihedral or quaternion group, a construction due to C.T.C. Wall is used to find resolutions of the trivial G-module k, where k is a commutative ring with identity. In each case, these resolutions are assembled to produce computationally useful ΔG projective resolutions of the trivial ΔG-module k^\dagger. Tensoring the resolutions of k^\dagger with a ΔG^{op} module gives rise to a bicomplex defining the dihedral or quaternionic homology of the given ΔG^{op}-module.
Also an alternative description of the resulting bicomplex as a tricomplex allows us to make a reduction: contractible subcomplexes are deleted using Loday’s killing contractible complexes lemma. Then in the case of a tensor algebra a short description of the Hochschild complex is used to simplify the preceding complex even more. These two main steps allow us to compute the dihedral and quaternionic homology of an involutive tensor algebra.
CONTENTS

<table>
<thead>
<tr>
<th>LIST OF TABLES</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2 HOMOLOGY</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Simplicial Homology of a Simplicial Module</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Cyclic Homology of a Cyclic Module</td>
<td>6</td>
</tr>
<tr>
<td>3 A SAMPLE OF TEXT WITH TABLE</td>
<td>9</td>
</tr>
<tr>
<td>4 SAMPLE TEXT WITH GRAPHICS</td>
<td>10</td>
</tr>
</tbody>
</table>
LIST OF TABLES

1 Table of Maps .. 9
LIST OF FIGURES

1 This is an inserted EPS graphic 10
1 INTRODUCTION

This document has been prepared to serve as a template for preparation of a master’s or Ph.D. thesis in mathematics at New Mexico State University. The template uses the \LaTeX\ document preparation system as the basic tool. Before you attempt to use the template, you should become familiar with the \LaTeX\ system. For example, you may browse the directory \texttt{usr/local/texmf/doc/latex} on the Department of Mathematical Sciences UNIX server for essential information about \LaTeX\. You may also wish to invest in a copy of Leslie Lamport’s user guide and reference manual \cite{ Lamport93 }.

However, the \LaTeX\ document preparation system by itself is not sufficient for preparing an NMSU thesis. On one hand, some of the formatting requirements of the NMSU graduate school conflict with the default formatting provided by the document class \texttt{article} provided by the standard \LaTeX\ package. Some of the NMSU formatting requirements may be fulfilled by settings made in the preamble of your \LaTeX\ document. To handle other parts of the graduate school’s formatting guidelines, we have provided a new document class \texttt{nmsuth01} that seems to solve most of these local formatting issues. You will need to have the file \texttt{nmsuth01.cls} in the directory with the files comprising your thesis in order for \LaTeX\ to find it. Note that when the file \texttt{nmsuth01.cls} loads, \LaTeX\ reports a warning that an unusual document class is in use. This is normal and should not effect the creation of the \texttt{.dvi} file. Finally, we should warn potential users that we have constructed the file \texttt{nmsuth01.cls} to handle issues that seem to be essential to us. It is possible that “extreme” users will have formatting problems that necessitate additional modifications to the article class file.
After you have gained some experience with \LaTeX and with literature in your speciality, it will become clear that certain demands placed on the typesetter by higher mathematics cannot be fulfilled by the \LaTeX 2ε package itself. To get around these problems, users of Te\TeX have developed special packages to make the typesetting of mathematics easier. The American Mathematical Society has a package of macros to handle such issues as formatting for statements of theorems, definitions, examples, remarks, and so on. Other parts of the American Mathematic Society package deal with complicated display alignment and line breaking issues. Other packages have been developed to handle inclusion of graphics into mathematical documents. All of the packages used in the template are installed on the Department of Mathematics UNIX server. For general information about what Te\TeX features are currently available browse the directory \texttt{usr/local/teTeX/texmf/doc} on the UNIX server. Your thesis advisor should also be willing to draw your attention to specific packages you might find especially useful.

This files for this template were prepared by Pat Morandi and Ross Staffeldt. All the \texttt{.tex} files for the template were prepared using the emacs editor.

Before you start creating files and problems for yourself, you should acquire some basic background information about writing in the mathematical sciences. A basic reference is Nicholas J. Higham’s book [?], which includes discussion of what differentiates good writing from poor writing, preparation of talks and posters, as well as preparation of theses and papers. He also has material on Te\TeX systems and a brief introduction to the emacs editor. The American Mathematical Society publication [?] has general information about mathematical typesetting which is still useful, although the book predates the Te\TeX-age. We conclude with a brief description of the contents of this template.
Chapter 2 is an extract from the 1997 Ph.D. thesis of Eduardo Quiñones-Rico. It is included to illustrate the some of the features made available in the packages amsmath and amsthm which are in the macro package AMS-\LaTeX distributed free of charge by the American Mathematical Society. Among the features illustrated in this section are the environments for theorems, proofs, lemmas, remarks, and examples of “cases” constructions. This section also illustrates some commutative diagrams illustrating the package xypic. In later versions of the template we hope to include examples from other NMSU theses illustrating problems and solutions associated to communicating other types of mathematics.

Chapter 3 provides a sample table containing mathematical entries. The table is also extracted from Eduardo’s thesis. There are no special packages called for in this section. The main purpose of the section is to give a reason for creating a list of tables following the table of contents page.

Chapter 4 provides two figures which are the realizations of two encapsulated PostScript files. Creating and incorporating graphics is rather sophisticated business. For detailed information on the incorporation of graphics into a \LaTeX document go to some directory under your UNIX account and use the command

\begin{verbatim}
cp /usr/local/teTeX/texmf/doc/latex/graphics/epslatex.ps epslatex.ps
\end{verbatim}

to transfer a copy of the document “Using EPS Graphics in \LaTeX Documents” to your account, where you can view it or print it for later reference.
2 HOMOLOGY

We now introduce the concepts of simplicial module and of the homology associated to a simplicial module. As a variation of this, we recall the definition of cyclic module and its cyclic homology first given by Loday [?].

The letter k will always denote a commutative ring with identity.

2.1 Simplicial Homology of a Simplicial Module

We define simplicial modules and their homology. Also, two examples are given. The first example is the free simplicial module associated to a simplicial set. Our second example is the Hochschild complex of a unitary algebra A over a ring k.

Definition 2.1. A simplicial k-module M_* is a family of k-modules $\{M_n\}_{n \geq 0}$ together with k-module homomorphisms $d_i: M_n \to M_{n-1}$ and $s_i: M_n \to M_{n+1}$ for $0 \leq i \leq n$ satisfying the following identities:

\[
d_i d_j = d_{j-1} d_i \quad \text{for} \quad i < j. \tag{1}
\]

\[
s_i s_j = s_{j+1} s_i \quad \text{for} \quad i \leq j \tag{2}
\]

\[
d_i s_j = \begin{cases}
 s_{j-1} d_i & \text{if } i < j, \\
 id & \text{if } i = j \text{ or } i = j + 1, \\
 s_j d_{i-1} & \text{if } i > j + 1.
\end{cases} \tag{3}
\]

In order to define the homology of a simplicial module define $b: M_n \to M_{n-1}$ to be the boundary map such that

\[
b = \sum_{i=0}^{n} (-1)^i d_i
\]

4
Relations (1) imply \(b^2 = 0 \), so we obtain a chain complex \((M_*, b)\) and we have the following definition:

Definition 2.2. Let \(M_* \) be a simplicial \(k \)-module. The homology of the simplicial module \(M_* \) is given by

\[
H_n(M_*) = H_n(M_*, b)
\]

where \(H_n(M_*, b) \) is the \(n \)-th homology of the complex \((M_*, b)\).

Example 2.3. A simplicial set \(X \) is a family of sets \(\{X_n\}_{n \geq 0} \) together with functions \(d_i \) and \(s_i \) satisfying relations (1)-(3). A simplicial set gives rise to a free simplicial \(k \)-module denoted \(k[X] \) by taking \(k[X]_n = k[X_n] \), the free \(k \)-module with basis \(X_n \). In this case we usually write \(H_*(k[X]) = H_*(X; k) \). Let \(Y \) be a topological space and let \(X = \text{Sin}(Y) \) be the singular complex of \(Y \). This has

\[
X_n = \{ \sigma : \Delta^n \to Y : \sigma \text{ is continuous} \}
\]

with faces and degeneracies induced by the cofaces and codegeneracies of \(\Delta^n \), where \(\Delta^n \) is the geometric simplex of dimension \(n \). Then \(H_*(X; k) \) is singular homology of the space \(Y \) with coefficients in \(k \).

Example 2.4. Let \(A \) be an associative \(k \)-algebra and let \(A_* \) be the simplicial \(k \)-module defined by

\[
A_n = A^{\otimes (n+1)} = A \otimes_k A \otimes_k \cdots \otimes_k A \quad (n + 1) \text{ factors}
\]

A generator of \(A^{\otimes (n+1)} \) is denoted by \((a_0, \ldots, a_n)\). Let

\[
d_i : A_n \to A_{n-1} \quad \text{and} \quad s_i : A_n \to A_{n+1}
\]
be such that
\[d_i(a_0, \ldots, a_n) = \begin{cases}
(a_0, \ldots, a_i, a_{i+1}, \ldots, a_n) & \text{if } 0 \leq i < n, \\
(a_n, a_0, a_1, \ldots, a_{n-1}) & \text{if } i = n.
\end{cases} \]
\[s_i(a_0, \ldots, a_n) = (a_0, \ldots, a_i, 1, a_{i+1}, \ldots, a_n) \quad \text{for } 0 \leq i \leq n \]

It can be verified that these functions satisfy the simplicial identities and, therefore, the family of modules \(A_n = A^{\otimes (n+1)} \) together with these maps \(d_i \) and \(s_i \) is a simplicial module. Its homology is known as the Hochschild homology of the algebra \(A \) and is denoted \(HH_*(A) \).

2.2 Cyclic Homology of a Cyclic Module

In this section we describe the definition of cyclic homology given by Loday and Quillen [?].

Definition 2.5. A cyclic module \(M \) is a simplicial module together with an action of the cyclic group \(C_{n+1} = \langle t_{n+1} : (t_{n+1})^{n+1} = 1 \rangle \) on \(M_n \), for each \(n \), such that the following additional relations hold
\[d_i t_{n+1} = t_n d_{i-1} \quad \text{and} \quad s_i t_{n+1} = t_{n+2} s_{i-1} \quad \text{for } 1 \leq i \leq n, \]
\[d_0 t_{n+1} = d_n \quad \text{and} \quad s_0 t_{n+1} = t_{n+2}^2 s_n \]

where \(d_i: M_n \to M_{n-1} \) and \(s_i: M_n \to M_{n+1} \) for \(i = 0, 1, \ldots, n \) are the simplicial structure maps.

Next we will define the cyclic homology of a cyclic module. The bicomplex we describe now will reappear in a more conceptual way, after we develop Tor functors associated to cyclic and cocyclic modules.
If we define two operators T_{n+1} and N_{n+1} by

$$T_{n+1} = (-1)^n t_{n+1} \quad \text{and} \quad N_{n+1} = 1 + T_{n+1} + \cdots + T_n$$

then we have the following lemma:

Lemma 2.6. Let $C(M)$ be the diagram of modules and homomorphisms

```
M_0 \xrightarrow{T_1} M_1 \xrightarrow{N_1} M_0 \xrightarrow{T_2} M_1 \xrightarrow{N_2} M_0 \xrightarrow{T_3} \cdots
```

(5)

where $b, b': M_n \to M_{n-1}$ are defined by

$$b = \sum_{i=0}^{n} (-1)^i d_i \quad \text{and} \quad b' = \sum_{i=0}^{n-1} (-1)^i d_i$$

Then the squares anticommute, the rows and columns are complexes, so $C(M)$ is a bicomplex.

Proof. See [?, page 52]

Definition 2.7. Let M_* be a cyclic module. The cyclic homology of M_* is denoted $HC_*(M_*)$ and is defined as

$$HC_*(M_*) = H_*(\text{Tot}(C(M)))$$

where $C(M)$ is the the bicomplex of lemma 2.6.

Example 2.8. Let A_* be the simplicial module defined in example 2.4. The action of the cyclic group $C_{n+1} = \langle t_n : (t_{n+1})^{n+1} = 1 \rangle$ on A_n is given by:

$$t_{n+1}(a_0, \ldots, a_n) = (a_n, a_1, \ldots, a_{n-1})$$
It can be verified that under these definitions A_* becomes a cyclic module. In this case we write $HC_*(A)$ instead of $HC_*(A_*)$ for the cyclic homology of A.

The vertical complexes (M_*, b') in the bicomplex (5) are contractible, with contracting homotopy $h = T_{n+1}s_n: M_n \to M_{n+1}$. Loday’s Killing Contractible Complexes Lemma [?, page 55] allows us to delete all of these columns of the bicomplex (5) obtaining the following double complex:

![Diagram](image)

Here $B = (-1)^{n+1}(1 - t_{n+1})hN: M_n \to M_{n+1}$ and b is the Hochschild boundary map. This bicomplex is called the BM complex or $(B-b)$-complex. For the particular case of the cyclic module associated to the algebra $A = T(V)$ as described in 2.4, the $(B-b)$-complex is used to give an explicit computation [?]. The result is given in the following theorem.

Theorem 2.9. Let V be a module over k, and let $T(V)$ be its tensor algebra. Then the cyclic homology $HC_*(T(V))$ is given by:

$$HC_*(T(V)) = HC_*(BS^1, k) \oplus \sum_{m \geq 1} H_*(C_m, V^\otimes m)$$

where the generator t_m of C_m acts on $V^\otimes m$ as

$$t_m(v_1v_2\cdots v_m) = v_m v_1 \cdots v_{m-1}$$

Proof. See [?, page 581].
3 A SAMPLE OF TEXT WITH TABLE

Now we want to describe a tricomplex BD^3 so that its total differential corresponds to the total differential d'' in the version of $\text{Tot}(D^3)$ modified by deleting all the vertical b'-complexes from the tricomplex D^3. Let us consider the tricomplex BD^3 as a tridimensional array that results after replacing all the vertical b'-complexes by zero complexes. The rules determining the maps connecting these modules are described in the following table.

<table>
<thead>
<tr>
<th>Case</th>
<th>To determine $BD^3_{p,q,0} \rightarrow BD^3_{p+q-j-1,j,0}$</th>
<th>Look at $(j+1, q+1)$-entry of $B_{p+q,p+q+1}$</th>
<th>In d''_{p+q}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>$0 \leq j \leq p + q - 1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>$BD^3_{p,q,0} \rightarrow BD^3_{p+q-j-2,j,1}$</td>
<td>$(j+1, q+1)$-entry of $B_{p+q-1,p+q+1}$</td>
<td>d''_{p+q}</td>
</tr>
<tr>
<td>(3)</td>
<td>$(BD^3){p,q,1} \rightarrow (BD^3){p+q-j,j,0}$</td>
<td>$(j+1, q+1)$-entry of $B_{p+q+1,p+q+1}$</td>
<td>d''_{p+q+1}</td>
</tr>
<tr>
<td>(4)</td>
<td>$(BD^3){p,q,1} \rightarrow (BD^3){p+q-j-1,j,1}$</td>
<td>$(j+2, q+1)$-entry of $B_{p+q,p+q+1}$</td>
<td>d''_{p+q+1}</td>
</tr>
</tbody>
</table>

Let us start with case (1) in Table 1.
4 SAMPLE TEXT WITH GRAPHICS

Sometimes you may want to include in your \LaTeX{} document graphical output generated by a program like Maple, Mathematica, or Matlab. There is a \LaTeX{}2\epsilon graphics bundle which can be loaded by specifying \texttt{\usepackage{graphicx}} in the preamble of the document. Documentation of the package is supplied by the preprint [?]. Instructions for obtaining a copy of this document are found in section 1. The graph in Figure 1 is from a PostScript file generated by Maple and then converted to an Encapsulated Postscript File by the \texttt{ps2eps} utility in ghostscript.

The figure is placed in the file \texttt{graphics.tex} immediately after the sentence ending “also generated by Maple.” Obviously it will not fit on the page with that sentence, so \LaTeX{} places the figure at the top of the next page. In the original version of the template, the next page was the start of the list of bibliographic references. In order to get the list of references to start on a fresh page, we have had to add this text to the file. The moral of the story is that typesetting decisions can have unintended consequences.