
On distance logics of Euclidean spaces

Gabriel Agnew, Uzias Gutierrez-Hougardy, John Harding,
Ilya Shapirovsky, Jackson West

New Mexico State University.

Abstract

We consider logics derived from Euclidean spaces Rn. Each Euclidean space car-
ries relations consisting of those pairs that are, respectively, distance more than 1
apart, distance less than 1 apart, and distance 1 apart. Each relation gives a
uni-modal logic of Rn called the farness, nearness, and constant distance logics,
respectively. These modalities are expressive enough to capture various aspects
of the geometry of Rn related to bodies of constant width and packing problems.
This allows us to show that the farness logics of the spaces Rn are all distinct, as
are the nearness logics, and the constant distance logics. The farness and near-
ness logics of R are shown to strictly contain those of Q, while their constant
distance logics agree. It is shown that the farness logic of the reals is not finitely
axiomatizable and does not have the finite model property.

Keywords: modal logic, modal algebra, Euclidean space, distance logic, Helly’s
theorem, bodies of constant width, finite axiomatizability, finite model property.

1 Introduction

Let (X, d) be a metric space, which we usually refer to as simply X. There are natural
ways to associate a modal logic to X. McKinsey and Tarski considered topological
closure as a modal operator. Under this modality, the logic of any dense in itself
metric space is Lewis’ modal logic S4 [1, 2]. One can also use the metric directly to
define binary relations on X and then the consider the associated modal operators.
For example, for each real number r > 0 set R<r = {(x, y) | d(x, y) < r} and let ♢<r
be the associated modal operator on the powerset of X. Relations R≤r etc., as well as
their associated modal operators ♢≤r etc., are defined in analogous ways.

The general setting of the series of papers [3, 4, 5, 6, 7] considers metric spaces
with some specified collection of modal operators chosen from the topological closure
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operator and the operators ♢<r etc. Numerous results were established related to the
axiomatizability and decidability of the modal logics of the class of all metric spaces
with different families of operators. For instance, the logic of all metric spaces with
operators ♢<r for each r > 0 is given by the family of axioms:

p → ♢< rp

p → 2< r♢< rp

♢< r♢< s p→ ♢< r+s p

The first axiom says that for a subset P of a metric space, we have P is contained in
the set of points of distance less than r from P ; the second expresses the symmetry of
the metric; the third comes from the triangle inequality. The validity of these axioms
is obvious, but some effort is required for their completeness.

In this paper we consider Euclidean spaces Rn with the standard metric and
equipped with a single modal operator ♢>r,♢<r or ♢=r. By the scale invariance of Rn
it is enough to consider the case when r = 1. By the farness logic of Rn we mean the
set of modal formulas valid in Rn with the ♢> 1 modality, the nearness logic of Rn is
the set of formulas valid in the ♢< 1 modality, and the constant distance logic is the
set of formulas valid in the ♢=1 modality. We denote these as

Log>1(Rn) = the formulas valid in Rn in the ♢> 1 modality

Log<1(Rn) = the formulas valid in Rn in the ♢< 1 modality

Log=1(Rn) = the formulas valid in Rn in the ♢=1 modality

Under the topological closure modality, the logic of Rn for n ≥ 1 is S4 since each is
a dense in itself metric space. The situation for farness, nearness, and constant distance
logics is much different. Each modality is sufficiently expressive to capture geometric
features of Rn specific to its dimension. These features range from properties of convex
sets, to bodies of constant width, to sphere packing problems, and chromatic numbers
of unit distance graphs.

Using these techniques, we show that the farness logics Log>1(Rn) are pairwise
distinct and that the poset of these logics contains an infinite antichain, that the
nearness logics Log<1(Rn) are pairwise distinct and form a strictly decreasing chain,
and that the constant distance logics Log=1(Rn) are pairwise distinct and the poset
of these logics contains an infinite antichain.

We compare the farness, nearness, and constant distance logics of R to those of the
rationals Q. In each case the logic of R is shown to contain the corresponding logic
of Q. For the constant distance modality we have equality Log=1(R) = Log=1(Q).
It is perhaps surprising that the farness and nearness modalities are each sufficiently
expressive to allow one to formulate versions of connectivity to show the nearness and
farness logics of R are distinct from those of Q. The farness logic of R is analyzed
in more detail. It is shown that it cannot be axiomatized using only finitely many
variables, and that it does not have the finite model property.

The paper is arranged in the following way. The second section is preliminaries. In
the third section we show that the farness logics of Rn for n ∈ N are distinct, as are
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the nearness logics and the constant distance logics. In the fourth section we compare
the farness, nearness, and constant distance logics of R and Q. In the fifth section we
discuss axiomatizability and the finite model property for R. In the sixth section we
give a summary of the results and several open problems as well as suggested directions
for further study.

2 Preliminaries

In this section, we provide the basic notation and terminology used throughout the
paper. It is assumed that the reader is familiar with the basics of modal logic, as
described in [8].

2.1 Modal syntax

We consider uni-modal logics with a single modality denoted by ♢> 1, ♢< 1, ♢=1,
depending on context, and usually written in a given context simply ♢. The set of
modal formulas is built from a countable set of variables PV = {p0, p1, . . .} using
Boolean connectives ⊥,→ and the unary connective ♢. Other Boolean connectives are
defined as abbreviations in the standard way, and 2ϕ denotes ¬♢¬ϕ.

2.2 Relational semantics

A frame F = (X,R) consists of a setX and a binary relation R onX. We write xR y to
indicate that x and y are related and for x ∈ X and Y ⊆ X, we put R(x) = {y | xRy}
and we write R[Y ] for the relational image {x | y Rx for some y ∈ Y }.

A valuation in a frame F is a map v : PV → P(X) from the set of propositional
variables to the powerset of X. A model on F is a pair (F, v), where v is a valuation.
Truth at a point x of a model is defined in the standard way, in particular F, x ⊨v ♢ϕ,
if F, y ⊨v ϕ for some xR y and F, x |=v 2ϕ if F, y |=v ϕ for all y with xR y. Set

v̄(ϕ) = {x | F, x ⊨v ϕ}.

A formula ϕ is true in a model (F, v) if F, x ⊨v ϕ for all x in X, that is, if v(ϕ) = X,
and ϕ is valid in a frame F , in symbols F ⊨ ϕ, if ϕ is true for every valuation in F . A
formula ϕ is satisfiable in F if ¬ϕ is not valid in F , i.e., if there is a valuation v in F
and a point x in X with F, x |=v ϕ.

2.3 Algebraic semantics

A modal algebra B is a Boolean algebra endowed with a unary operation ♢ that
distributes over finite joins, so in particular satisfies ♢(0) = 0. An interpretation in
a modal algebra is a mapping v : PV → B of the propositional variables into its
underlying Boolean algebra. An interpretation extends in the usual way to mapping
v from the collection of all modal formalas to B. A modal formula ϕ is true under the
interpretation v if v(ϕ) = 1 and is valid in B if it is true for all interpretations, i.e.,
if B satisfies the equation ϕ = 1.
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The algebra of a frame F = (X,R), written AlgF , is the powerset Boolean algebra
of X with the unary operation ♢ given by ♢(Y ) = R−1[Y ] for each subset Y ⊆ X. It
is immediate that the algebra of a frame is a modal algebra, that valuations v in F
correspond to interpretations in AlgF , and that the value of v is the same in either
context. See [8, Section 5.2] for details.

A formula is valid in a class C of (relational or algebraic) structures if it is valid
in every structure in C. Validity of a set of formulas means validity of every formula
in this set.

2.4 Normal logics

A (propositional normal modal) logic is a set L of formulas that contains all classical
tautologies, the axioms ¬♢⊥ and ♢(p ∨ q) → ♢p ∨ ♢q, and is closed under the rules
of modus ponens, substitution, and the following rule of monotonicity: ϕ → ψ ∈ L
implies ♢ϕ → ♢ψ ∈ L. The smallest logic is denoted K. For a logic L and a set Φ of
modal formulas, L+Φ is the smallest normal logic that contains L ∪ Φ.

An L-structure, a frame or algebra, is a structure where each formula in L is valid.
The set of all formulas that are valid in a class C of relational or algebraic structures
is a propositional normal modal logic called the logic of C and denoted Log C. When
C consists of a single frame F or modal algebra B, this is written LogF or LogB.
Any propositional normal modal logic L is the logic of the class of all L-algebras that
satisfy all equations ϕ = 1 for ϕ ∈ L, see, e.g., [9]. A logic L is Kripke complete if L is
the logic of a class of frames. A logic has the finite model property, if it is the logic of
a class of finite frames, meaning frames whose underlying sets are finite.

3 Distinguishing logics of Rn

In this section we consider the logics of the Euclidean spaces Rn for n ∈ N in languages
with a single modality ♢> 1, ♢< 1, or ♢=1. In each signature we show that the language
is sufficiently expressive to distinguish each of the logics LogRn. For the ♢> 1 and ♢=1

signatures we show there is an infinite anti-chain among the logics for the Rn and in
the ♢< 1 signature we show the logics form a strictly decreasing chain.

3.1 Farness logics

The farness logic has the single modality ♢> 1. Since this sub-section will treat only this
modality, we write it simply as ♢, and for a metric space X write xR y iff d(x, y) > 1.
When xR y we say that x, y are far and otherwise that x, y are close. We write
Log>1(X) for the modal formulas with this modality that are valid in X.

A first observation is that in any unbounded metric space, and in particular in
every Euclidean space, R ◦R is the universal relation. So if v is a valuation, then

v(♢2p) =

{
Rn if v(p) ̸= ∅
∅ otherwise

and v(22p) =

{
Rn if v(p) = Rn

∅ otherwise
(1)
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Another basic observation that we will use involves an anti-clique, a set of points
with any two of them close. A maximal anti-clique is then an anti-clique that is not
properly contained in any other. Observe that

Rn |=v 22(p↔ ¬♢p) iff v(p) is a maximal anti-clique (2)

It is easily seen that a closed ball of radius 1
2 is a maximal anti-clique in any Rn. In

dimension 1, it is not difficult to see that the closed intervals of length 1 are exactly
the maximal anti-cliques. In higher dimensions, there are others, for instance, the
Reuleaux triangle shown below is a maximal anti-clique in R2. In fact, the maximal
anti-cliques in the farness logic are the closed convex bodies of constant width 1. We
will establish this fact later in this sub-section when it is needed.

Proposition 1. Log>1(R) is not contained in Log>1(Rn) for any n > 1.

Proof. The idea is simple. In R, if A,B and C are closed balls of radius 1
2 , i.e. closed

unit intervals, such that any two intersect non-trivially, then the three intersect non-
trivially. However, the corresponding statement is not true in Rn for n > 1. Thus

3∧
i=1

22(pi ↔ ¬♢pi) ∧
3∧
i=1

♢2(
∧
i̸=j

pj) → ♢2(p1 ∧ p2 ∧ p3)

is valid in R but not in Rn for n > 1.

We next provide an extension of Proposition 1. For this, we need to extend the
geometric reasoning used in that proposition. Recall than a regular unit n-simplex
consists of n+1 points in Rk for some k ≥ n such that any two are distance 1 apart. It
is well known that the unit n-simplex can be realized in Rn+1 by the scaled standard
basis vectors 1√

2
e1, . . . ,

1√
2
en+1. Using this, one can determine that the height hn of

a unit n-simplex and distance dn from a vertex to its centroid are given by

hn =

√
n+ 1

2n
and dn =

√
n

2(n+ 1)

Any n vertices of a regular unit n-simplex lie in a regular unit (n − 1)-simplex. So
there is exactly one point within distance dn−1 of each set of n vertices. However,
the remaining vertex is height hn above the hyperplane of the others, so there are no
points within distance dn−1 of all of the vertices. Since the regular unit n-simplex can
be embedded into any Rk for k ≥ n, we have the following
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Lemma 2. For each n, k ∈ N, with n ≤ k, there are n+1 closed balls of equal radius
in Rk such that any n of these balls contain a common point of intersection and the
intersection of all n+ 1 of the balls is empty.

On a related note, Helly’s theorem, see e.g. [10, p. 48], says that if, in Rn, we have
a finite collection of k ≥ n+1 convex sets with any n+1 of them containing a common
point of intersection, then the intersection of all of them is non-empty.

Proposition 3. If m > n then Log>1(Rm) is not contained in Log>1(Rn).

Proof. As we observed earlier, for any dimension k ∈ N, a closed ball of radius 1
2 is

a maximal anti-clique. If k > 1, not every maximal anti-clique is a closed ball, but
no matter, each maximal anti-clique is a convex set since the convex closure of an
anti-clique is again such. So for any n ∈ N, Helly’s theorem says that a collection of
n+ 2 maximal anti-cliques with the property that any n+ 1 of them have non-empty
intersection has the property that all n + 2 have non-empty intersection. Thus Rn
satisfies the following formula

n+2∧
i=1

22(pi ↔ ¬♢pi) ∧
n+2∧
i=1

♢2(
∧
i ̸=j

pj) → ♢2(

n+2∧
i=1

pi)

However, by Lemma 2, for each k ≥ n+1 there are n+2 closed balls of equal radius,
which can obviously be chosen to be 1

2 , such that any n+1 of then contain a common
point of intersection, but the intersection of all n+2 balls is empty. Since closed balls
of radius 1

2 are maximal anti-cliques, this formula fails in Rk for each k > n.

We next consider the converse, when Log>1(Rn) ̸⊆ Log>1(Rm) for given n < m in
N. While we cannot completely solve this, we provide asymptotic results. For this, we
make use of subsets of Rn known as “bodies of constant width” that we now describe.
A hyperplane H in Rn is a translation v + U of a subspace U of codimension 1 with
v unique if chosen to be orthogonal to U . In this case, a unit vector that is a scalar
multiple of v is called the direction of H. Each hyperplane separates the space into
two closed half-spaces. See e.g. [10].

Suppose K is a compact, convex set, or a body. A hyperplane H is a supporting
hyperplane of K if K lies entirely in one closed half-plane determined by H and H
contains at least one boundary point of K. If K has non-empty interior, then for each
unit vector u, there are two distinct supporting hyperplanes of K that have direction
u, and the distance between these hyperplanes is called the width of K in direction u.
A body has constant width if the width in each direction is the same. By a unit body of
constant width, or ubcw, we mean a compact convext set of constant width 1. Clearly
any closed n-ball in Rn of radius 1

2 is a ubcw, but there are many others, such as the
Reuleaux triangle in R2. For details see e.g. [11].

Lemma 4. Maximal anti-cliques in Rn are exactly the ubcws.

Proof. Note that ifM is a maximal anti-clique, then it is easily seen thatM is convex.
It is also closed and bounded, hence compact. We make use of two facts: that a compact
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convex set K is a ubcw iff K−K = {x− y | x, y ∈ K} is a closed ball of radius 1 [12,
Thm. 1], and that any bounded set of diameter d is a subset of a body of constant
width with diameter d, and hence also of a body of constant width with any chosen
diameter ≥ d [13, Thm. 11.4]. Surely a maximal anti-clique has diameter at most 1.
So, our result follows if we show that every ubcw K is a maximal anti-clique. Since
K−K is a ball of radius 1, we have that ∥x−y∥ ≤ 1 for each x, y ∈ K, so K is an anti-
clique. Suppose z ̸∈ K. A basic fact of convex geometry is that there is a supporting
hyperplane of K with K in one of its half-planes and z in the other [10]. It follows
that z is distance > 1 from some point in K, thus K is a maximal anti-clique.

Call a family M =M,M1, . . . ,Mk of ubcws in Rn a special family if M1, . . . ,Mk

are pairwise disjoint and all intersectM non-trivially, and call k the size of the special
family M. The union of a special family has diameter at most 3 and it is known that
there is a lower bound on the volume of a ubcw in Rn. Thus, there is a maximum
value σ(n) of the size of a special family in Rn.

Consider for each k ∈ N the following formulas in the ♢> 1 modality

ψk = (p↔ ¬♢p) ∧
k∧
i=1

(pi ↔ ¬♢pi) and χk =

k∧
i=1

♢2(p ∧ pi)

Suppose v is a valuation for Rn and let v(p) = M and v(pi) = Mi for i ≤ k. By
item (1) on page 4 we have that v(2ψn) and v(χn) are either empty or all of Rn. By
item (2) on page 5 we have v(2ψk) = Rn iff M and each M1, . . . ,Mk are ubcws,
and v(χk) = Rn iff each Mi intersects M non-trivially. So, if k > σ(n), the ubcw
M1, . . . ,Mk cannot be pairwise disjoint, so the following formula ϕk is valid in Rn

ϕk = 2ψk ∧ χk →
∨
i ̸=j

♢(pi ∧ pj)

Conversely, if k ≤ σ(n), there is a special family M,M1, . . . ,Mk in Rn, and setting
v(p) = M and v(pi) = Mi for i ≤ k provides a valuation for Rn for with the premise
of ϕk holds but the conclusion does not. Thus, we have the following

Proposition 5. Rn |= ϕk iff σ(n) < k.

A particular instance of a special family is the case of a unit sphere M in Rn and
pairwise disjoint unit spheres M1, . . . ,Mk that touch M but do not overlap it. The
maximum number of such spheres touching M is known as the kissing number κ(n)
for spheres in Rn. Clearly κ(n) ≤ σ(n). It is known that κ(n) is an increasing sequence
and known lower bounds for κ(n) [14] imply κ(n) → ∞. So for each n ∈ N there is
n′ ∈ N so that for all n′ ≤ m we have σ(n) < κ(n′) ≤ κ(m) ≤ σ(m).

Proposition 6. For each n ∈ N there is n′ ∈ N so that Log>1(Rn) ̸⊆ Log>1(Rm) for
all m ∈ N with n′ ≤ m.

Proof. Let n′ be such that σ(n) < σ(m) for all n′ ≤ m. Then by Proposition 5 we
have Rn |= ϕσ(n)+1, and for n′ ≤ m we have σ(n) + 1 ≤ σ(m), so Rm ̸|= ϕσ(n)+1.
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So, starting with n0 = 1 and defining recusively nn+1 = n′k, we have a sequence
n0 < n1 < · · · such that Log>1(Rk) ̸⊆ Log>1(R

ℓ) for any k < ℓ. Combined with
Proposition 3 we have the following:

Theorem 7. The logics Log>1(Rn) are all distinct and this collection of logics contains
an infinite anti-chain.

Remark 1. We suspect that σ(n) < σ(n+ 1), hence that the logics Log>1(Rn) form
an anti-chain. It follows from [15, Thm. 6] that a ubcw M in Rn lifts to a ubcw M ′

in Rn+1 and is contained in the cylinder determined by M . If we could show that if
there is a special family of size k in Rn, then there is one M,M1, . . . ,Mk with each
Mi intersecting M only in a boundary point, then we could use this result to obtain a
strictly larger special family M ′,M ′

1, . . . ,M
′
k,Mk+1 by taking Mk+1 to be a translate

of M ′ in the direction of the new dimension.

3.2 Nearness logics

The nearness logic has the single modality ♢< 1. Since this sub-section will treat only
this modality, we write it simply as ♢, and write xR y iff d(x, y) < 1. In this sub-
section we use close to mean xR y and far to mean not close. We note that this is not
the same usage as in the previous sub-section, but we are speaking of different logics.
For a metric space X we write Log<1(X) for the modal formulas with this modality
that are valid in X.

A weak anti-clique in Rn is a set of points such that any two distinct points are
far. Weak anti-cliques can be infinite, but by a simple volume argument, any weak
anti-clique that is contained in an open ball of radius 1 in Rn must be finite.

Definition 1. Let Mn be the maximal cardinality of a weak anti-clique that is
contained in an open ball of radius 1 in Rn.

Let X be a weak anti-clique of cardinality Mn that is contained in the open ball of
radius 1 centered at the origin in Rn. Then the origin does not belong to X since that
would imply that the origin is its only element and there are such weak anti-cliques
with 2 elements. So there is an ϵ-neighborhood of the origin that does not contain
any points of X. Embedding X into the hyperplane of Rn+1 spanned by the first n
standard basis vectors gives a weak anti-clique of Rn+1 that is contained in the unit
ball centered at the origin. We can add a point (0, . . . , 0, 1− λ), for some λ > 0, and
get a strictly larger weak anti-clique that is contained in the open unit ball centered
at the origin of Rn+1. Thus 1 < Mn < Mn+1 for each n ≥ 1.

Proposition 8. Log<1(Rn) strictly contains Log<1(Rn+1) for each n ∈ N.

Proof. Let f : Rn+1 → Rn take (x1, . . . , xn+1) to (x1, . . . , xn). It is easily seen that
this is a p-morphism, giving the containment desired. To show that this containment
is strict, consider the following formulas where k =Mn+1.

ψi = pi ∧
∧
j ̸=i

¬♢ pj and ϕ = ¬
k∧
i=1

♢ψi
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We first show that ϕ is not valid in Rn+1. Let x1, . . . , xk be a weak anti-clique in
the open unit ball of Rn+1 centered at the origin o. Choose a valuation v so that for
each i ≤ k we have v(pi) = {xi}. Since xi is far from xj for j ̸= i, we have that xi
belongs to v(ψi), and as xi is in the open unit ball centered at the origin, we have
that o belongs to v(♢ψi) for each i ≤ k. Thus ψ is not valid.

To see that ϕ is valid in Rn, we must show that for any valuation v, the set⋂
{ v(♢ψi) | i ≤ k} is empty. Suppose to the contrary that some x belongs to this set.

Then for each i ≤ k there is an element xi in v(ψi) that is close to x. Then for i ̸= j
we have xi ∈ v(pi), xj ∈ v(pj), and xi ̸∈ v(♢pj). So xi is far from everything in v(pj),
and in particular, xi is far from xj . Thus x1, . . . , xk is a weak anti-clique in the open
ball of radius 1 centered at x. But k =Mn+1 > Mn, contrary to the definition of Mn.
Thus ϕ is valid in Rn.

Remark 2. Before concluding this sub-section, we make an observation that will
be used in the following subsection. Suppose that for the preceding proof, we were
considering the modality ♢≤ 1 rather than ♢< 1. We could let Mn be the maximal
cardinality of a weak anti-clique that is contained in a closed unit ball in Rn. Here a
weak anti-click is a collection of points x1, . . . , xn such that d(xi, xj) > 1 for i ̸= j.
The argument given above shows that each Mn is finite and 1 < Mn < Mn+1. Let
k =Mn+1 and consider the same formulas ψi and ϕ as in the proof of Proposition 8.
Then, with obvious modifications, the proof of Proposition 8 shows that ϕ is valid in
Log≤1(Rn) and fails in Log≤1(Rm) for each m > n.

3.3 Logics of fixed distance

The fixed distance logic has ♢=1 as its single modality. Since this sub-section will treat
exclusively this modality, we write it simply as ♢, and write xR y iff d(x, y) = 1. For
a metric space X we write Log=1(X) for the modal formulas with this modality that
are valid in X. We begin with the following observation.

Lemma 9. In Rn for n > 1 we have ♢2 is the operator ♢≤ 2.

Proof. If x, y ∈ Rn with d(x, y) ≤ 2, the the balls of radius 1 centered at x and y have
a point z in common. If follows that R2 = {(x, y) | d(x, y) ≤ 2}.

Proposition 10. Log=1(R) is incomparable to each Log=1(Rn) for n > 1.

Proof. We first show that Rn satisfies the following formula iff n = 1.

3∧
i=1

♢pi →
∨
i̸=j

♢(pi ∧ pj)

Suppose v is a valuation for R and x belongs to v(♢ pi) for i = 1, 2, 3. Then one of
x + 1, x − 1 must belong to each v(pi), hence one of these belongs to v(pi), v(pj) for
sime distinct i, j. It follows that this formula is valid in R. In Rn for n ≥ 2 we can
find distinct points x1, x2, x3 all distance 1 from the origin o. Choosing a valuation
with v(pi) = {xi} for i = 1, 2, 3 yields that the origin belongs to v(♢ pi) for each i,
but v(♢(pi ∧ pj)) is empty for i ̸= j. So this formula is not valid in Rn for n > 1.
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Next, consider the formula
♢p→ ♢♢p

By Lemma 9, this is valid in Rn for n > 1, and is clearly not valid in R.

In Remark 2 we observed that there is a formula in the ♢≤ 1 modality that is valid
in Rn but not in any Rm for m > n. Clearly the same is true if we replace the modality
♢≤ 1 with ♢≤ 2. Thus, by Lemma 9, we have the following:

Proposition 11. Log=1(Rn) is not contained in Log=1(Rm) for 2 ≤ n < m.

The previous propositions show that the logics Log=1(Rn) are all distinct. We
suspect that they form an antichain. For this, we need to show Log=1(Rm) is not
contained in Log=1(Rn) for 2 ≤ n < m. We provide the result for n = 2.

Proposition 12. Log=1(Rm) is not contained in Log=1(R2) for 2 < m.

Proof. Consider the formula

p1 ∧ ♢p2 → ♢(♢p1 ∧ ♢p2 ∧ ♢(♢p1 ∧ ♢p2))

This fails in R2. To see this, take x, y distance 1 apart and let v be a valuation with
set v(p1) = {x} and v(p2) = {y}. Then x belongs to lhs. To have x in rhs we need x
distance 1 from some w in ♢p1 ∧♢p2 ∧♢(♢p1 ∧♢p2)). Note that ♢p1 ∧♢p2 = {z1, z2},
the intersection points of the two unit circles centered at x, y. So we need w distance 1
from x with w ∈ {z1, z2} and w ∈ ♢({z1, z2}). But there is no such w. But this is valid
in R3. If x ∈ lhs then there is y ∈ ♢p2 with d(x, y) = 1. Now ♢p1 ∧ ♢p2 ⊇ C where
C is the circle in R3 that is the intersection of the unit spheres centered at x, y. To
show that x ∈ rhs it is enough to show that x is distance 1 from some w belonging to
C ∩♢C. But in R3 we have C ∩♢C = C since every point on this circle is of distance
1 from another point on the circle.

For our next result, consider Rn as a graph with R as its edge relation, so with an
edge between x and y iff d(x, y) = 1. There is an extensive literature on these graphs,
and in particular it is known that their chromatic numbers χ(Rn) are finite. Let Sn

be the unit sphere of Rn considered as a subgraph. Then the chromatic number χ(Sn)
is finite for each n and it is known that χ(Sn) → ∞, see [16]. Now for given k ∈ N,
consider the following formula

ϕk = 2

k∨
i=1

(pi ∧
∧
i ̸=j

¬pj) → ♢
k∨
i=1

(pi ∧ ♢pi).

Proposition 13. Rn |= ϕk iff k < χ(Sn).

Proof. Write ϕk = 2ψk → ♢µk. First, suppose χ(Sn) ≤ k, so that there is a k-coloring
of Sn. Then Sn can be partitioned into sets P1, . . . , Pk, possibly with some empty, such
that no element in a set Pi is adjacent to another element in Pi. Let v be a valuation
for Rn so that v(pi) = Pi for each i ≤ k. Then v(ψk) contains Sn. So everything
distance 1 from the origin o is contained in v(Ψn), giving o ∈ v(2ψn). However, the
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Pi give a coloring, so Pi∩♢Pi = ∅ for each i ≤ k, hence v(♢µk) = ∅. So ϕk is not valid
in Rn.

Suppose k < χ(Sn). Let v be a valuation and set Pi = v(pi) for i ≤ k. If
x ∈ v(2ψk), then the sphere of radius 1 centered at x is contained in v(ψk). So the
restriction of the Pi’s to this sphere partition it. But there is no k-coloring of this
sphere since the assumption k < χ(Sn) says that there is non of the unit sphere cen-
tered at the origin. So there are two adjacent vertices y, z belonging to some Pi and
lying on the unit sphere centered at x. This that y ∈ Pi ∩ ♢Pi ̸= ∅ and hence that
x ∈ v(♢µk). It follows that ϕk is valid in Rn.

Since Sn can be embedded into Sn+1 we have that the chromatic numbers χ(Sn)
are increasing. As we noted, it is known that this sequence converges to ∞. Thus there
are infinitely many values of n where χ(Sn) < χ(Sm) for all n < m. Thus, we have
the following

Corollary 1. For each n there is n′ so that Log=1(Rm) ̸⊆ Log=1(Rn) for all n′ < m,
hence the set of logics Log=1(Rn) for n ∈ N contains an infinite anti-chain.

Remark 3. The technique used in Proposition 13 could be applied directly to the
better known setting of the full unit distance graphs Rn. By the De Bruijn–Erdős
theorem, the chromatic number of Rn is equal to that of a bounded subgraph and
that ♢r(x) produces a ball of radius r around x for each r > 1. Then modifying the
formula ϕk used in Proposition 13 by replacing ♢ and 2 with appropriate ♢r and
2r yields a corresponging result. If it were known that the chromatic numbers of the
spheres Sn, or of the full distance graphs Rn, were strictly increasing, we would have
that the collection of all logics Log=1(Rn) for n ∈ N is an anti-chain.

4 Comparing the logics for R and Q
In this section we compare the logics for R and Q with the ♢> 1,♢< 1 and ♢=1

modalities. The case for the ♢=1 modality is the simplest.

Proposition 14. Log=1(R) = Log=1(Q).

Proof. For any x ∈ R, the subframe generated by x is isomorphic to Z.

4.1 The ♢> 1 modality

This subsection deals solely with the ♢> 1 modality which we write ♢, and we write the
relation R>1 as R. We show that Log>1(Q) is strictly contained in Log>1(R). That
there is a formula vaid in R and not in Q is given in the following.

Proposition 15. Log>1(R) is not contained in Log>1(Q).

Proof. In R, if two maximal anti-cliques, i.e. closed unit intervals, cover a third that
is distinct from either one, then they must intersect. This is not the case in Q since
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(π − 1, π) ∪ (π, π + 1) are disjoint but cover the interval [3,4]. The formula

3∧
i=1

22(pi ↔ ¬♢p) ∧
∧
i̸=j

♢2(pi ∧ ¬pj) ∧22(p1 → p2 ∨ p3) → ♢2(p2 ∧ p3)

says that if the valuations of p1, p2, p3 are maximal anti-cliques that are pairwise
distinct and the valuation of p1 is contained in the union of those of p2 and p3, then
the valuations of p2 and p3 intersect non-trivially. So this formula is valid in R but
not in Q.

Showing that the logic of Q is contained in that of R is more involved. For this,
we must show that any formula valid in Q is valid in R, or, using the contrapositive,
that any formula ϕ that is satisfiable in R under some valuation is satisfiable in Q.
Throughout the remainder of this subsection, we assume that ϕ is a fixed formula,
and that Ψ is its set of sub-formulas.

Definition 2. For a valuation v on R, set v(Ψ) = {v(ψ) | ψ ∈ Ψ}. Let Bv be the
Boolean subalgebra of the powerset of R generated by v(Ψ) and let Xv be the set of all
real numbers that arise as infima or suprema of members of Bv. We say the valuation
v is special if X ⊆ Q.

Lemma 16. If ϕ is satisfiable in R under some valuation v, then it is satisfiable under
a special valuation.

Proof. Suppose α is an automorphism of R so that it and its inverse preserve order,
the property of being distance > 1 apart, and with α(x) rational for each x ∈ Xv.
Consider the valuation u = α ◦ v. For ψ ∈ Ψ we have u(ψ) is the image α[v(ϕ)]. Since
α is an order-automorphism, it preserves existing infima and suprema, and it follows
that u is a special valuation. That ϕ is satisfiable for v means that v(ϕ) is non-empty,
so u(ϕ) = α[v(ϕ)] is non-empty, giving that ϕ is satisfiable for u.

To construct such an automorphism α, for any real number x, let ⌊x⌋ the the
largest integer beneath x and the r(x) be the remainder x − ⌊x⌋. Let R be the set
of remainders of elements of Xv. Since Ψ is finite, so is Bv, and thus R is finite. So
there is an increasing bijection β : [0, 1) → [0, 1) with β(x) rational for each x ∈ R.
Set α(x) = ⌊x⌋+ β(r(x)). Then α is an order-automorphism and α(x) is rational for
each x ∈ Xv. It remains to see that α and its inverse preserve the property of being
distance > 1 apart. This follows since for x ≤ y we have |y − x| ≤ 1 iff ⌊x⌋ = ⌊y⌋ or
⌊y⌋ = ⌊x⌋+ 1 and r(y) ≤ r(x).

Remark 4. We will use this same construction in a later result. Specifically, for a
finite set X of real numbers, we will require an order-automorphism α of R with α(x)
rational for each x ∈ X and such that α and its inverse preserve the property of being
distance < 1 apart. The reader may wish to verify that the constriction described
above also has this property for distance < 1.

From this point onward, we assume that ϕ is satisfiable in R under the special
valuation v. We denote Xv simply by X and note that v being special means that each
member of X is rational. Let I be the collection of open intervals that have members
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of x or ±∞ as their endpoints and do not contain any members of X. Note that the
members of I together with X form a partition of R.

Lemma 17. If I ∈ I and ♢ψ ∈ Ψ, either I is disjoint from v(♢ψ) or I ⊆ v(♢ψ).

Proof. For a formula ϕ, v(2ϕ) = {x | d(x, y) ≤ 1 for each y ̸∈ v(ϕ)} is the intersection
of closed unit intervals, so is a closed interval. Since v(¬♢ψ) = v(2¬ψ), we have
v(¬♢ψ) = [u, v] for some u, v. Clearly u, v are the infimum and supremum of the set
v(¬♢ψ), so they belong to X. If some member of the open interval I belongs to [u, v],
then I is contained [u, v] since I cannot contain a member of X.

Proposition 18. Log>1(Q) ⊆ Log>1(R).

Proof. Assume that ϕ is satisfiable in R under the special valuation v. Let Ψ, B, X
and I be as described above. We will construct a valuation w on Q and show that ϕ
is satisfiable in Q under this valuation.

Suppose that ϕ has k variables. For each a ∈ R, let τ(a) = {i | a ∈ v(pi)}, there
there are 2k possible sets of the form τ(a). For each I ∈ I, partition I ∩Q into dense
pieces VI,τ where τ ranges over the sets τ(a) for a ∈ I and let Z be the relation from
R to Q where aZ b iff either a ∈ X and a = b or a ∈ I and b ∈ VI,τ(a). We then define
a valuation w on Q by setting w(p) = Z[v(p)].

Claim 1. If aZ b, then a ∈ v(p) iff b ∈ w(p).

Proof of claim:. If a ∈ v(p), then since aZ b we have b ∈ w(p). Conversely, suppose
b ∈ w(p). If a ∈ X, then since aZ b we have a = b. Since b ∈ w(p) we have cZ b for
some c ∈ v(p). But b = a, so we must have c = a, hence a ∈ v(p). Suppose a ∈ I
for some I ∈ I. Since aZ b and a ̸∈ X we have b ∈ VI,τ(a). As we have b ∈ w(p),
there is c ∈ v(p) with cZ b. Since b ∈ I, we must have b ∈ VI,τ(c). Since the VI,τ are
a partition, we have τ(c) = τ(a). But τ(a) = {p | a ∈ v(p)}, and since c ∈ v(p), it
follows that a ∈ v(p).

Claim 2. For aZ b and ψ ∈ Ψ, we have R, a |=v ψ iff Q, b |=w ψ.

Proof of claim:. The case when ψ is a variable is given by Claim 1. The cases when
the outermost connective of ψ is boolean are trivial. It remains to consider ψ = ♢γ.
Since aZ b implies that a = b or that a, b belong to the same I ∈ I, by Claim 1.

R, a |=v ♢γ ⇔ R, b |=v ♢γ

“⇒” Assume R, a |=v ♢γ, so by the above, R, b |=v ♢γ. Then there is c ∈ R
with d(b, c) > 1 and R, c |=v γ. If c ∈ X, then cZ c, so Q, c |=w γ by the inductive
hypothesis, hence Q, b |=w ♢γ. If c ̸∈ X, then c ∈ I for some I ∈ I. Since VI,τ(c) is
dense in I, and d(b, c) > 1, there is e ∈ VI,τ(c) with d(b, e) > 1. Then cZ e and the
inductive hypothesis gives Q, e |=w γ. Since d(b, e) > 1 we have Q, b |=w ♢γ.

“⇐” Suppose Q, b |=w ♢γ. From above, it is enough to show that R, b |=v ♢γ. Our
assumption gives e ∈ Q with d(b, e) > 1 and Q, e |=w γ. If e ∈ X, then eZ e. Then the
inductive hypothesis gives R, e |=v γ, and hence R, b |=v ♢γ. If e ̸∈ X, then e ∈ I ∩Q
for some I ∈ I. Since the sets VI,τ partition I ∩ Q there is c ∈ I with e ∈ VI,τ(c),
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hence with cZ e. Then, by the inductive hypothesis, R, c |=v γ, so c ∈ v(γ). If v(γ)
is unbounded, then trivially R, b |=v ♢γ. Otherwise let ℓ and u be the infimum and
supremum of v(γ) and note that ℓ, u belong to X. Since c ∈ v(γ) and c ∈ I we have
ℓ < c < u, and since I is an interval that does not contain ℓ, u we have I ⊆ (ℓ, u).
In particular, since e ∈ I we have ℓ < e < u. Since d(b, e) > 1, either d(b, ℓ) > 1 or
d(b, u) > 1. Since there are elements of v(γ) arbitrarily close to ℓ and to u, there is
f ∈ v(γ) with d(b, f) > 1. Thus R, b |=v ♢γ.

We assumed that ϕ was satisfiable in R under the valuation v. So there is a ∈ R
with R, a |=v ϕ. There is b ∈ Q with aZ b, indeed, if a ∈ X take b = a, and if a ∈ I
take any b ∈ VI,τ(a). Then by Claim 2 we have Q, b |=w ϕ. So ϕ is satisfiable in Q
under the valuation w.

4.2 The ♢< 1 modality

This subsection deals solely with the ♢< 1 modality which we write ♢. We show that
in this modality, the logic for R is not contained in that for Q. We do not know about
the other containment. The proof uses a formula that expresses a form of connectivity.
Let ϕ be the formula

2(♢2p ∨ ♢2¬p) → 2p ∨2¬p

Proposition 19. Log<1(R) ̸⊆ Log<1(Q).

Proof. We show that ϕ is valid in R but not in Q. For the second statement, consider
a valuation v for Q with v(p) = (x,∞) for some irrational x. Then

v(p) = (x,∞) v(2p) = (x+ 1,∞) v(♢2p) = (x,∞)

v(¬p) = (−∞, x) v(2¬p) = (−∞, x− 1) v(♢2¬p) = (−∞, x)

Then v of the premise of ϕ is all of Q, but v of the conclusion of ϕ is missing all
elements within distance 1 of x. Thus ϕ is not valid in Q. We next show that ϕ is valid
in R. Assume that x

R, x ⊨v 2(♢2p ∨ ♢2¬p).
Observe that the value of any formula of form ♢ψ is an open set: indeed, v̄(♢ψ) is the
union of open intervals. Let I be the interval (x − 1, x + 1). Then I is contained in
the union of two open sets v̄(♢2p) and v̄(♢2¬p). These sets are disjoint, since for any
formula ψ, v̄(♢2ψ) ⊆ v̄(ψ). Since I is connected, I ∩ v̄(♢2p) is empty or I ∩ v̄(♢2¬p)
is empty. In the first case, I ⊆ v̄(♢2¬p) ⊆ v(¬p), and we have R, x ⊨v 2¬p; the latter
case implies R, x ⊨v 2p. Hence ϕ is valid in R.

The formula ϕ has a more general interpretation that is perhaps of interest, and
we discuss this in the following remark.

Remark 5. By a graph G = (X,R) we mean here a set with a reflexive, symmetric
relation. We say a set of the form R(x) is basic open and that a set is open if it is the
union of basic open sets. Continuing the topological metaphor, we say that a subset S
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of X is connected (in this new sense) if S being contained in the union of two disjoint
open sets implies that it is contained in one of the sets. It is not difficult to show that
in a graph G, a set S is open iff S = ♢2S and that each set of the form ♢2S for some
S is open. It follows that G |= ϕ iff every basic open set is connected. The proposition
above reflects that basic open sets in R are connected, but not so in Q.

4.2.1 Log
<1(Q) is included in Log

<1(R)
For a formula ϕ, let md (ϕ) denote its modal depth, which is recursively defined with
falsity ⊥ and variables having modal depth 0, ψ → χ having the maximum of the
modal depth of ψ, χ and ♢ψ having modal depth one greater than that of ψ. The
following fact is standard.

Proposition 20. A formula ϕ is satisfiable at x in (X,R) iff it is satisfiable at x in
the subframe Y =

⋃
{Rn(x) | n ≤ md (ϕ)}.

Our aim is to show that Log<1(Q) ⊆ Log<1(R) by showing that any formula ϕ
that is satisfiable in R at some point x is satisfiable in Q. We assume without loss of
generality that x = 0 and let Ψ be the set of subformulas of ϕ.

Claim 1. There is an interval V = (−d, d) and a valuation v on V with V, 0 |=v ϕ.

Proof of claim. If the modal depth of ϕ is 0, then any d > 0 will suffice. Otherwise,
by Proposition 20 we can choose d to be the modal depth of ϕ.

Claim 2. v(♢ψ) is the disjoint union of finitely many open intervals Iψ.

Proof of claim. If x ∈ v(♢ψ) then there is y ∈ v(ψ) with x ∈ (y−1, y+1) and with the
intersection of this interval with V contained in v(♢ψ). In particular, v(♢ψ) is open
in R and so can be uniquely expressed as union of a family Iψ of at most countably
many pairwise disjoint non-empty open intervals. At most two of these intervals have
points outside of v(ψ) and it follows that Iψ is finite.

Recall our usage of “close” to mean that two points are within distance 1 of each
other. For a formula ψ we define the set Dψ of ψ-sandwiched points by declaring
x ∈ Dψ if there are points in v(ψ) strictly smaller and larger than x but close to x.

Claim 3. Dψ is the disjoint union of finitely many open intervals Jψ.

Proof of claim. Notice that Dψ is open, so it is the union of a unique family Jψ of
disjoint non-empty open intervals. We claim that if (a, b), (c, d) ∈ Jψ and b ≤ c, then
d(a, d) > 1. Assume not, so d(a, d) ≤ 1, and in particular d(a, b) < 1. We have b /∈ Dψ.
Consider two cases. First, assume that there are no points in v̄(ψ) close to b from the
left, so (b − 1, b) ∩ v̄(ψ) = ∅. Choose x ∈ (a, b). Since x ∈ Dψ there is y ∈ v(ψ) with
x − 1 < y < x. Then a − 1 < x − 1 < y ≤ b − 1 < a. So y is in v(ψ) and is close to
a from the left. Since a is not ψ-deep, there are no points in v̄(ψ) close to a from the
right. So (a, a + 1) ∩ v(ψ) is empty, and consequently (b − 1, a + 1) ∩ v(ψ) is empty.
Consider a point z in (c, d). We have b−1 < z−1 and since d(a, d) ≤ 1 also z < a+1.
So z in not ψ-deep, which is a contradiction.
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Now assume that there are no points in v̄(ψ) close to b from the right. Let a < x < b.
Since x is ψ-deep, there is y ∈ v̄(ψ) with a < x < y ≤ b. We have d−y < 1, and since d
in not ψ-deep, there are no points in v̄(ψ) close to d from the right. Choose z ∈ (c, d).
Since z ∈ Dψ, there is w ∈ v(ψ) that is close to z from the right. This w must be in
(z, d], so is close to c from the right since d(a, d) ≤ 1. Thus there are elements of v(ψ)
on either side of c, giving c ∈ Dψ, a contradiction.

For each formula ψ we have that v(♢ψ) and Dψ are the the union of finitely many
pairwise disjoint intervals Iψ and Jψ respectively. Let X be the set of all points that
occur as an endpoint of some interval occurring in Iψ or Jψ for some ψ with ♢ψ among
the subformulas Ψ of ϕ. Clearly, X is finite and in view of Lemma 16 and Remark 4
that follows it, we can assume that each member of X is rational. So there is a integer
N ≥ 1 so that each member of X is an integer multiple of r = 1

N . Let K be the set of
open intervals in V of form (mr,mr+ r) with m integer, and let P be the set of their
endpoints in V .

Claim 4. If I ∈ K and J belongs to Iψ or Jψ for some ψ with ♢ψ ∈ Ψ, either I is
either contained in J or disjoint from J .

Proof of claim. Otherwise an endpoint of J would be an internal point of I.

Claim 5. If x, y belong to an interval in K and ♢ψ ∈ Ψ then

V, x ⊨v ♢ψ ⇔ V, y ⊨v ♢ψ

x ∈ Dψ ⇔ y ∈ Dψ

Proof. For the first statement we have V, x |=v ♢ψ iff x ∈ v(♢ψ), which occurs iff x
belongs to an interval in Iψ. The result follows since x, y either both belong to an
interval in Iψ or neither does. The second statement is similar, either both belong to
an interval in Jψ or neither does.

Due to the previous two claims, intervals in K will play an important role in later
arguments. We next collect some simple arithmetic consequences of the fact that they
divide V into pices of equal length r. Suppose I = (a, a+ r) ∈ K.

( )

a a+r

( )

a−1 a−1+r

( )

a−1+2r

)(

a+1+ra+1

)(

a+1−r

We say that I is close to an interval J ∈ K if there are x ∈ I and y ∈ J with x, y close.
If they do not lie outside the range (−d, d), the intervals that are close to I are shown
in the diagram above. An interval that is close to I and is not (a − 1, a − 1 + r) or
(a+1, a+1+ r) is very close to I. The relations of close and very close are symmetric
and we say intervals are close or very close. We say that x, y are very close if there
are I, J ∈ K that are very close with x ∈ I and y ∈ J . The following is evident.

Claim 6. Let I, J ∈ K.
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1. I, J are close iff every point in one interval is close to a point in the other.
2. I, J are very close iff every point in one is close to every point in the other.

Having established the setup, we make a first step to construct a valuation on Q
that satisfies ϕ.

Claim 7. There is a countable subframe U of V with valuation u(p) = v(p) ∩ U so
that the following hold

1. U is a dense linear order without endpoints
2. U contains all endpoints of intervals in K
3. for all x ∈ U and formulas ψ we have U, x |=u ψ iff V, x |=v ψ
4. for each formula ψ, u(ψ) is dense in v(ψ)

Proof of claim. We make use of the downward Löwenheim-Skolem theorem. First, it
is well-known that each subset of the reals has an at most countable dense subset
and that the union of at most countably many sets is countable. So we can find a
countable subset Z of V that contains endpoints of intervals in K and contains a dense
subset of v(ψ) for each formula ψ. We consider a countable language in which V is a
model where closeness R and the partial ordering of V are binary predicates, there are
constant symbols cz interpreted as z for each z ∈ Z, and each interval I ∈ K is viewed
as a unary predicate of V . For each variable p let Qp be a unary predicate symbol
that is interpreted as v(p). Then the downward Löwenheim-Skolem theorem gives a
countable elementary substructure U of V . We use ∗ to indicate the interpretations
of the components of the language in the substructure U . So

R∗ = the restriction of R to U

≤∗ = the restriction of ≤ to U

c∗z = z for each z ∈ Z

I∗ = I ∩ U for each I ∈ K
Q∗
p = Qp ∩ U for each variable p

Then, ignoring parts of the structure, (U,R∗) is a frame and we let u be the valuation
on this frame with u(p) = v(p) ∩ U for each variable p.

The first part of our claim follows from the fact that V is a dense linear order
without endpoints, and this is a first-order property. The second statement follows
since U contains Z and Z contains the endpoints of intervals in K. The third statement
follows from that fact that modal satisfaction is a first-order property. In more detail,
for a modal formula ψ, point x ∈ V , and a valuation v in V , there is a first-order
formula ψ̂ in the language containing a binary predicate for the relation of the frame
and unary predicates for the sets v(p) where p is a variable in ψ so that

V, x |=v ψ ⇔ V |= ψ̂(x)

Here the first satisfaction symbol is in the modal sense and the second is in the first-
order sense. See e.g., [8, Proposition 2.47] for a proof of this statement. Then, if x ∈ U ,
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since the first-order structures U and V are elementarily equivalent where the unary
predicates for v(p) are interpreted as u(p), we have V |= ψ̂(x) iff U |= ψ̂(x) and

repeating the previous argument, U |= ψ̂(x) iff U, x |=u ψ.
For the final statement, for x ∈ U the third statement gives x ∈ u(ψ) iff x ∈ v(ψ),

and it follows that u(ψ) = v(ψ) ∩ U . That u(ψ) is dense in v(ψ) then follows since Z
is contained in U and Z contains a dense subset of v(ψ) for each formula ψ.

Since by part (1) of Claim 7 U is a dense linear order without endpoints, so is
each open interval (a, b) in U . So by Cantor’s theorem, for each interval I = (a, b)
in K there is an order-isomorphism gI : I ∩ U → I ∩ Q. By part (2) of Claim 7 U
contains the endpoints of intervals in K. So taking the union of these maps and setting
W = V ∩Q we obtain an order-isomorphism g : U →W that restricts to the identity
on the endpoints of intervals in K. While g need not preserve distances, we have the
following.

Claim 8. Let x, y ∈ U , I ∈ K, a be an endpoint of I and ♢ψ ∈ Ψ. Then

1. x ∈ I iff g(x) ∈ I
2. if one of x, y is an endpoint of I then x, y are close iff g(x), g(y) are close
3. if x, y are very close, then g(x), g(y) are close.
4. if a is a limit point of Y ⊆ I ∩ U , then a is a limit point of g[Y ].

Proof of claim. The first statement follows from the definition of g. For the second
statement, if x is an endpoint of I, then x, y are close iff y belongs to one of the family
of intervals shown in the illustration before Claim 6. Since g(x) = x, we have g(x), g(y)
are close iff g(y) belongs to one of these same intervals. The result then follows from
the first statement. For the third statement, if x ∈ I = (a, a+ r), then x, y are close iff
y belongs to one of the intervals not at the end in the illustration before Claim 6. Since
g(x) ∈ I, we have g(x), g(y) close iff g(y) belongs to one of these same intervals, and
the result follows by the first statement. For the final statement, a being a limit point
of Y is equivalent to a being the meet or join of Y , and gI is an order-isomorphism so
it preserves meets and joins.

Let gu be the valuation on W given by gu(p) = g[u(p)] for each variable p. We will
show that for all x in U , and for all subformulas σ of ϕ, we have

U, x ⊨u σ ⇔ W, g(x) ⊨gu σ, (3)

The proof is by induction on the complexity of ψ. The base cases that ψ falsity or a
variable follows trivially or from the definition of the valuation. The case of implication
is trivial. It remains to consider the case when σ is ♢ψ.

Claim 9. W, g(x) |=gu ♢ψ ⇒ U, x |=u ♢ψ.

Proof of claim. Assume W, g(x) ⊨gu ♢ψ. Since g is a bijection, there is y ∈ U with
g(y) close to g(x) and with W, g(y) ⊨gu ψ. So by the inductive hypothesis, U, y |=u ψ.
If either x, y is an endpoint of an interval in K, then by part (2) of Claim 8 we have
that x, y are close, so U, x |=u ♢ψ as required. If x ∈ I and y ∈ J for some I, J ∈ K,
then by part (1) of Claim 8 we have g(x) ∈ I and g(y) ∈ J . Since g(x) and g(y) are
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close in Q, and hence also in R, by Claim 6 the intervals I, J are close, so Claim 6
gives that y is close to come element z ∈ I. Then Uz |=u ♢ψ, so by Claim 7 we have
V, z |=♢ ψ. Since x, z belong to the same interval in K, by Claim 5 we have V, x |=v ♢ψ,
hence by Claim 7, U, x |=u ♢ψ as required.

Claim 10. U, x |=u ♢ψ ⇒ W, g(x) |=gu ♢ψ.

Proof of claim. Since U, x |=u ♢ψ there is y close to x with U, y |=u ψ, and for any
such y the inductive hypothesis gives W, g(x) |=gu ψ. Suppose first that either x is an
endpoint of an interval in K or that y can be choosen to be an endpoint of an interval
in K or to be very close to x. Then since x, y are close, it follows by parts (2) and (3)
of Claim 8 that g(x) and g(y) are close, so W, g(x) |=gu ♢ψ as required.

It remains to consider the case where x belongs to some interval (a, a+ r) ∈ K and
every y in u(ψ) that is close to x is in I− = (a−1, a−1+ r) or I+ = (a+1, a+1+ r).
Symbolically, we have

R<1(x) ∩ u(ψ) ⊆ I− ∪ I+.

Suppose z is any real number belonging to (a, a + r). With the possible exception of
elements of I− ∪ I+, an element of V is close to z iff it is close to x. Thus,

R<1(z) ∩ u(ψ) ⊆ I− ∪ I+.

By part (4) of Claim 7, u(ψ) is dense in v(ψ) and it follows that

R<1(z) ∩ v(ψ) ⊆ I− ∪ I+.

Consider the following sets

S− = {z ∈ (a, a+ r) | z is close to some y in v(ψ) ∩ I−}
S+ = {z ∈ (a, a+ r) | z is close to some y in v(ψ) ∩ I+}

Note that each of these sets is open. Also, we assumed U, x |=u ♢ψ, so by part (3) of
Claim 7 we have V, x |=v ♢ψ, hence x ∈ v(♢ψ). It follows from Claim 4 that (a, a+ r)
is contained in v(♢Ψ). So each z ∈ (a, a + r) has an element of v(ψ) close to it, and
therefore (a, a+ r) is contained in S− ∪ S+.

Recall that a point of V is ψ-sandwiched if there are points on both sides of the
point that are close to it and in v(ψ). By Claim 4, if I ∈ K, then either every point in
I is ψ-sandwiched or none are. If x is ψ-sandwiched, hence all points of (a, a+ r) are
ψ-sandwiched, then each of S− and S+ is equal to (a, a+ r). If x is not ψ-sandwiched,
hence no point of (a, a + r) is ψ-sandwiched, then the sets S− and S+ are disjoint,
and since they are open and cover the connected set (a, a + r), one of them is equal
to (a, a+ r). We assume without loss of generality that S+ = (a, a+ r).

Since S+ = (a, a+ r) there are points z arbitrarily close to a with z close to some
point y in v(ψ)∩ (a+1, a+ r+1). It follows that there are points y ∈ v(ψ)∩ I+ that
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are arbitrarily close to a + 1. So a + 1 is a limit point of v(ψ) ∩ I+. By part (4) of
Claim 7, it follows that u(ψ) ∩ I+ is dense in v(ψ) ∩ I+. Thus

a+ 1 is a limit point of u(ψ) ∩ I+.

Then part (4) of Claim 8 gives that a + 1 is a limit point of g[u(ψ) ∩ I+]. Since
x ∈ I = (a, a + r), it follows that a < g(x). So there is a point y ∈ u(ψ) ∩ I+ with
g(x) close to g(y). Since y ∈ u(ψ) we have U, y |=u ψ, and the inductive hypothesis
then gives W, g(y) |=gu ψ. Since g(x) is close to g(y), we have W, g(x) |=gu ♢ψ.

By Claim 1 we have V, 0 |=v ϕ. Then part (3) of Claim 7 gives that U, 0 |=u ϕ.
Claim 9 and Claim 10 established that U, x |=u σ iff W, g(x) |=gu σ, so, since g(0) = 0,
we have W, 0 |=gu ϕ. In particular, ϕ is satisfiable in W . Since W = (−d, d)∩Q and d
is the modal depth of ϕ, it follows from Proposition 20 that ϕ is satisfiable in Q. Thus

Theorem 21. Log<1(Q) ⊆ Log<1(R).

5 Further properties of the farness logic of R
In this section we provide further properties of the farness logic of R, that is, the logic
Log>1(R) that uses the modality ♢> 1 which we denote throughout this section as ♢.
We show that this logic is finitely axiomatizable and that it does not have the finite
model property. Similar studies could be made for the nearness logic Log<1(R), but
we have not done this.

5.1 Not finite-axiomatizable

We show that any axiomatization of Log>1(R) contains infinitely many variables occur-
ring in its formulas. In particular, this logic is not finitely axiomatizable. The argument
uses a technique from [17].

For a natural n, let ϕn be the formula

♢2p1 ∧ . . . ∧ ♢2pn → ♢(♢p1 ∧ . . . ∧ ♢pn).

It is easy to check that this formula is valid in a frame iff it satisfies the first-order
property

∀x∀y1 . . . ∀yn (xR2y1 ∧ . . . ∧ xR2yn → ∃z(xRz ∧ zRy1 ∧ . . . ∧ zRyn)).

Proposition 22. Any axiomatization of Log>1(R) has infinitely many variables.
Consequently, Log>1(R) is not finitely axiomatizable.

Proof. Let Φ be a set of formulas in variables p1, . . . , pm and R ⊨ Φ. Consider the
frames F = ({0, . . . , 2m}, R), where xRy iff x ̸= y, and G = ({0, . . . , 2m − 1}, R′),
where xR′y iff x ̸= y or x = y = 0. So F is an irreflexive clique, and G is an irreflexive
clique with an additional single loop.

Observe that G is a p-morphic image of (R, R>1): for 1 ≤ i ≤ 2m − 1, map the
interval [2i, 2i + 1] to i, and map the other points in R to the reflexive point 0. It is
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easy to check that this map is a p-morphism. Hence, G ⊨ Φ. One can see that if a
formula ϕ contains at most m distinct variables, then F ⊨ ϕ iff G ⊨ ϕ; see [18, Lemma
7.3] for details. It follows that F ⊨ Φ. Finally, notice that Log>1(R) is not valid in F :
all formulas ϕn are valid in R, while ϕn is not valid in F for n > 2m. Hence, Φ is not
an axiomatization of R.

Remark 6. The proof above can be easily adapted to show that for any unbounded
metric space X, its farness logic Log>1(X) is not finitely axiomatizable.

5.2 The finite model property and the farness logic of R
In this subsection we show that the farness logic Log>1(R) does not have the finite
model property, in other words, there is a formula that does not belong to the logic
but is valid in all finite models of the logic.

We first provide the needed background. For a binary relation R, let R∗ be its
reflexive and transitive closure. A frame (X,R) is point-generated, or rooted, if there
is x ∈ X with X = R∗(x) and is pretransitive if R∗ =

⋃
{Rℓ | ℓ ≤ k} for some natural

number k. The following fact is standard.

Proposition 23 (Jankov-Fine theorem). Let G be a pretransitive frame and F be a
finite rooted frame. Then Log(G) ⊆ Log(F ) iff there is an onto p-morphism G′ ↠ F
for some rooted subframe G′ of G.

Applying this to the situation at hand, since R is rooted and each point of R is a
root, it follows that a finite rooted frame validates the farness logic of R iff it is a p-
morphic image of R. Throughout this sub-section, we assume that every frame (X,R)
is symmetric, and R2 is universal, meaning R2 = X ×X. An anti-clique is a subset Σ
of X so that xR y does not hold for any x, y ∈ Σ. As noted in (2),

X,R |=v 22(p↔ ¬♢p) iff v(p) is a maximal anti-clique

Proposition 24. A p-morphic preimage of an anti-clique is an anti-clique, and that
of a maximal anti-clique is a maximal anti-clique.

Proof. We prove the result for maximal anti-cliques, the result for anti-cliques follows
since each anti-clique extends to a maximal one. Let f : F ↠ G be an onto p-morphism
and Σ be a maximal anti-clique in G. Consider a valuation in G with v(p) = Σ, and a
valuation u in F with u(p) = f−1[Σ]. The result follows from the fact that F, x ⊨u ψ
iff G, f(x) ⊨v ψ for formulas in the variable p.

Definition 3. A frame (X,R) has small anti-clique overlaps if any two distinct anti-
cliques have at most one element in common.

To verify that a frame has the small anti-clique overlap property it is enough to
verify this for maximal anti-cliques. We wish to express this overlap property in terms
of a formula. To this end, let ψ be the following

22(p↔ ¬♢p) ∧22(q ↔ ¬♢q) ∧ ♢2(p ∧ ¬q)
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From the discussion above, it is easily seen that for any valuation v on a symmetric
frame (X,R) with R2 universal that v(ψ) = X if v(p) and v(q) are distinct maximal
anti-cliques and v(ψ) = ∅ otherwise. Then set ϕ to be the following formula

ψ ∧ ♢2(p ∧ q ∧ r) → 22(p ∧ q → r)

Proposition 25. Let (X,R) be a symmetric frame with R2 universal. Then (X,R)
has small anti-clique overlaps iff X,R |= ϕ.

Proof. “⇒” Let v be a valuation for which the premise of ϕ holds at some point, and in
fact therefore holds everywhere. Then v(p) and v(q) are distinct maximal anti-cliques
and v(r) contains a point x of their intersection. Since the frame has small anti-clique
overlaps, v(p) ∩ v(q) = {x}, hence v(p) ∩ v(q) ⊆ v(r). This shows that the conclusion
of ψ also everywhere. “⇐” Suppose P,Q are distinct maximal anti-cliques and that
x belongs to their intersection. Let v be a valuation with v(p) = P , v(q) = Q and
v(r) = {x}. Then the premise of ϕ holds everywhere under the valuation v, and since
ϕ is valid in the frame, the conclusion must also hold everywhere under the valuation
v. But this says P ∩Q ⊆ {x}.

Maximal anti-cliques in R are closed unit intervals, so R clearly does not have
small overlaps of anti-cliques, hence ϕ is not valid in R. However, as we will see from
the next statement, ϕ is valid in all finite p-morphic images of R.

Lemma 26. Each finite p-morphic image of R has small anti-clique overlaps.

Proof. We show the contrapositive. Assume (X,R) is a frame and f : R ↠ X is an
onto p-morphism. Then R is symmetric and R2 is universal since these properties
hold in R. We assume that (X,R) does not have small anti-clique overlaps, and using
this, show that X is infinite. Let A = {f−1[S] | S ⊆ X}. Since f is a p-morphism,
f−1[♢S] = ♢f−1[S] for each S ⊆ X, and it follows that A is a modal subalgebra of
P(R).

Claim: If [a, b], (c, b] ∈ A and a < b− 1 < c < b, then (b, c+ 1] ∈ A.

Proof of claim. −♢(c, b] = [b− 1, c+ 1], so (b, c+ 1] = −(♢(c, b] ∪ [a, b]).

Since (X,R) does not have small anti-clique overlaps, it has two distinct maximal
anti-cliques that intersect in more than one element. By Proposition 24 their pre-
images under f are distinct maximal anti-cliques and must also intersect in more than
one element. Since maximal anti-cliques in R are closed unit intervals, without loss of
generality we assume that they are the intervals [0, 1] and [d, d+1] for some 0 < d < 1,
and since these are preimages of subsets of X, they belong to A.

We show by induction that the intervals [0, d + n] and (n, d + n] belong to A for
each natural number n > 0. This will establish that A, and hence X, are infinite. For
the base case, since [0, 1] and [d, d+1] belong to A and A is closed under the Boolean
and modal operations, [0, d + 1] and (1, d + 1] belong to A. For the inductive step,
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assume that [0, d+n] and (n, d+n] are in A for some n ≥ 1. Since 0 < d < 1 we have
0 < d+ n− 1 < n < n+ d, so by the claim above, we have

(d+ n, n+ 1] ∈ A.

Then, since the inductive hypothesis assumes [0, d + n] ∈ A and A is closed under
finite unions, we have [0, n+ 1] belongs to A. Then, since [0, n+ 1], (d+ n, n+ 1] ∈ A
and 0 < n < d+ n < n+ 1, the claim above yields

(n+ 1, d+ n+ 1] ∈ A.

Since [0, n+ 1] ∈ A we have [0, d+ n+ 1], (n+ 1, d+ n+ 1] ∈ A as required.

Theorem 27. Log>1(R) does not have the finite model property.

Proof. Let L be the logic Log>1(R) and suppose that F is a finite L-frame. It is well-
known the logic of F is the logic of the set K of rooted subframes of F , all of which
are clearly also L-frames. If (X,R) ∈ K, then by Proposition 23 (X,R) is a p-morphic
image of R. Then R is symmetric and R2 is an equivalence since these properties can
be expressed by formulas that are valid in R. Since (X,R) is rooted and R2 is an
equivalence, it follows that R2 is universal. So by Lemma 26 it has small anti-clique
overlaps. Then by Proposition 25 X,R |= ϕ. So the formula ϕ is valid in K and hence
in F . So ϕ is valid in all finite L-frames but it does not belong to Log>1(R).

6 Conclusions

We have considered Euclidean spaces Rn equipped with modalities ♢> 1,♢< 1 and ♢=1

and have shown that these languages a surprisingly expressive. In particular, in each
modality the logics for Rn for n ∈ N are all distinct.

Comparing farness logics

(1) Log>1(Rm) ̸⊆ Log>1(Rn) for each n < m
(2) Log>1(Rn) ̸⊆ Log>1(Rm) for m sufficiently larger than n
(3) Log>1(R) is incomparable to all other logics

It follows that the poset of farness logics contains an infinite anti-chain.

Comparing nearness logics

(1) the logics Log<1(Rn) form a strictly decreasing chain.

Comparing constant distance logics

(1) Log=1(Rn) ̸⊆ Log=1(Rm) for each n < m
(2) Log=1(Rm) ̸⊆ Log=1(Rn) for m sufficiently larger than n
(3) Log=1(R) and Log=1(R2) are incomparable to all other logics

It follows that the poset of constant distance logics contains an infinite anti-chain.

Comparing logics of Q and R
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(1) Log>1(Q) is strictly contained in Log>1(R)
(2) Log<1(Q) is strictly contained in Log<1(R)
(3) Log=1(Q) is equal to Log=1(R)

Negative results on the farness logic of R

(1) Log>1(R) cannot be axiomatized with finitely many variables
(2) Log>1(R) does not have the finite model property

Directions for further study There are unsolved problems in the directions we
have considered and other directions worthy of study.

Problem 1. Do the farness logics Log>1(Rn) form an anti-chain?

Problem 2. Do the nearness logics Log<1(Rn) form an anti-chain?

Problem 3. Study the logics of Qn and Rn in the modalities ♢> 1,♢< 1 and ♢=1.

Problem 4. Study the logics of the Cantor space and p-adic numbers in various
modalities.

It follows from [19] that the logics of farness and nearness on the real line are
decidable. We also know that in a richer language (with a family ♢<r, ♢≤r of near-
ness operators and the topological closure modality), the logic of the real plane is
undecidable [5].

Problem 5. Are the logics Log>1(Rn), Log<1(Rn) and Log=1(Rn) decidable, or at
least recursively axiomatizable, in dimension n > 1?

In [3, 5, 7] axiomatizations of the class of all metric spaces are given for many
powerful distance languages containing various families of modalities. In particular,
an axiomatization of the farness logic of the class of all metric spaces follows from [7].
The axiomatization problem for specific classes of metric spaces in various languages
is of interest [5, 6]. We have obtained axiomatizations for the farness logics of the class
of unbounded metric spaces and the class of ultrametric spaces and will provide these
in a subsequent paper.

We have shown in Section 5 that the farness logic of the reals cannot be finitely
axiomatized. We have numerous formulas that hold in the nearness logic Log<1(R)
but not in the nearness logics of all metric spaces, or even in Rn for higher dimensions.
We anticipate that the nearness logic of R is not finitely axiomatizable.
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