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The MacNeille completion of an ortholattice (abbreviated: OL) L carries a natur- 
al orthocomplementation, which is unique if one requires that it extends the 
orthocomplementation of L, cf. MacLaren [ 121. We always consider the 
MacNeille completion of an OL as an OL with this unique orthocomplementa- 
tion. We are interested here in the MacNeille completion of an orthomodular 
lattice (abbreviated: OML). Very little is known about it. The only positive re- 
sult we are aware of is due to Janowitz [9]. It states that the MacNeille comple- 
tion of an indexed OML is again an indexed OML. The only other result is 
negative: The MacNeille completion of even a modular OL is not necessarily an 
OML. 

An example of this (essentially, the only one known) can be constructed using a 
theorem first stated by Piron [Theorem 221 and proved in its entirety by Amemiya 
and Araki [2]; this folklore was first noted in print by Adams [ 11. If V is a (real or 
complex) inner product space and A c V, define A 1 to be the set of all elements of 
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V which are orthogonal to A and define dp( V, I) = {A G V 1 A I’ = A}. 9( V, I) is 
an OL. Amemiya and Araki proved that 9(V, I) is an OML iff the space V is 
complete, hence a Hilbert space. Consider now an inner product space V which is 
not complete and let L be the modular OL of all finite-dimensional or cofinite- 
dimensional subspaces of V. It follows easily from the characterization of the 
MacNeille completion given at the beginning of the next section, that U(V, I) is 
the MacNeille completion of L. It is not an OML by the theorem of Amemiya- 
Araki-Piron. As a consequence of this, one obtains that the MacNeille completion 
of an OML L need not again be an OML, and a fortiori it need not belong to the 
variety generated by L. This is, of course, not surprising in view of the well-known 
misbehaviour of the MacNeille completion of general lattices with respect to 
equations, see, for example, Funayama [6]. In contrast to this general situation is 
the main result of this paper: 

THEOREM. Zf X is a variety of OMLs which is generated by ajinite OML then the 
MacNeille completion of every member S of X again belongs to X. 

It follows from Jonsson [lo] that every subvariety of a variety generated by a finite 
OML is again generated by a finite OML. As a consequence of our theorem we thus 
obtain the following: 

COROLLARY. Zf an OML L belongs to a variety generated by a finite OML then 
the MacNeille completion of L belongs to the variety generated by L. 

If X is generated by the two-element Boolean algebra then our theorem reduces 
to the well-known fact that the MacNeille completion of a Boolean algebra is 
again a Boolean algebra. This seems to be the only known special case of our 
theorem. 

After some preliminary observations and remarks in Section 1 we prove our 
theorem in Section 2 for the special case that S is a Boolean power of a finite OML. 
In this section and in Section 4, general results from the theory of Boolean powers, 
see [4, 51, could have been brought in more prominently. We convinced ourselves, 
however, that this would not have shortened our presentation which has the 
advantage of being comprehensible without a previous knowledge of Boolean 
powers. In Section 3, which does not require knowledge of Section 2, we construct 
some polynomials which will be needed later to extend the result of Section 2. In 
Section 4 this is done for a subdirect power of a finite simple lattice and in Section 
5 for the general case. We conclude with a discussion of the more general problem 
of embeddings of OMLs into complete lattices. We show that the OML given 
above, the MacNeille completion of which is not an OML, can still be embedded 
in a complete OML. As general background information the reader is referred to 
[ 1 I] for OMLs, [8] for Boolean algebras, [5] for universal algebra and [A for 
general lattice theory. 
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1. Preliminaries 

The MacNeille completion of a partially ordered set P was first introduced by 
MacNeille [ 131 using a specific construction, the well-known completion by cuts. 
Later [3, 151 it was noticed that the MacNeille completion of a poset P is 
determined up to a unique isomorphism over P as a complete poset C containing 
P as a join-dense and meet-dense sub-poset, meaning that every element of C is the 
join and meet of elements of P. It is this last characterization that we take as the 
definition of the MacNeille completion P. 

It is one of the basic facts of the MacNeille completion of a poset P that it 
preserves all joins and meets existing in P; in particular, every lattice is a sublattice 
of its MacNeille completion. Since the natural orthocomplementation of the 
MacNeille completion of an OL L extends the orthocomplementation of L, the 
MacNeille completion of an OL L can simply be described as a complete OL C 
containing L as a join-dense sub-OL. As is easy to see, in the case of OMLs the join 
dense condition simplifies even more: A subset A4 of an OML C is join-dense in C 
iff every non-zero element of C is greater or equal to a non-zero element of M. This 
remark will be useful later. 

The MacNeille completion of the product of two posets is in general not 
isomorphic to the product of the MacNeille completions of the factors, the standard 
example being the product of the open unit interval of the reals with itself. OLs 
(more generally bounded posets) are much better behaved. The reader will easily 
verify the following: 

PROPOSITION 1. If (LX)XsX is a family of OLs, tf S is a join-dense sub-OL of 
lIxeX L, and if LX is the MacNeille completion of L, then IIxsX LX is the MacNeille 
completion of S (as always, up to isomorphism). 

A slightly more elaborate form of this is: 
PROPOSITION 2. Let L be an OML and let M be a set of pairwise orthogonal 
central elements of L satisfying VM = 1. For every a E M let L, be the MacNeille 
completion of [0, a]. Then there exists an OL-embedding of L as a join-dense 
sublattice into Hole,,,, L,, thus noreM L, is the MacNeilie completion of L. 

Proof Since the a E M are central the map a +a A a is an OL-homomorphism 
of L onto [0, a]. Thus the map cp : L +lIoleM [0, a] defined by q(a)(a) = a A a 
is an OL-homomorphism. Since the elements a E M are central, 
a=aAl=aA//M=V,,, (a A a) and cp is an embedding. By Proposition 1 it is 
enough to show that q(L) is join-dense in lIorcM [0, a]. But if 1,4 E lIclcM [0, a] then, 
for every a E M, $(a) E [0, a] E L. It follows easily that + = VDle,,., q($(a)), proving 
the claim. 

2. OMLs as Lattices of Continuous Functions 

Algebras of continuous functions from a topological space X into an algebra A with 
the discrete topology have been studied by several authors, notably in the case of 
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a Boolean space X, see [4, 51 and the literature quoted there. The lattice of 
continuous functions from a Boolean space into an algebra A is also known as 
Boolean power of A. Using this terminology the main result of this section can be 
stated as follows: If S is a Boolean power of an OML L then the MacNeille 
completion of S is also a Boolean power of L. 

If L is a finite OML with the discrete topology, X a topological space and 
f:X-*L then v-‘( )I a a E L} is a finite partition of X. It follows that f is 
continuous iff f-‘(a) belongs to the field (defined below) of open-closed subsets of 
X. To make our results meld into the sequel we work here with an arbitrary field 
of sets instead of the field of open-closed sets of a topological space. 

By a ring of subsets of a set X we mean a sublattice 9 of the power set of X. The 
ring 9 is said to be a field of subsets of X if the complement A ’ = X - A of every 
A E 9 also belongs to 9 and if 9 is not empty. If 9 is a field of subsets of X and 
if L is a finite OML define C(9, L) as follows: 

Since, for any functionsAg: X+L, (f A g)-‘(u) = u{f-‘(b) ng-‘(c) lb A c =a} 
and (f’-‘(a) =f-‘(a’), C(9, L) is a sub-OL of the full power Lx. Our OML 
C(9, L) only seems to be more general than the Boolean power construction. It 
follows from basic results concerning Boolean powers that our OMLs C(9, L) can 
indeed be represented as Boolean powers of L. Our considerations, however, do not 
require this fact. 

PROPOSITION 3. Let 9 be afield of subsets of a set X and L aJinite OML. Then 
5 is a complete lattice ix C(9, L) is a complete lattice. 

Note that in Proposition 3 completeness of 9 does not require that infinite joins 
and meets are unions and intersections and completeness of C(9, L) does not 
require that infinite joins and meets in C(9, L) are the same as those in Lx. If a E L 
we write ta for {b E L 1 a < b}. If A E X let xA be the characteristic function of A, 
i.e., the function from X into L which takes value 1 if x E A and value 0 if x # A. 

Proof of Proposition 3. Assume that 9 is a complete lattice and M E C(9, L). 
For aEL define X,=V{f-‘(a)IfEM) (V in 9) and define g:X+L by 
g(x) = V{u E L ( x E X, }. It follows from this definition that g(x) = b holds iff there 
exists a set S E L such that VS = b and x E ( fiocS X,) - Uars X,. Thus 
g-‘(b) = u{( naes X,) - uags X, I VS = b} E 9, which implies g E C(9, L). If 
f~Mandf(x)=bthenxEf-‘(b)~Xb,thusg(x)=V{aIxEX,}~bandgisan 
upper bound of M in C(5, L). To show that it is the least upper bound assume that 
f < u E C(9, L) holds for all f E M. Then f-‘(a) E ~‘(?a) holds for all f E M, 
a E L and hence X, E ~-‘(?a) holds for all a E L. Assume now that g(x) = b. Then 
there exists S c L such that VS = b and x E X0 for all a E S. Thus x E ~‘(?a) 
holds for all a E S and hence u(x) 2 b = g(x), proving that g is the least upper 
bound of M in C(9, L) and hence that C(9, L) is complete. To prove the converse 
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assume that C(9, L) is complete and let 2l be a subset of 9. Define 
f’Vk4 IA EW <v in C(9, L)) and B = f- ‘( 1). Then, for all A E U, 
A = XA’( 1) = f-‘( 1) = B and hence B is an upper bound of U in F. Let C be any 
upper bound of ll in 9. Then xA < xc holds for every A E 21 and hence f < xc. It 
follows that B = f - ‘( 1) G xc ‘( 1) = C. Thus B is the least upper bound of U, 
completing the proof. 

Again, let 9 be a field of subsets of a set X and let M be the MacNeille completion 
of 9. We actually assume that M contains 4 (and not just an isomorphic copy of 
9) as a join-dense, and hence meet-dense, sub-OL. Let R be the Stone space of A4 
and let B(R) be the complete Boolean algebra of all open-closed subsets of R. Thus 
fi is the set of all ultrafilters in M and the map K : M + B(B) defined by 
K(C) = {P 1 c E P E Q} is an isomorphism between M and B(Q). Then C(B(R), L) is 
the OML of all continuous functions from R into L and C(B(R), L) is complete by 
Proposition 3. If f E C(sF, L), P E R then uaEL f-‘(u) = X E P. Since P is prime 
and the sets f-‘(u) are pairwise disjoint there exists exactly one a E L such that 
f-‘(a) E P. We may thus define a map a : C(9, L) + LR by 

a(f)(P) =a -f-‘(u) E P. 

Under the assumptions thus described we claim: 

PROPOSITION 6. a is a join-dense OL-embedding of C(9, L) into C(B(Q), L). 
Proof. Since f -‘(a) E P is equivalent with P E rc( f-‘(u)) it follows that for every 

f E C(F, L), a E L, (a(f))-‘(u) = K( f-‘(u)) E B(R) and hence that a is a map of 
C(9, L) into C(B(R), L). If f, g E C(9, L) and a(f A g)(P) = a then 
u{f-‘(b)ng-‘(c) (b A c =a} =(f Ag)-‘(a) E P and hence there exist 6, c such 
that b A c = a and f-‘(b), g-‘(c) o P. It follows that a(f)(P) = b, a(g)(P) = c and 
a(f)(P) A a(g)(P) = a, proving a(f A g) = a(f) A a(g). Furthermore, a(f’)(P) = a 
iff (f’)-‘(u) E P iff f-l@‘) E P iff a(f)(P) = a’. Thus aff’) = (a(f))’ and a is an 
OL-homomorphism. If a(f) = 0 then a(f)(P) = 0 and hence f-‘(O) E P for all 
P E R which implies f-‘(O) = X and hence f = 0, proving that a is an embedding. 
To show that a is join-dense note first that every g E C(B(fi), L) is the join of 
functions of the form a A x~(~). Thus, if g # 0 there exist a, c # 0 such that 
a A x,+) <g and it is enough to show that there exists a non-zero function 
f E C(9, L) such that a(f) < a A x~(~). Since c # 0 there exists FE 9 such that 
@#F<c. Putf = a A xF. We have a(f)(P) = b iff f -l(b) E P, which is the case if 
F E P and b = a, or if b = 0 and F $ P. Thus a(f) = a A x+.) < g, completing the 
proof of Proposition 6. 

As an easy consequence of this we get the following: 

COROLLARY. Zf 9 is a field of subsets of a set X and if L is a finite OML then 
the MucNeille completion of C(9, L) belongs to the variety generated by L. 
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In this section we construct some polynomials which will be crucial later in the 
paper. 

PROPOSITION 5. Let L be a jinite irreducible OML having exactly n elements. 
Then there exists an n-ary OL-polynomial p(x,, x2,. . . , x,) with the properties: 

1. Q-b,, bZ, . . . , b, are elements of any OML and bi = b, for some distinct indices 
i,j then p(bl, bZ, . . . , b,) = 0. 

2. Ifb,,b, ,..., b, are pairwise distinct elements of L then p(b,, bZ, . . . , b,) = 1. 
Proof. For distinct indices i,j E { 1,2, . . . , n} define pij = (xi v xi) A (xi v xi). 

Note that for elements a, b of any OML, pJa, b) = 0 iff a = b. We now use an 
iteration procedure which will appear again later. For 1 < m < n define recursively 
polynomials p;(x,, x2, . . . , x,,) by pi = pil (this polynomial is only binary) and 

p;+’ = kt, ((PY v x/J * (PY v xk))* 

Clearly P~(x,,x~,. . . ,x,) <p~+‘(x,,xz,. . , ,x,J and if pii(bi, b,) =0 then 
piJ’@,, bz, . . . , b,) = 0 for every m. Define p = A\(p; 1 i,j E { 1,2, . . . , n}, i #j}. It is 
obvious that p satisfies the first condition. Assume now that b,, bZ, . . . , b, are 
distinct elements of L. Then pb(b,, 6,) # 0 and hence p;(b,, b,, . . . , b,) # 0 for 
every m. If p;(b, , bZ, . . . , b,,) # 1 then, since L is irreducible, there exists b EL 
such that bCp;(b,, b,, . . . , b,) does not hold. Since the bi are distinct there exists 
bk = 6. It follows that p; + ’ (b, , b,, . . . , b,,) 2 (p;(b, , bZ, . . . , b,) v bk) A 

(p;(b,, bz, . . . > b,,) v b;) > py(b,, bz, . . . , b,). Since L has only n elements it fol- 
lows that p;(b,, bZ, . . . , b,) = 1 and hence p(b,, b2, . . . , 6,) = 1, completing the 
proof. 

PROPOSITION 6. Let L be an irreducible OML having exactly n elements 
a,, a2, . . . , a,. Then there exists an OL-polynomial q(x,, x2, . . . , x,) with the prop- 
erties: 

1. Zfb,,b2 ,..., b, are elements of any OML and if 6, = b, for some distinct 
indices i, j then q(b,, b,, . . . , b,) = 0. 

2. Ifb,, b,, . . .,b,ELthenq(b,,b, ,..., b,)=l $themapa,+b,isanauto- 
morphism of L and q(b,, b2, . . . , b,) = 0 otherwise. 

Proof. Define 4x,, x2,. . . , x,) = /j{<x, AX, * xd v (CT * xi)’ * xi) I a, * 
a,=ak}A~{(x,Ax;)v(x~hxj)Ia,=a;}. 

Clearly r(b,, b2, . . . , b,) = 1 means that (b, A b, A bk) v ((b, A 6,)’ A b;) = 1 and 
hence b, A b, = bk whenever a, A a, = a, and that (b, A b;) v (b: A 6,) = 1 and 
hence b, = 6; where a, = a; and hence that ai + bi is a homomorphism. So far the 
b, can be elements of an arbitrary OML. Again define recursively the polyno- 
mial rm by r’=r and rm + ’ = A; = , ((rm A xk) v (rm A xi)). Clearly 
rm+l(x1,x2,. . . ,x,) <rm(x,,x2,. . . , x,,). With the polynomial p as in Proposition 
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3 define q = p A r”. Clearly q satisfies the first condition. Assume b, , bZ, . . . , b, E L. 
If the map ai + b, is not one-one then, by Proposition 5, p(b,, bZ, . . . , b,) = 0 and 
hence q(b,, b,, . . . , b,) = 0. We may thus assume that the map ai + bi is one-one 
and hence that p(b,, bZ, . . . , b,) = 1. Therefore the map ai + bi is an automorph- 
ism of L iff r(b,, b,, . . . , b,) = 1. If r(b,, b2, . . . , b,) = 1 then clearly 
r”(b,, b2, . . . ,b,)=l andhenceq(b,,b, ,..., b,)=l. Ifr(b,,b, ,..., b,)#l then 
clearly r”(b,, b,, . . . , b,) # 1 for all m. If ‘“‘(6,) b2, . . . , b,) # 0 then, as be- 
fore, there exists k such that bk does not commute with rm(b,, bz, . . . , 6,). 
Then rm+‘(b,, b2,. . . , 6,) < (r”(b,, b,, . . . , 6,) A bk) v (r”(b,, b,, . . . , b,) A 6;) < 
rm(b,, b,, . . . , b,). It follows that rn(b,,b2,. . . , b,) =0 and hence 
db, , bz, . . . , 6,) = 0, completing the proof. 

4. Subdirect Powers of a Finite Simple OML 

If L is an OML and X a set let S < Lx mean that S is a subalgebra of Lx and let 
S < Lx (subdirect) mean that in addition every projection pr, maps S onto L. 
Throughout this section we assume that L is a finite simple OML. The reader is 
reminded that a finite OML is simple iff it is (directly) irreducible iff it is subdirectly 
irreducible. Constant functions will be distinguished from their singleton image by 
context only. 

LEMMA 1. If S <Lx and if S contains a subalgebra Lo isomorphic with L then 
there exists an OML S, isomorphic with S such that S, G L,X and S,, contains all 
constant functions. 

Proof Since L, L, are finite and simple, for each x E X the restriction pr, 1 L, of 
pr, to L, is an isomorphism between Lo and L. Let qX be its inverse. Define 
cp : Lx-+ L,X by cp( f )(x) = q.Jf(x)). Then cp is obviously an isomorphism between 
Lx and Lt. Define S,, = p(S). It is easily checked that S,, has the desired property, 
the constant functions being { cp( f) 1 f E L,}. 

PROPOSITION 7. Assume S < Lx and that S contains all constant functions. Define 
9 = {f - ‘(4 If E S, a E L}. Then 9 is a field of subsets of X and S = C(9, L). 

Proof If f E Lx and a EL then f-‘(a) =((f v a) A (f’ v a’))-‘(O). thus 
9 = {f-‘(O) (f E S>. Since f-‘( 1) = (f’)-‘(O) we also have 9 = {f-‘(l) If E S}. 
Hence for each A E 9 we may thus assume that A = f - ‘( 1) for some f E S. Define 
recursively polynomials g, by g, =f and g,, , = AaEL ((g, A a) v (gi A a’)). If 
g,(x) # 0, 1 then there exists a E L such that &g,(x) fails, thus 
g,, ,(x) < (g,(x) A a) v (g,(x) A a’) <g,(x). Thus (being conservative) if n is the 
number of elements of L then g, = xA E S. Since A u B = (xA v xe) -‘( l), 9 is 
closed under finite unions and since (f-‘( 1))’ = u, + , f-‘(u), 9 is closed under 
complements and hence is a field of sets. Since f = VaL (a A X,-Q)) it follows that 
s = C(F, L). 

PROPOSITION 8. If S < Lx (subdirect) then the MacNeille completion of S belongs 
to the variety generated by L. 
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Proof. Let M be a maximal set of pairwise orthogonal central elements a of S with 
the property: the interval [0, a] in S is isomorphic with a subalgebra of some power 
Lxa and contains an isomorphic copy of L as a subalgebra. Using Lemma 1, 
Proposition 7 and the corollary to Proposition 4, the MacNeille completion of each 
interval [0, a] with a E M belongs to the variety generated by L. The claim thus 
follows from Proposition 2 if we can show that VM = l( V in S). If this was not 
the case there would exist an upper bound u < 1 of A4 in S and there would exist 
xEXsuchthatu(x)<l.Leta,,a, ,..., a,, be the elements of L and let q be the 
polynomial with the properties stated in Proposition 6. Since S < Lx (subdirect) we 
may choose for every i = 1,2, . . . , n an element x E S such that f;:(x) = a, and we 
may assume that u is one of the h. Define /? = q(fi ,f2, . . . ,f,). Since q takes in L 
the values 0, 1 only, /3 is central in S. Define Y = /V’( 1) and S,, = {flYlf~ S, 
f < /?}. Clearly S, is isomorphic with the interval [0, /?I in S and S, G L ‘. By 
Proposition 6, for every y E Y, the map ai +A ( y) is an automorphism of L. It follows 
that the map a, +A 1 Y is an OL-embedding of L into S,. We show that /I is 
orthogonal with every a E M. If a(y) = 0 clearly a(y) < p’(y). If a(y) # 0 then, since 
a is central, a(y) = 1 and hence u(y) = 1; since u(x) # 1 the map ui -+A ( y) is not an 
automorphism and, again by Proposition 6, /3(y) = q(f, ,fi, . . . , f,)( y) = 0 and 
a(y) < /3’(y). Thus /I is orthogonal with all a E M. But /3(x) = 1 6 u(x) implies 
B $ M, contradicting the maximality of M. Thus VM = 1, completing the proof. 

5. Proof of the Theorem 

Extending an earlier notation we define S < lIXEX L, (subdirect) to mean that S is 
a subalgebra of lIxpX L, and that the projections pr, map S onto LX. We first prove: 

LEMMA 2. Assume S < YIxeX L, (subdirect), where the L, come from a finite set 
X=(k,,k*,.. . , k,,, } of finite irreducible OMLs. For k = 1,2, . . . , m define 
Yk={x~X]LX=Kk}. A ssume furthermore that for every k and every y E Yk there 
exists f E S such that f 1 v, + R Y = 0 and f (y) # 0. Then the MacNeille completion of , 

S belongs to the variety generated by X. 
Proof. We show first: 
(*) For every k E { 1,2, . . . , m} and every y E Y, there exists g E S such that 

g 1 ujzk q =0 and g(y) = 1. 
By assumption there exists f E S such that f 1 u, +k 5 = 0 and f(y) # 0. Let 
a, = 0, a2 =f(y), a3, . f * 9 a, be the elements of Kk and let p be a polynomial as in 
Proposition 5 for the OML Kk. For i = 1,2, . . . , n chooseA E S such thatJ( y) = ai. 
We do this in such a way that f, is the zero-function and f2 =J Define 
g =P(f,Tf,, . * . 9-h). If x E uj#k J Y. then f,(x) = f2(x) = 0. It follows from the first 
condition of Proposition 5 that g(x) = 0 and hence that g 1 Uj+k Yj = 0. It follows 
from the second condition of Proposition 1 that g(y) = 1, proving (*). Define now 

every k there exists gk E S such that gk 1 Yk = f I Yk . 
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Clearly S, is a subalgebra of IIIxeX L, and S is a subalgebra of S,. We show that S 
is join-dense in S,. For this it is obviously enough to show that for every 
f~ S,, y E X there exists a E S such that a &f and a(y) =f(y). Assume y E Yk. By 
(*) there exists g E S such that g 1 u ,+k 5 = 0 and g(y) = 1. By definition of S,, 
there exists g, E S such that gk 1 Y, =f] Y,. The function a = gk A g obviously has 
the desired properties proving that S is join-dense in S,,. For k = 1,2, . . . , m define 
Sk = {fl Y, FE S}. Clearly s, is isomorphic with I-Ii;, * Sk. but Sk < KF (subdi- 
rect). The claim thus follows from Proposition 1 and Proposition 8. 

We are now in a position to give a proof of our theorem. If the variety &- is 
generated by a finite OML then it follows from Jonsson [lo] that x contains (up 
to isomorphism) only finitely many subdirectly irreducibles K,, K,, . . . , K,,, and 
that these are all finite. Thus, if S E 3- we may assume by Birkholf’s subdirect 
representation theorem that S < lIxsx Lx (subdirect) and that the Lx come from 
(K,, K,, . . . ,K,,,}. For k=l,2 ,..., m define & = {X E x 1 L, = Kk }. We define 
recursively subsets Yk of Xk with the properties. 

1. If f,gES,f#g there exists XE Y,u”‘uYkuXk+,u”‘uX, such that 
f(x) z g(x). 

2. IfyEYkthereexistsfESsuchthatflY,u...uYk_,uXk+,u...uX,=O 
and f(y) # 0. 

Assume that 1 < k < n and that the U, with the described properties have been 
constructed if 1 <i < k. Define an element y E Xk to be redundant if whenever the 
restriction Of anfES to Y~u’..uYk-~uXk+~u”‘UX~ iS 0 thenf(y)=O. Let 
Y, consist of all y E Xk which are not redundant. We show that the two conditions 
are satisfied for this k. This is obvious for the second condition. To show it for the 
first condition assume f, g E S and f # g. By inductive hypothesis there exists 
XE Y,u. “uY,-,u&u’ . . u X, such that f(x) # g(x). If this is true for some 
x $ Xk then Condition 1 is trivially satisfied. If not, the restriction of 
(fvg)A(yvg’)to Y,u.*.uY,-,uXk+,u*..uX,isOandthereexistsyEXk 
such that f( y) #g(y) and hence ((f v g) A (f’ v g’))(y) # 0. it follows that y E Yk 
and hence Condition 1 is satisfied. Define Y = Y1 u Y, u * * . u Y, and let S, be the 
projection of S into IIyey L,,. Then S N S, < II ye y L,, (subdirect) and the last 
subdirect representation has the property assumed in Lemma 2. It follows that the 
MacNeille completion of S belongs to x, completing the proof. 

6. Concluding Remarks 

Our results are obviously only a first step in developing a theory of completions of 
OMLs. The most pressing problem to us seems to be: Can every OML L be 
embedded as a sub-OL into a complete OML C? Because of the frequency with 
which completeness is assumed in axiomatic treatments of the foundations of 
quantum mechanics, e.g. [ 141, a positive resolution to the above question could 
widen such developments. There are, of course, several versions of this embedding 
problem. We can require that L is just a sub-OL of C or that all or some specified 
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sets of joins and meets in L are preserved, or that L admits a full or strong set of 
states as in a quantum logic. The answer to none of these questions seems to be 
known. 

The example of a modular OL L the MacNeille completion of which is not an 
OML which we gave in the introduction does not provide a counter-example to this 
more general embedding problem. The incomplete inner product space V we used 
to construct L can first be completed. Then, as is not difficult to prove, L can be 
embedded into the lattice L, of finite-dimensional or cofinite-dimensional subspaces 
of the completion P of V. By the theorem of Amemiya-Araki-Piron the MacNeille 
completion of L, is an OML and L is isomorphic with a sub-OL of it. 

The simplest unsolved case dealing with the MacNeille completion is the case of 
the variety X generated by MOW, the modular OL consisting of countably many 
pairwise incomparable elements and the bounds. X can also be described as the 
variety generated by all finite modular OLs. It seems that our methods require 
considerable refinement to deal with this case. 
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