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Abstract. The only known example of an orthomodular lattice (abbreviated: OML) whose MacNeille 
completion is not an OML has been noted independently by several authors, see Adams [ 11, and is based 
on a theorem of Ameniya and Araki [2]. This theorem states that for an inner product space V, if we 
consider the ortholattice U(V, I) = {A G V: A = A”} where Al is the set of elements orthogonal to 
A, then sP( V. I) is an OML if and only if V is complete. Taking the orthomodular lattice L of finite or 
cofinite dimensional subspaces of an incomplete inner product space V, the ortholattice U( V, I) is a 
MacNeille completion of L which is not orthomodular. This does not answer the longstanding question 
Can every OML be embedded into a complete OML? as L can be embedded into the complete OML 
U(r, I), where P is the completion of the inner product space V. 

Although the power of the Ameniya-Araki theorem makes the preceding example elegant to present, 
the ability to picture the situation is lost. In this paper, I present a simpler method to construct OMLs 
whose MacNeille completions are not orthomodular. No use is made of the Ameniya-Araki theorem. 
Instead, this method 1s based on a construction introduced by Kalmbach [7] m which the Boolean 
algebras generated by the chains of a lattice are glued together to form an OML. A simple method to 
complete these OMLs is also given. 

The final section of this paper briefly covers some elementary properties of the Kalmbach construc- 
tion. I have included this section because I feel that this construction may be quite useful for many 
purposes and virtually no literature has been written on it. 
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1. Preliminaries 

In this section, the elementary facts regarding ortholattices, orthomodular lattices, 
MacNeille completions of ortholattices, ultraproducts of algebras and Boolean 
algebras generated by chains are reviewed. A fairly detailed description of the 
Kalmbach construction is also given. As this construction is encountered through- 
out the entire paper, a good understanding of how it works is essential. 

An orthocomplementation on a lattice L is a map x -+x’ of L which is an 
antimonotone complementation of period two. An ortholattice is a pair (L, ') where 
L is a lattice and ’ is an orthocomplementation on L. An OML is an ortholattice 
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94 JOHN HARDING 

(L, ‘) which satisfies the orthomodular law: 

for all a < ZJ E L, a v (a’ A b) = b 

or its equivalent form 

(1.1) 

for all a < b E L, b A a’ = 0 if and only if a = b. (1.2) 

It is customary to refer to an ortholattice (L, ‘) by L when no confusion is possible. 
For further information on ortholattices and OMLs the reader should see [8]. 

An ideal of a lattice L is the intersection of a collection of principal ideals if and 
only if it is the set of lower bounds of its upper bounds. Such ideals are called 
normal ideals. L, the set of all normal ideals of L, forms a complete lattice under 
set inclusion and is referred to as the completion by cuts or the MacNeille 
completion of L (see MacNeille [lo]). It follows easily that L contains an isomor- 
phic copy of L as a join and meet dense sublattice. 

For an ortholattice (L, ‘) an orthocomplementation I may be defined on E by 

I’ = {x E L : x’ is an upper bound of I>. 

This orthocomplementation extends that of L and is uniquely determined by this 
property (see MacLaren [9]). When we refer to the MacNeille completion of an 
ortholattice (L, ‘), we will mean the ortholattice (L, 1). 

Given a family of algebras (Ai),,, of the same type, and a first order formula 
4$x, 1 . . . , x,) in the language of these algebras and a,, . . . , a, E l7 A, define 

[cp(a,, . . . , a,)] = {i E I: A, k cp(al(i), . . . , a,(i))}. (1.3) 

For 42 an ultrafilter over the set Z the relation 0 on II A, defined by 

a@b if and only if [a = b] E % 

is a congruence on II A,. We follow the customary practice of using %2 and the 
associated congruence 0 interchangibly. The ultraproduct of (A,), over 2~ is defined 
to be (II A,)/@ and is denoted by II A,/%. A very useful theorem due to Los states 

G A,/@ 1 cp(a~P~~ . . . j a,/%) if and only if [cp(a,, . . . , a,)] E %. (l-4) 

For further information on ultraproducts and universal algebra see [5]. 
For a bounded chain C, let .?P be the field of subsets of C - { 1) generated by the 

sets A, = (y E C: y < x} where x ranges over C. As every element of 9 has a 
unique representation of the form 

,g, (A-% - A.% I ) where x, <x~<...<x~~ EC 

the set &?(C) of all finite, even length chains in C carries a natural Boolean 
structure. For x E B(C) let Z(x) be half of the length of x and let x,, . . . , xzlcX) be 
the elements of x in order of increasing size. Then if =$ and I are the induced 



ORTHOMODULAR LATTICES AND THEIR MACNEILLE COMPLETIONS 9.5 

partial ordering and orthocomplementation on g(C) we have for x, y E g(C) 

x $y if and only if for each 1 6 i 6 Z(x) there exists 1 <j 6 Z(y) 

such that y2] _ , G x2, _ , < x2, d y2,, 

and that xyi is defined by 

xuxL =xu (0, 1) and xnx'=x - (0, 1). (1.6) 

It is immediately evident that B(C), with the natural Boolean structure, is generated 
by a sub-chain which is isomorphic to C. We call 5?(C) the Boolean algebra 
generated by the chain C. For basic information on Boolean algebras generated by 
chains see [3, pages 105-1091. 

With the above discussion of Boolean algebras generated by chains, it is a simple 
matter to describe the Kalmbach construction. For a bounded lattice L, define the 
set X(L) to be the union of the sets &5’(C) where C ranges over all 0, 1 sub-chains 
of L. Define a map I: X(L) +X(L) to be the union of the complementations on 
the g(C) and define a relation =$ on X(L) to be the union of the partial orderings 
on the a(C). It is shown in [7] (a more accessible reference may be [8, page 2301) 
that (X(L), I, <) is an OML. The proof follows by giving a recursive method for 
calculating joins and meets in X(L) and is outlined below. 

From (1.5) it follows that < is a partial ordering and from (1.6) it follows that 
I is indeed a function. For elements x, y of X(L), if x uy is a chain of L then the 
supremum and infinum of these elements in %?(x u y u (0, 1}) are their supremum 
and infinum in X(L). Therefore, it follows immediately from (1.5) that X(L) 
satisfies (1.1) so if X(L) is indeed a lattice, it is an OML. 

For x, y elements of X(L), if Z(x) = 1 then x v y exists. The proof is by induction 
on Z(y). Assume that x u y is not a chain of L, and therefore that Z(y) > 0. It is 
easily verified that 

{Xl.%.) v {YI,Yd = { x, A y,, x2 v y2} if {x, , x2, y,, y2) is not a chain. (1.7) 

Setting z, = {y2< _ I, y,, ) for each 1 < i < Z(y) and taking k least such that x u z, is 
not a chain, by (1,7) x v zk exists and by inductive hypothesis (x v zk) v (y - q) 
exists. so 

x v y = (x v Zk) v (y - ZIJ. (1.8) 

For x an y nonzero elements of X(L), setting wi = {xzI _ i, xzr } for each 
1 d i d Z(x), we have 

x v y = (((y v w,) v w2) . . . ) v W@). (1.9) 

For x and y elements of X(L), to see that the infinum of x and y exists first note 
that 

ifZ(x)=Z(y)=l thenxAy= {xl VY,,X,AY~) ifx, VYI <xz~y2 
8 otherwise 

(1.10) 
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But, z is a lower bound of (x, y> if and only if for each 1 < k < Z(z) there exists 
l<i<Z(x),and l~j~I(y)suchthatx,,_,vy,,_,~z,,_,<z,,6x,,~y,,.So 

If z is the result of an operation on elements x, y of X(L) then z is a chain in the 
sublattice of L generated by x uy u (0, l}. This follows immediately from ( 1.6) for 
the operation I and by a simple induction using ( 1.7) through ( 1.9) for join. Then 
( 1 .lO) and ( 1.11) provide the result for meets. As a corollary of this observation, 

if M is a 0, 1 sublattice of L then X(M) is a subalgebra of X(L). (1.12) 

2. Completions of N(L) 

PROPOSITION 2.1. For L a bounded lattice, the MacNeille completion of X(L) is 
an OML if and only if the condition (T) holds in L. 

(t) If (Cl),, (0, >.I are two families of closed intervals in L such that 
8 # n C, c n D,, then there exists x, y E n D, such that x < y and either x 
is an upper bound of n C, or y is a lower bound of n Ci. 

Proof. Assume that L is a bounded lattice and the MacNeille completion of 
X(L) is an OML. Take two families of non-degenerate closed intervals in L, say 
([a,, b,]), and ([c,, d,]),, and set X = n ([al, bi] : i E Z}, Y = n ([c,, d,] :j E J>. As- 
sume that 8 # X c Y. For each i E Z let A, = [ c, {a,, 6, }I,,,, and for each j E J 
let B, = [t, {c,, d,}],(,,. Set A = (7 {A,: i E Z}, and B = n {B,:j EJ}, then 
A ={xEX(L): x c X} and B = {y E X(L) : y c Y}. As A, is a principal ideal of 
X(L) for each i E Z, A is a normal ideal of X(L), as is B. 

But 8#XxY, so there existS,gEL such thatfEX and gE(Y-X). Then 
(f A g,f v g> E B - A, but we assumed the MacNeille completion of X(L) was on 
OML, so by (1.2) B n A 1 # (0). Take z E B n A I, such that Z(z) # 0. Then zl is an 
upper bound of A. But X is a convex sublattice of L, so one of (0, zl}, {z~,(=), l}, 
or {zzk, z2k + , } for some 1 < k < Z(z), is an upper bound of A. As z E B, z E Y, so 
if (0, z,> is an upper bound of A, then z,, z2 respectively serve the roles of x, y in 
(t). If {ql(=), l} is an upper bound of A, then Q(-+, , I~,(;) serve the roles of x, y: 
and if {zzk, zzk+ ,} is an upper bound of A, then zzk + , , zzk + 2 serve the roles of x, y. 
So, if the MacNeille completion of X(L) is an OML then L satisfies (f). 

For the converse, suppose that (t) is satisfied in L and that A, B are normal ideals 
of X(L) such that 8 #A c B. We must show that B n A 1 # 8. 

Let U(A), U(B) be the set of upper bounds of A and B in y(L) respectively. Set 

F = {f E NUcA): 1 <f(x) < Z(x) for all x E U(A)) 
59 = {g c NuU(a): 1 <g(x) <l(x) for all x E U(B)) 
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and 

Then for x E x(L), as A is a normal ideal, x E A if and only if x < y for all 
y E U(A) if and only if for each 1 d i < Z(x) and each y E U(A) there exists 
1 < j d Z(y) such that [xZr ~ , , x2,1 E [yzJ - [, ys ] if and only if for each 1 < i d I(x) 
there exists f E 9 such that [xii _ , , xzl] E Xf 

As A c B, there exists x E (B - A) with l(x) = 1 and therefore g E 3 with 
Ix,, x21 G yg. 

Assume that hiUcBj = g implies that X, = $4 for all h E 9. For each z E A with 
Z(z) = 1 we have [z, , z2] E X, for some h E 9. As h(y) # g(y) for some y E U(B) 
and z d 1~~~~~) ~ 1 3 Y~Q) 11 x < {Yzgc ,3 - I 3 Y2,, y) } we have x<z’. So, x<zi for all 
z E A, and therefore x E B n A’. 

If there exist f, h E 9’ such that 8 # Xf& Y,, 8 #X, E Y, then for some 
Y E WA) - u(B) f(y) Z MY). So. 

Ygn[y2,(,,-,,y2h(y)l ZXh z0. 

Assuming that f(y) < h(y), as Y, is convex, [y2s(yj, y2f(yj+ i] E Yg. Then 
b2m Y2fW + 1 > E B, and as {y2f(yj, y2f(y) + , > $y’ E A 1 we have finished. 

As 8 is not an upper bound of A, there exists an f E 5 such thatfi,,,, = g. By the 
above discussion we may assume that f is the unique element of 9 such that 
(b # X, G Y,. But [xi, x2] E Y, so X, # Y,. Applying (t) we find a, b E Yg such that 
a < b and either a is an upper bound of Xr or b is a lower bound of X,. In either 
case, (a, 6) E BnA’. 

The following result is somewhat surprising in view of the fact that ,X(,5) is 
complete if and only if it is finite. 

COROLLARY 2.1. Zf L is a bounded lattice, then X(L) can be embedded into a 
complete OML. 

Proof. It is easy to see that (f) is satisfied by any complete lattice. If we let L 
denote the MacNeille completion of L, then as L is a sublattice of L, by ( 1.12) 
3’-(L) is a sub-OML of x(L). But L is complete, so s(E) is an OML and X(L) 
is a sub-OML of x(L). 

COROLLARY 2.2. There is a bounded lattice L such that the MacNeille completion 
of jr(L) is not an OML. 
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Proof. In the lattice LO depicted below, where it is to be understood that a, d 
c,, d,,, and b, < d,,, for all n, m E kJ, the families ([a,, c,]),,~ and ([a,, d,J),,N violate 

(7). 

b3 b2 
bl 

bo 

Lo 

PROPOSITION 2.2. For a family (L,),,, of bounded lattices and an ultraJilter 4? 
ocer the set I, X(n L,/@) can be embedded into II X(L,)/a. 

Proof. Let S be the collection of all subsets of II L, which have even cardinality. 
With rr, being ith projection of II L,, define a map p: S + H X(L,) as follows 

p(X)(i) = 
rr,[X] if rc,[X] E X(M,) and 1rc,[X]I = 1x1 
8 otherwise 

If z E X(l7 L,/%) and CI,, . . . , uzl(=), b,, . _ . , b21Czj E lI L, are such that a, /% = 
b, I”?/ = z, for each 1 < i < 21(z) then, as % is closed under finite intersections, 

P( {a, : 1 < i < 21(z)})/@ =p( (6,: 1 6 i < 21(z)))/%!. Therefore, we may define a map 
,8: X(l-I L,/%) +l-I X(L,)/%Y by 

P(z) =p((x,, . . . , -YzICz) })/@ if z, = x, /@ for all 1 < i < 21(z) 

For x, y E Z( II L,/%) choose a,, . . . , azitr) E II L, such that a, /% = x, for each 
l<i<21(x) and choose b,,..., bzlC V) E TI L, such that b,/q = .v, for each 
l<jGWy). Let (~(p,,...,p~~~.~),q~,.I., q21CyJ) be the first order formula which 
says that for each 1 < i < I(x) there exists 1 <j < 1(y) such that q2,-, < 
p2> _ , < pzl < qzl. Then using Los theorem ( 1.4) and the fact that 
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u a, < . . . < Use], [bl < . . . -c b2rc,,] E ~2 we have 

x <v if and only if n L,/% k qP(x,, . . . , x~I(.~), yl, . . . , y21c,.)) 

if and only if [cp(a,, . . . , a2/(.+ b,, . . . , b2&] E $2 

if and only if [cp(a,, . . . , ~1~~)~ bt, . . . , b(,,)] 

n~a,<...<a2,,.~,nn[rb,<...<b2,(,,,n~~ 
if and only if [~({a,: 1 < i < 24x))) <p({b,: 1 <j 6 21(y)))] E % 

if and only if /3(x) < /I(v). 

99 

Therefore /I is an order embedding. By similar methods we can easily check that B 
is compatible with 1. 

To put the next result in the proper context, it is shown in [4] that any variety of 
OML’s which is generated by a single finite OML, is closed under the formation of 
MacNeille completions. It is not unreasonable to hope that the variety which is 
generated by all the finite OML’s would also have this property. This would settle 
a basic question about OML’s. Is the variety of OML’s generated by its finite 
members? Unfortunately, the following result nullifies this approach. 

COROLLARY 2.3. There is an OML in the variety generated by thefkite OMLs 
whose MucNeille completion is not un OML. 

Proof. For each natural number n, let A4, be the interval [a,, b,] in L,, and for 
each m 2 0 define A,, B,, C,,,, R,, E r~ M, by &(4 = G,+,,,~~, B,,,(n) = Lni,,,,,), 
C,(n) = umax:n - m.o) and DA4 = b,,,,, - m.o). Let & be a non-principal ultrafilter 
over the natural numbers and define a: Lo -+II M,,/% by setting CY(U,) = A,/%, 
a(b,) = B, /G?, a(~,,) = C,,, /a and a(d,) = D, /‘?Z!. It is an easy matter to check that 
a is a 0, 1 lattice embedding. Then X(L,), whose MacNeille completion is not 
an OML, can be embedded into X(II M,/%!) which can be embedded into 
II X(M,)/&. As X(M,) is finite for each choice of n, the proof is finished. 

The fundamental question as to whether every OML can be embedded into a 
complete OML is still open, as is the problem of characterizing the OML’s that 
have orthomodular MacNeille completions. I hope that the above examples will be 
of some help in answering these questions. 

3. Properties of the Construction 

This section is primarily intended for the reader who may wish to make use of the 
Kalmbach construction. Several elementary properties of the OMLs arising from 
this construction are given. This is by no means intended to be a thorough 
exposition, but it does illustrate some techniques which are useful when working 
with the construction. 

The reader should see [S] for information on orthostructures, [5] for universal 
algebra and [3] for Boolean algebras. 
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PROPOSITION 3.1. Applying the Kalmbach construction to a bounded poset pro- 
duces an orthomodular poset. 

Proof. This is entirely trivial. 

PROPOSITION 3.2. Let L, M be bounded lattices, 
(i) L is a 0, 1 sub-Zattice ofX(L). 
(ii) If L is a 0, 1 sub-lattice of M, then X(L) is a sub-OML of X(M). 

(iii) X(L) x X(M) r X(L 0 M/O( l,, 0,)) where 0 is ordinal sum, and 
0(x, y) is the congruence generated by {x, y>. 

(iv) X(L) has a full set of dispersion free states. 
(v) For x, y E X(L), x commutes with y if and only tf x uy is a chain in L. 

(vi) The blocks of X(L) are exactly the B(C) where C is a maximal chain of L. 
(vii) The centre of X(L) is B(D), where D is the set elements of L which are 

comparable to all others. 
Proof. (i) For 0 #x E L, set q(x) = (0, x> and let q(O) = 8. Then cp is the 

required lattice embedding. 
(ii) This was already noted in ( 1.12). 
(iii) For x E X(L), y E X(M) define 

Y(X, Y> = 
i 
UX,l~~~~ T [xzl(.+ A [YA . . . Y [Y~~(~JJ if b2d = [YJ 
{[z]:z EXUY} otherwise 

where [x] is the O( l,, 0,) equivalence class of x. Then y is the required isomor- 
phism. 

(iv) For each a < 1 E L define a, : L + (0, l} and p, : X(L) + (0, l} by setting 

0 ifc<a l(x) 
%(4 = 1 otherwise and BA4 = c GL(x~J -a&- J). 

1=1 

Then (pa : a < 1 E L) is a full set of dispersion free states. 
(v) If x u y is a chain of L, then x, y E 69(x u y) and therefore commute. If a E x 

is incomparable to b E y, then the commutator of x and y, y(x, y) + {a A b, a v b). 
(vi) and (vii) follow easily from (v). 

The following proposition will give a characterization of the congruences on X(L) 
in terms of the underlying lattice L. The proof is messy, and it may be of help to 
first think of the proposition in the case that L is chain finite. In this case, the 
p-ideals of X(L) correspond to the intervals [0, c] where c is central in X(L). 

DEFINITION 3.1. For a bounded lattice L, we say that M EL is a middle set of 
L if M is a convex sublattice of L and for all x E L - M either x is an upper bound 
of M or x is a lower bound of M. We define a middle system of L to be a set of 
pairwise disjoint middle sets of L. For JZ a middle system of L, set 

b,[{ = u (M*: M E J&‘} uA, 
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and 

PROPOSITION 3.3. If L is a bounded lattice, then for each middle system A’ of L, 
p-N is a congruence on L, PGfl is a p-ideal of X(L) and Y(L)/P., E X(L/p..). 
Further, each p-ideal of X(L) is equal to pMr for some middle system A%? of L. 

CLAIM 1: P., is a p-ideal of X(L). 
Proof. Take x, y E X(L). If x < y and y E Peg, then for each 1 < i < E(x) there 

exists 1 <j < Z(y) such that yl, _, < xzz _, < x2, < y2, ; as each M E & is convex, 
x E Puu. If x, and y are both in PbH then, by a simple inductive argument using ( 1.7) 
through (1.9), x v y E P-,. So, PbK is an ideal of X(L). 

We must show that for x E Pbu, y A (y’ vx) E PA. For ME& let S, = 
(x uy) nM, aM = AS,, b, = VS,, and z = V((aM, 6,): aM <b,}. Note that 
z E P.,andsincex E P.,, x <z. Also, z u y is a chain, so z commutes withy. Therefore 

yA(y~vx)<yA(y~vz)=yAzEqK. 

CLAIM 2: If Z is a p-ideal of X(L), there exists a middle system 4? of L such 
that Z = Pew. 

Proof. Given a p-ideal Z of X(L), define a relation 6’ on L by 

It is clear that 0 is reflexive and symmetric. If a, b, c E L are all distinct and aeb, btk 
then as 

we have a&. So 8 is an equivalence relation. 
Next, suppose that a < b and aeb. If a < c < b, then as {a, c} 4 {a, b} E I, we have 

that a&. So each block of 8 is convex. Take b, c E a/e and assume that b is 
incomparable to c. As 8 is an equivalence relation, b&z, so {b A c, b v c} E I. But as 
a/l3 is convex, cO(b A c), c&b v c). Therefore, each block of 0 is a convex sublattice 
of L. 

If la/e/ b 2 and x E L is incomparable to a, then one of the following four cases 
must apply. There exists b E ajo with a < b and x A a # 0; there exists b E ajo with 
a < b and x A a = 0; there exists b E a/e with a < b and x v a # 1; or there exists 
b E a/e with b < a and x v a = 1. 

Ifa<bandxr\a#Othen 

{U A x, x} A ({a A x, x}l v {a, b}) = {a A x, x} A ((0, a A x, x, l} 
A ia, b)) 

={UAX,X}A{O,1)={UAX,X}d 

{a A x, u} A ({a A x, a}’ v {a A x, x}) = {u A x, a} A ((0, a A x, a, l} 
V {a A 4 X>) 

= {U A X, U} A (0, l} = (U A X, U} E 1 
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So {a A X, a} v {a A x, x} = {a A x, a v x} E Z giving that x E a/0. 
If a < b and x A a = 0 then 

(0, x> A ((0, x}’ v {a, b}) = (0, -x} A ((~3 I} v {a, b)) 
= (0, X> A (0, l} = (0, X} E 1 

and by the above argument, (0, a} E Z so x E a/e. The remaining cases are identical 
to the ones described replacing a A x with a v x. 

We have shown that if la/e/ 2 2, then a/e forms a middle set of L. To prove our 
claim, set J&’ = (a/e: a E L, la/e1 > 2). By the above discussion, &’ is a middle 
system of L, but {x,, x,} E P., if and only if {x,, .x2} E I. So Pbu = I. 

CLAIM 3: If JH is a middle system of L, then X(L/jw,) is isomorphic to 

mL)lp”, . 
Proof. By [8, page 761, for x, y E X(L), x/P, <y/Pug if and only if there exists 

t E /P., such that x <y v z and therefore x/P. N <y/P., if and only if there exists 
t E P,# such that for each 1 d i d Z(x), {xzI+, , xzI} <y v t. It is not too difficult to 
show that x/P.,~ <y/P-# if and only if for each 1 d i < Z(x) there exists 1 <j < E(y) 

such that ~2, ~ 1iB.K = +,lP.tt or ~2~ - 1 /B-M G ~2, ~ 1lB.g < x2i IPM d ~5 1B.H. 
If .Y E X(L) and a. b are of minimal length in .IC/~.~, say n, then the above 

condition shows that a, /fl.& = b, /p.# for each 1 d i 6 2n. It is therefore possible to 
define a map a: X(L)/P-, -+ X(L/pu,) by setting 

@x/Pet,) = (a, /pmK : 1 < i < 21(a)} where CI is of minimal length in .x/PA, 

It is obvious that a is onto X(L/p.,) and the condition for x/P-# to be dominated 

by YIP.,~ then exactly says that CI is an order embedding. For x E X(L) if 
O/B.,, E a(x/Pug) then choose y E xlPu, of minimal length such that 0 E y, and do 
similarly if l/p,t( E a(x/P.,). It is then a straightforward application of (1.6) to 
verify that CI is compatible with the orthocomplementations. 

Piecing together the previous chains proves the proposition. 

Let K denote the class of all OMLs which are isomorphic to X(L) for some bounded 
lattice L. To conclude this section, we will make a few remarks about the variety 
generated by the class K. A Boolean algebra is in K if and only if it is generated by 
a chain, and a Boolean algebra generated by a chain is complete if and only if it is 
finite. The class K cannot possibly be closed under arbitrary products as the two 
element Boolean algebra is in K, but 2” is not in K. It is also easy to see that K is 
not closed under subalgebras. There is a Boolean algebra B generated by an 
uncountable chain. If we take B’ to be the subalgebra of B consisting of all elements 
of finite height and their complements, then every chain of B’ is countable. But as 
B’ is uncountable it could not possibly be generated by one of it’s maximal chains. 

Although K is not a variety, we have already seen that it is closed under finite 
products and homomorphic images. The variety generated by K is not the variety 
of OMLs, since there are identities satisfied by all OMLs with a full set of dispersion 
free states that are not satisfied by all OMLs [6]. 
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