
Irreducible orthomodular lattices which are simpleJohn Harding�It is well known that for a chain �nite orthomodular lattice, all congruencesare factor congruences, so any directly irreducible chain �nite orthomodularlattice is simple. In this paper it is shown that the notions of directly irreducibleand simple coincide in any variety generated by a set of orthomodular latticesthat has a uniform �nite upper bound on the lengths of their chains. Theprototypical example of such a variety is any variety generated by a set of ndimensional orthocomplemented projective geometries.An orthomodular lattice (abbreviated: OML) L is an ortholattice which alsosatis�es the orthomodular law:for a, b 2 L if a � b then b = a _ (b ^ a0):We will give the few facts about OMLs which are needed for this paper. A standardreference for OMLs is [5]. Let L be an OMLfor a, b 2 L a = b if and only if (a _ b) ^ (a0 _ b0) = 0:For a, b 2 L, we say that a commutes with b if(a _ b) ^ (a _ b0) = aor equivalently, if (a ^ b) _ (a ^ b0) = a:A maximal set of pairwise commuting elements of L is called a block of L, and is amaximal Boolean subalgebra of L. The intersection of the blocks of L is called thecentre of L. It will be very useful to know that L is directly irreducible if and only ifits centre is f0; 1g.It is an easy consequence of a result by Dilworth [3], and is explicitly states forOMLs in [5], that an OML in which every chain is �nite is directly irreducible if andonly if it is simple. We say that an OML L is of height at most n if every chain in Lhas at most n + 1 elements. The main result of this paper is:�supported by a grant from NSERC 1



Theorem 1 If M is a set of OMLs each of height at most n, then for any OML Lin the variety generated by M, L is directly irreducible if and only if it is simple.The proof of this theorem is rather technical, and is based on certain notionswhich �rst appeared in [1], but no prior knowledge of this paper is required. At �rstreading, it might be advantageous to skip Lemmas 3, 4 and 5 entirely, as they arerequired only for the proof of Lemma 6, and are rather messy besides.For L an OML, we will say that M is a partial matrix in L if M is a rectangularmatrix whose entries are elements of L. We do not require that each cell of M has anentry, but we do require a certain normal form. There must be an entry in each rowand column of M , and the entries of a row must be an initial segment of that row.We say that a partial matrix M in an OML L is admissible if the following conditionsare satis�ed. For each row of M , the entries in that row are pairwise distinct andform a block of L. If we consider the Northeastern diagonals of M originating in the�rst column (these will be referred to simply as diagonals), there is an entry in eachcell of the diagonal. Finally, we require that all of the entries on a given diagonal,which are not in the �rst column, are equal and do not commute with the entry inthe �rst column of that diagonal.For a partial matrix M , we will refer to the entry in the (i; j) cell of M , if thereis one, by Mi;j. De�ne N(M), the size of M , to be a sequence of natural numbers< n1; : : : ; nr > where r is the number of rows in M and for each 1 � i � r, ni isthe number of entries in the ith row of M . If two partial matrices, M and P overthe same OML have the same size, we say that M � P if each entry of P dominatesthe corresponding entry of M . Finally, let < IN+;�L> denote the set of sequences ofpositive natural numbers with the lexicographical ordering.The diagram below may help to visualize a partial matrix and its diagonals.r r r r r rr r r r r r r rr r r r rr r r rr r r r r rr r r r r r r r rhhh
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Lemma 1 For K a set of OMLs, each of which is directly irreducible and of heightat most n, de�ne a set A by A = fN(R) : R is admissible in some L 2 Kg, theni) A is a �nite set and has a maximum in < IN+;�L>, say < m1; : : : ; mq >.ii) If M is admissible in some L 2 K and N(M) = < m1; : : : ; mq >, then for y 2 L,y commutes with all the entries of M if and only if y 2 f0; 1g.Proof. i) If R is admissible in some L 2 K, as the entries of a row of L are pairwisedistinct and form a block of L, each row of R has at most 2n entries. As there isan entry in each cell of a diagonal of R, the number of rows of R cannot exceed thelength of the �rst row of R. So A is a �nite set, and as < IN+;�L> is a chain, A hasa maximum in < IN+;�L>.ii) Take M 2 L as given. Assume that y 2 L � f0; 1g and y commutes with allthe entries of M . As each row of M forms a block of L, y and 0 appear on eachrow of L and never on a diagonal of L (except possibly the one element diagonal).As y 62 f0; 1g there exists z 2 L which does not commute with y, and a block Bof L with z 2 B. Form a new partial matrix M 0 by adding a row to the bottom ofM , the entries being the elements of B, each listed only once, with z listed �rst. Byswitching at most two entries per row of M 0, we may form a new partial matrix M 00which agrees with M 0 on all the diagonals, except possibly the diagonal originatingat z, such that the entries of the diagonals originating at z which are not in the �rstcolumn are all equal to y. But M 00 is admissible, contradicting the maximality of< m1; : : : ; mq >.In the following, we will assume that K and < m1; : : : ; mq > are as described inLemma 1. T denotes the term algebra, of the type of ortholattices, over a countablyin�nite set S. We will assume that a1;1; : : : ; aq;mq are elements of S, and denotethe vector < a1;1; : : : ; aq;mq > by ~a. For M a partial matrix in an OML L withN(M) = < m1; : : : ; mq >, there exists a map ' : S �! L such that '(ai;j) = Mi;jfor all 1 � i � q, 1 � j � mi, and a homomorphism ' : T �! L extending '. So, fort(~a) 2 T we may de�ne t(M) to be '(~a).Lemma 2 There exists p(~a; b) 2 T such that for any partial matrix M in any L 2 Kwith N(M) = < m1; : : : ; mq >, we havei) p(M; 0) = 0.ii) If M is admissible then for z 2 L, p(M; z) = 0 if and only if z = 0, andp(M; z) = 1 otherwise. 3



Proof. De�ne recursively for each k � 0, pk(~a; b) 2 T as follows:p0(~a; b) = _1�i�q _1�j�mi[(b _ ai;j) ^ (b _ a0i;j)];pk+1(~a; b) = p0(~a; pk(~a; b)) for k � 0:For z 2 L, p0(M; z) � z, so pk+1(M; z) = p0(M; pk(M; z)) � pk(M; z), thereforefpk(M; z) : k � 0g forms a chain in L. If pk+1(M; z) = pk(M; z) then pk+2(M; z) =pk+1(M; z), so pn(M; z) = pn+1(M; z) since every chain in L has at most n elements.But, p0(M; z) = z if and only if z commutes with all of the entries of M , so pn(M; z)commutes with all the entries of M . In particular, if M is admissible then pn(M; z) 2f0; 1g (by Lemma 1). A simple induction shows that pn(M; z) = 0 if and only ifz = 0. Set p(~a; b) = pn(~a; b).Lemma 3 For each 1 � i � q, 1 � j � mi there exists pi;j(~a) 2 T such that forany partial matrix M , in any L 2 K, with N(M) = < m1; : : : ; mq >, if we de�ne apartial matrix Q in L, with N(Q) = < m1; : : : ; mq >, by setting Qi;j = pi;j(M) forall 1 � i � q, 1 � j � mi, theni) The entries of each row of Q are pairwise commuting.ii) Q �M , and if the entries of each row ofM are pairwise commuting then Q = M .
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Proof. De�ne recursively for each k � 0, pki;j(~a) 2 T for each 1 � i � q,1 � j � mi as follows:p0i;j(~a) = ^1�l�mi[(ai;j ^ ai;l) _ (ai;j ^ a0i;l)];pk+1i;j (~a) = p0i;j(pk1;1(~a); : : : ; pkq;mq(~a)) for k � 0:For each k � 0 de�ne a partial matrix Qk in L, with N(Qk) = N(M), by settingQki;j = pki;j(M) for each 1 � i � q, 1 � j � mi. Note that Qk+1i;j = p0i;j(Qk), so ifQk+1 = Qk, then Qk+2 = Qk+1.For any partial matrix R in L with N(R) = N(M) we have for any 1 � i � q,1 � j � mi that p0i;j(R) � Ri;j, and p0i;j(R) = Ri;j if and only if Ri;j commutes withall the entries on the ith row of R. By an easy induction we have M � Qk � Qk+1for all k � 0. As there are at most q2nentries in M , and every chain of L has at mostn + 1 elements, QN = QN+1, where N = (n + 1)q2n. Then, setting pi;j(~a) = pNi;j(~a)for each 1 � i � q, 1 � j � mi we are �nished.Lemma 4 For each 1 � i � q, 1 � j � mi there exists vi;j(~a) 2 T such that for anypartial matrix M in any L 2 K, with N(M) = < m1; : : : ; mq >, if we de�ne a partialmatrix V in L, with N(V ) = N(M), by setting Vi;j = vi;j(M) for all 1 � i � q,1 � j � mi theni) The entries of each row of V are pairwise commuting and the entries of eachdiagonal of V which are not in the �rst column, are equal.ii) If M is admissible then V = M .Proof. De�ne recursively for each k � 1, vki;j(~a) 2 T for each 1 � i � q,1 � j � mi as follows:v1i;j(~a) = ( Vfal;m : l + m = i + j;m 6= 1g if 2 � j � q � i + 1ai;j otherwisev2ki;j(~a) = pi;j(v2k�11;1 (~a); : : : ; v2k�1q;mq (~a)) for k � 1 (�)v2k+1i;j (~a) = v1i;j(v2k1;1(~a); : : : ; v2kq;mq(~a)) for k � 1(�) the pi;j(~a) are described in Lemma 3.For a cell (i; j) on a diagonal and not in the �rst column, we want v1i;j(M) to bethe meet of all entries of M on that diagonal which are not in the �rst column, hencethe cryptic de�nition. 5



For each k � 1 de�ne a partial matrix V k in L, with N(V k) = N(M), by settingV ki;j = vki;j(M) for each 1 � i � q, 1 � j � mi. Note that V 2ki;j = pi;j(V 2k�1) for k � 1,and V 2k+1i;j = v1i;j(V 2k) for all k � 0. So, if V 2k+2 = V 2k, then V 2k+4 = V 2k+2. If R isany partial matrix in L with N(R) = N(M), we have pi;j(R) � Ri;j and v1i;j(R) � Ri;jfor all 1 � i � q, 1 � j � mi, so V 2k+2 � V 2k+1 � V 2k. As before, V 2N+2 = V 2N ,where N = (n + 1)q2n. So, the entries on each diagonal of V 2N which are not in the�rst column are equal, and the entries of each row of V 2N are pairwise commuting.Set vi;j(~a) = v2Ni;j (~a) for each 1 � i � q, 1 � j � mi.Lemma 5 There exists s(~a) 2 T such that for any partial matrix M in any L 2 K,with N(M) = < m1; : : : ; mq >, if the entries of each row ofM are pairwise commutingand the entries of each diagonal of M which are not in the �rst column are equal,then s(M) = ( 1 if M is admissible0 otherwiseProof. Using the polynomial p(~a; b) from Lemma 2, de�ne:f(~a) = ^1�i�q ^1�j<k�mi p(~a; ((ai;j _ ai;k) ^ (a0i;j _ a0i;k)))g(~a) = ^2�i�q p(~a; (a1;i ^ ((a1;i ^ ai;1) _ (a1;i ^ a0i;1))0))s(~a) = f(~a) ^ g(~a):Take a partial matrix M in some L 2 K, with the entries of each row of Mpairwise commuting and the entries of each diagonal of M which are not in the �rstcolumn equal and N(M) = < m1; : : : ; mq >. If M is not admissible then at leastone of the following must be true; two entries in the same row are equal, an entry inthe �rst column of some diagonal commutes with the entry in the �rst row of thatdiagonal, the entries of some row do not form a block. But, if M does not satisfythe �rst two conditions and does satisfy the third, we can produce an admissiblepartial matrix in L of greater size than M , an impossibility. If two entries in somerow of M are equal then by Lemma 2 i), f(M) = 0. If the entry in the �rst columnof some diagonal commutes with the entry in the �rst row of that diagonal then byLemma 2 i), g(M) = 0.Conversely, if M is admissible, then the entries in each row are pairwise distinct.So (Mi;j _Mi;k)^ (M 0i;j _M 0i;k) 6= 0 for all 1 � i � q, 1 � j < k � mi. Also, the entryin the �rst column of a diagonal does not commute with the entry in the �rst row ofthat diagonal, so M1;i ^ [(M1;i ^Mi;1) _ (M1;i ^M 0i;1)]0 6= 0 for each 2 � i � q. Then,by Lemma 2 ii), f(M) = g(M) = 1. 6



Lemma 6 There exists t(~a) 2 T such that for any partial matrix M in any L 2 K,with N(M) = < m1; : : : ; mq >t(M) = ( 1 if M is admissible0 otherwiseProof. Using the polynomials p(~a; b) from Lemma 2, vi;j(~a) from Lemma 4, ands(~a) from Lemma 5, de�net(~a) = ^1�i�q ^1�j�mi[p(v1;1(~a); : : : ; vq;mq(~a); ((ai;j _ vi;j(~a)) ^ (a0i;j _ vi;j(~a)0)))]0^ s(v1;1(~a); : : : ; vq;mq(~a)):De�ne V from the vi;j(M) as in Lemma 4. If M is admissible, M = V byLemma 4 ii), giving vi;j(M) = Mi;j for each 1 � i � q, 1 � j � mi. Thent(M) = ^1�i�q ^1�j�mi p(M; 0)0 ^ s(M)which by Lemma 2 i) and Lemma 5, gives t(M) = 1.If M is not admissible, then either V is not admissible, or V is admissible andM 6= V . In the �rst case, s(V ) = 0, and in the second case, we have by Lemma 2 i)that p(V; ((Mi;j _ Vi;j) ^ ((M 0i;j _ V 0i;j)))0 = 0 for some 1 � i � q, 1 � j � mi. Sot(M) = 0.Proof (of the main theorem). Take M a set of OMLs each of height at mostn, and assume that L is directly irreducible and in the variety generated by M. By L�os' theorem [2, p. 210], an ultraproduct of OMLs in M has height at most n, so byJ�onsson's theorem [4], the subdirectly irreducibles in the variety generated by M allhave height at most n.As L is in the variety generated by M, by Birkho�'s theorem [2, p. 58], Lis isomorphic to an OML L0 which is a subdirect product of a family (Lx)x2X ofsubdirectly irreducibles in the variety generated by M. Let K = fLx : x 2 Xg, andA = fN(R) : R is an admissible partial matrix in Lx, for some x 2 Xg. By Lemma 1,A has a maximum in < IN+;�L>, say < m1; : : : ; mq >.For R a partial matrix in L0, we de�ne for each x 2 X a partial matrix R(x) in Lxof the same size as R, by setting R(x)i;j = Ri;j(x) (this is simply the xth projection ofR). As L0 is a subdirect product of the family (Lx)x2X , there exists a partial matrixM in L0, with N(M) = < m1; : : : ; mq >, such that M(y) is admissible in Ly for somey 2 X since the maximum of A will be attained in some Ly 2 K.By Lemma 6, t(M(x)) 2 f0; 1g for all x 2 X, and t(M(y)) = 1. But, t(M)(x) =t(M(x)) for all x 2 X, so t(M) is in the centre of L0. We assumed that L0 was7



irreducible, so its centre is just f0; 1g, but t(M(y)) = 1, so t(M) = 1. Again byLemma 6, we have that M(x) is admissible in Lx for all x 2 X, so by Lemma 2p(M; z) 2 f0; 1g for all z 2 L0.Assume that L0 has a chain with n + 2 elements, say f1; : : : ; fn+2. Chose y 2 X,then for some 1 � i < j � n+2 we have fi(y) = fj(y). Setting g = (fi_fj)^(f 0i _f 0j),we have p(M; g)(y) = 0, so p(M; g)(x) = p(M(x); g(x)) = 0 for all x 2 X. But M(x)is admissible in Lx for each x 2 X, so by Lemma 2 ii) g = 0, giving that fi = fj acontradiction.Then as L0 is of height at most n and directly irreducible, it is simple.In conclusion, I will show that the assumption each OML inM has height at mostn cannot be weakened to each OML in M is of �nite height. Take a non-principalultra�lter over the natural numbers, and use this to form an ultraproduct of the n-dimensional real projective geometries, where n ranges over the natural numbers. Thisultraproduct is an atomic modular ortholattice, and the subalgebra of this consistingof the elements of �nite height and their complements is subdirectly irreducible butnot simple. In fact, its congruence lattice is a three element chain.For an example which is directly irreducible but not subdirectly irreducible, con-sider F , the OML in the variety generated by the �nite OMLs which is freely generatedby the countably in�nite set fx1; x2; : : :g. If p(x1; : : : ; xn) 62 f0F ; 1Fg then there are�nite OMLs L, M and l1; : : : ; ln 2 L, m1; : : : ; mn 2 M so that p(l1; : : : ; ln) 6= 0 andp(m1; : : : ; mn) 6= 1. In the horizontal sum of 22 and L �M , p((l1; m1); : : : ; (ln; mn))is not central, for convenience assume it does not commute with q. The map whichsends xi to (li; mi) for 1 � i � n and xi to q for i > n extends to a homomorphism,showing that p(x1; : : : ; xn) does not commute with xn+1 and therefore F is directlyirreducible.For each natural number n, de�ne a map fn from fx1; x2; : : :g to F by settingfn(xi) = xi if i � n and fn(xi) = 0 otherwise. The map fn extends to a homo-morphism from F into F , which is the identity on the subalgebra of F generated byfx1; : : : xng. Therefore F is not subdirectly irreducible.
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