Irreducible orthomodular lattices which are simple

John Harding*

It is well known that for a chain finite orthomodular lattice, all congruences
are factor congruences, so any directly irreducible chain finite orthomodular
lattice is simple. In this paper it is shown that the notions of directly irreducible
and simple coincide in any variety generated by a set of orthomodular lattices
that has a uniform finite upper bound on the lengths of their chains. The
prototypical example of such a variety is any variety generated by a set of n
dimensional orthocomplemented projective geometries.

An orthomodular lattice (abbreviated: OML) L is an ortholattice which also
satisfies the orthomodular law:

fora,be Lifa<bthenb=aV (bAd).

We will give the few facts about OMLs which are needed for this paper. A standard
reference for OMLs is [5]. Let L be an OML

for a, b € L a =10 if and only if (a vV b) A (a' V') = 0.
For a, b € L, we say that a commutes with b if
(aVb)A(aVvb)=a
or equivalently, if
(aAb)V (anb)=a.

A maximal set of pairwise commuting elements of L is called a block of L, and is a
maximal Boolean subalgebra of L. The intersection of the blocks of L is called the
centre of L. It will be very useful to know that L is directly irreducible if and only if
its centre is {0, 1}.

[t is an easy consequence of a result by Dilworth [3], and is explicitly states for
OMLs in [5], that an OML in which every chain is finite is directly irreducible if and
only if it is simple. We say that an OML L is of height at most n if every chain in L
has at most n + 1 elements. The main result of this paper is:
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Theorem 1 If M is a set of OMLs each of height at most n, then for any OML L
in the variety generated by M, L is directly irreducible of and only if it s simple.

The proof of this theorem is rather technical, and is based on certain notions
which first appeared in [1], but no prior knowledge of this paper is required. At first
reading, it might be advantageous to skip Lemmas 3, 4 and 5 entirely, as they are
required only for the proof of Lemma 6, and are rather messy besides.

For L an OML, we will say that M is a partial matrix in L if M is a rectangular
matrix whose entries are elements of L. We do not require that each cell of M has an
entry, but we do require a certain normal form. There must be an entry in each row
and column of M, and the entries of a row must be an initial segment of that row.
We say that a partial matrix M in an OML L is admissible if the following conditions
are satisfied. For each row of M, the entries in that row are pairwise distinct and
form a block of L. If we consider the Northeastern diagonals of M originating in the
first column (these will be referred to simply as diagonals), there is an entry in each
cell of the diagonal. Finally, we require that all of the entries on a given diagonal,
which are not in the first column, are equal and do not commute with the entry in
the first column of that diagonal.

For a partial matrix M, we will refer to the entry in the (7, j) cell of M, if there
is one, by M; ;. Define N(M), the size of M, to be a sequence of natural numbers
< ny,...,n, > where r is the number of rows in M and for each 1 < ¢ < r, n; is
the number of entries in the i** row of M. If two partial matrices, M and P over
the same OML have the same size, we say that M < P if each entry of P dominates
the corresponding entry of M. Finally, let < IN", <;> denote the set of sequences of
positive natural numbers with the lexicographical ordering.

The diagram below may help to visualize a partial matrix and its diagonals.




Lemma 1 For K a set of OMLs, each of which is directly irreducible and of height
at most n, define a set A by A ={N(R) : R is admissible in some L € K}, then

i) A is a finite set and has a mazimum in < IN*, <>, say < my,...,m, >.

i) If M is admissible in some L € KC and N(M) = < my,...,my >, then fory € L,
y commutes with all the entries of M if and only if y € {0,1}.

Proof. i) If R is admissible in some L € K, as the entries of a row of L are pairwise
distinct and form a block of L, each row of R has at most 2" entries. As there is
an entry in each cell of a diagonal of R, the number of rows of R cannot exceed the
length of the first row of R. So A is a finite set, and as < IN", <;> is a chain, A has
a maximum in < INT, <;>.

ii) Take M € L as given. Assume that y € L — {0,1} and y commutes with all
the entries of M. As each row of M forms a block of L, y and 0 appear on each
row of L and never on a diagonal of L (except possibly the one element diagonal).
As y ¢ {0,1} there exists z € L which does not commute with y, and a block B
of L with z € B. Form a new partial matrix M’ by adding a row to the bottom of
M, the entries being the elements of B, each listed only once, with z listed first. By
switching at most two entries per row of M', we may form a new partial matrix M"
which agrees with M’ on all the diagonals, except possibly the diagonal originating
at z, such that the entries of the diagonals originating at z which are not in the first
column are all equal to y. But M" is admissible, contradicting the maximality of
< My,..., Mg >.

In the following, we will assume that K and < m,,...,m, > are as described in
Lemma 1. T denotes the term algebra, of the type of ortholattices, over a countably
infinite set S. We will assume that ay,,...,aq;,, are elements of S, and denote
the vector < ay1,...,aqm, > by d@. For M a partial matrix in an OML L with
N(M) = <my,...,m, >, there exists a map ¢ : S — L such that ¢(a;;) = M;;
forall1 <i<gq,1<j<m;, and a homomorphism @ : T' — L extending ¢. So, for
t(d) € T we may define t(M) to be B(a).

Lemma 2 There ezists p(d,b) € T such that for any partial matriz M in any L € K
with N(M) = < my,...,my >, we have

i) p(M,0) = 0.

ii) If M is admissible then for z € L, p(M,z) = 0 if and only if z = 0, and
p(M, z) =1 otherwise.



Proof. Define recursively for each k > 0, p*(@,b) € T as follows:

prab) =\ V [(bVay) ADVa,),

1<i<q 1<j<m;

p* (@, b) = p°(a@,p*(a,bn)) for k > 0.

For z € L, p°(M, 2) > z, so p**Y(M, z) = p°(M,p*(M, 2)) > p*(M, z), therefore
{p*(M, z) : k > 0} forms a chain in L. If p"*' (M, 2) = pF(M, 2) then pFT2(M, z) =
pFtI(M, 2), so p"(M, z) = p"T'(M, z) since every chain in L has at most n elements.
But, p°(M, z) = z if and only if z commutes with all of the entries of M, so p"(M, z)
commutes with all the entries of M. In particular, if M is admissible then p" (M, z) €
{0,1} (by Lemma 1). A simple induction shows that p™(M,z) = 0 if and only if
z = 0. Set p(d,b) = p"(a,b).

Lemma 3 For each 1 < i < ¢, 1 < j < m; there exists p; j(@) € T such that for
any partial matriz M, in any L € KC, with N(M) = < my,...,my >, if we define a
partial matriz @ in L, with N(Q) = < my,...,m, >, by setting Q;; = p; j(M) for
all1 <1 <q, 1<j5<m;, then

i) The entries of each row of Q) are pairwise commuting.

ii) Q < M, and if the entries of each row of M are pairwise commuting then QQ = M.



Proof. Define recursively for each k& > 0, pf’j(ﬁ) € T for each 1 < 7 < g,
1 < j < m,; as follows:

pij(@) = N [(ai; ANaig) Vv (ai; Aaiy)l,
1<I<m;

piy (@) = Pl (1 (@), - . Py m, (@) for k> 0.

For each k > 0 define a partial matrix Q¥ in L, with N(Q¥) = N(M), by setting
f,j = pf](M) for each 1 < i < ¢, 1 < j < m;. Note that ijl = p?,j(Qk), so if
Qk+1 — Qk7 then Qk+2 — Qk+1_
For any partial matrix R in L with N(R) = N(M) we have for any 1 < i < g,
1 < j < m; that p?’j(R) < R;;, and p?’j(R) = R;; it and only if R; ; commutes with
all the entries on the i” row of R. By an easy induction we have M > Q% > Q**!
for all £ > 0. As there are at most g2"entries in M, and every chain of L has at most
n+ 1 elements, Q¥ = Q"' where N = (n + 1)¢2". Then, setting p; ;(@) = p;;(d)
for each 1 <1 <g¢q, 1 <j <m; we are finished.

Lemma 4 For each 1 <i<gq, 1 <j <m, there exists v; j(d) € T such that for any
partial matriz M in any L € K, with N(M) = < my,...,m, >, if we define a partial
matriz V in L, with N(V) = N(M), by setting V;; = v;;(M) for all 1 < i < g,
1 <5 <m; then

i) The entries of each row of V' are pairwise commuting and the entries of each
diagonal of V' which are not in the first column, are equal.

ii) If M is admissible then V = M.

Proof. Define recursively for each k& > 1, vf’j(c_i) € T for each 1 < i < g,
1 < j < m,; as follows:

)l (5):{ Magm : l+m=i+jim#1} if2<j<qg—i+]1

N @i, otherwise
”z?,];'(a) = pi,j(”%ﬁ*l(@‘), c 7)3%]1(57)) for £ > 1 (%)
UZ’;-H(Ei) = vilyj(v%ﬁ(ﬁ), o ,vgﬁnq(é’)) for k > 1

(%) the p; j(@) are described in Lemma 3.

For a cell (i,7) on a diagonal and not in the first column, we want v} ;(M) to be
the meet of all entries of M on that diagonal which are not in the first column, hence
the cryptic definition.



For each k > 1 define a partial matrix V¥ in L, with N(V*) = N(M), by setting
Vi = v (M) for each 1 <7 < ¢, 1< j < my. Note that V7°f = p; ;(V**"') for k > 1,
and V2f ! = ol (V) for all k > 0. So, if V2#*+2 = V2 then V2 = V2 If R is
any partial matrix in L with N(R) = N(M), we have p; ;(R) < R; ; and v} ;(R) < R;
forall 1 <i<gq,1<j<mso VH2Z Y2+l < V2 Ag before, V2V+2 = V2N,
where N = (n + 1)¢2". So, the entries on each diagonal of V2V which are not in the

first column are equal, and the entries of each row of V2V are pairwise commuting.
Set v; (@) = v7} (@) for each 1 <i < ¢, 1 <j < m,.

Lemma 5 There exists s(d@) € T such that for any partial matriz M in any L € K,
with N(M) = < my,...,mgy >, if the entries of each row of M are pairwise commuting
and the entries of each diagonal of M which are not in the first column are equal,

then
1 if M is admissible

S(M) - { 0 otherwise

Proof. Using the polynomial p(d, b) from Lemma 2, define:

f@a= A N pla(ai;Vaig) Al Vai))

1<i<q 1<j<k<m;

9@ = N p(@(ariA((a1: A ain) V(ari Aaiy))))
2<i<q

$(@) = £(@) A g(@).

Take a partial matrix M in some L € K, with the entries of each row of M
pairwise commuting and the entries of each diagonal of M which are not in the first
column equal and N(M) = <my,...,my, >. If M is not admissible then at least
one of the following must be true; two entries in the same row are equal, an entry in
the first column of some diagonal commutes with the entry in the first row of that
diagonal, the entries of some row do not form a block. But, if M does not satisfy
the first two conditions and does satisfy the third, we can produce an admissible
partial matrix in L of greater size than M, an impossibility. If two entries in some
row of M are equal then by Lemma 2 i), f(M) = 0. If the entry in the first column
of some diagonal commutes with the entry in the first row of that diagonal then by
Lemma 2 i), g(M) = 0.

Conversely, if M is admissible, then the entries in each row are pairwise distinct.
So (M;;V M) N(Mj ;v M) #0forall1 <i<g,1<j<k<m,. Also, the entry
in the first column of a diagonal does not commute with the entry in the first row of
that diagonal, so My; A [(My; A M)V (My; A M;,)]" # 0 for each 2 <4 < ¢. Then,
by Lemma 2 ii), f(M) = g(M) = 1.



Lemma 6 There exists t(d@) € T such that for any partial matrizc M in any L € K,
with N(M) = < my,...,my >

|1 of M is admissible
t(M) = { 0 otherwise

Proof. Using the polynomials p(@, b) from Lemma 2, v; ;(@) from Lemma 4, and
s(@) from Lemma 5, define

t@ = A N [pona@. ... vm, (@), ((ai; V vi; (@) A (e ;v vig(@)))))

1<i<q 1<5<m;
N 5(@1,1(&'), . ;Uq,mq (Ei))

Define V' from the v; j(M) as in Lemma 4. If M is admissible, M = V by
Lemma 4 ii), giving v; j(M) = M; ; for each 1 <i < ¢, 1 <j < m;. Then

/\ /\ p(M,0) A s(M)

1<i<q1<j<m;

which by Lemma 2 i) and Lemma 5, gives t(M) = 1.

If M is not admissible, then either V' is not admissible, or V' is admissible and
M # V. In the first case, s(V) = 0, and in the second case, we have by Lemma 2 i)
that p(V, ((M;; v Vij) A ((M]; v V) =0 for some 1 <i<gq, 1<j<m So
t(M) = 0.

Proof (of the main theorem). Take M a set of OMLs each of height at most
n, and assume that L is directly irreducible and in the variety generated by M. By
Los’ theorem [2, p. 210], an ultraproduct of OMLs in M has height at most n, so by
Jonsson’s theorem [4], the subdirectly irreducibles in the variety generated by M all
have height at most n.

As L is in the variety generated by M, by Birkhoff’s theorem [2, p. 58], L
is isomorphic to an OML L' which is a subdirect product of a family (L,),cx of
subdirectly irreducibles in the variety generated by M. Let K = {L, : = € X}, and
A ={N(R) : R is an admissible partial matrix in L,, for some z € X}. By Lemma 1,
A has a maximum in < INY, <;> say < my,...,m, >.

For R a partial matrix in L', we define for each z € X a partial matrix R(z) in L,
of the same size as R, by setting R(z),;; = R; j(x) (this is simply the 2" projection of
R). As L' is a subdirect product of the family (L,),cx, there exists a partial matrix
M in L', with N(M) = < my,...,my >, such that M(y) is admissible in L, for some
y € X since the maximum of A will be attained in some L, € K.

By Lemma 6, t(M(z)) € {0,1} for all z € X, and ¢(M(y)) = 1. But, t(M)(z) =
t(M(z)) for all x € X, so t(M) is in the centre of L'. We assumed that L' was
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irreducible, so its centre is just {0,1}, but ¢(M(y)) = 1, so t(M) = 1. Again by
Lemma 6, we have that M (z) is admissible in L, for all z € X, so by Lemma 2
p(M,z) € {0,1} for all z € L'.

Assume that L’ has a chain with n 4+ 2 elements, say fi,..., fuyo. Chose y € X,
then for some 1 <4 < j < n+2we have fi(y) = f;(y). Setting g = (fiV f;) A(fiV f}),
we have p(M, g)(y) =0, so p(M, g)(x) = p(M(x), g(z)) = 0 for all x € X. But M(x)
is admissible in L, for each z € X, so by Lemma 2 ii) g = 0, giving that f; = f; a
contradiction.

Then as L' is of height at most n and directly irreducible, it is simple.

In conclusion, I will show that the assumption each OML in M has height at most
n cannot be weakened to each OML in M is of finite height. Take a non-principal
ultrafilter over the natural numbers, and use this to form an ultraproduct of the n-
dimensional real projective geometries, where n ranges over the natural numbers. This
ultraproduct is an atomic modular ortholattice, and the subalgebra of this consisting
of the elements of finite height and their complements is subdirectly irreducible but
not simple. In fact, its congruence lattice is a three element chain.

For an example which is directly irreducible but not subdirectly irreducible, con-
sider F', the OML in the variety generated by the finite OMLs which is freely generated
by the countably infinite set {1, zq,...}. If p(x1,...,2,) & {Op, 1r} then there are
finite OMLs L, M and ly,...,l, € L, my,...,m, € M so that p(ly,...,l,) # 0 and
p(my,...,my,) # 1. In the horizontal sum of 22 and L x M, p((ly,m1), ..., (ln, my))
is not central, for convenience assume it does not commute with ¢. The map which
sends z; to (l;, m;) for 1 <i < mn and z; to q for i > n extends to a homomorphism,
showing that p(zi,...,z,) does not commute with z,,; and therefore F is directly
irreducible.

For each natural number n, define a map f, from {z;,29,...} to F by setting
fn(z;) = x; if i < n and f,(z;) = 0 otherwise. The map f, extends to a homo-
morphism from F' into F, which is the identity on the subalgebra of F' generated by
{z1,...x,}. Therefore F is not subdirectly irreducible.
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