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ANY LATTICE CAN BE REGULARLY 

EMBEDDED INTO THE MACNEILLE 

COMPLETION OF A DISTRIBUTIVE LATTICE 

JOHN HARDING* 

The comple•ion by cuts of a totally ordered set was first introduced 
by Dedekind in his famous construction of the real numbers from the ratio- 
nals. MacNeille [4] extended the method of completion by cuts to arbitrary 
partially ordered sets. For a partially ordered set P and A C_ P• defining 

U(A) = {x ß P' x _> y for all y ß A) and 
L(A) - {x ß P' x _< y for all y ß A} 

a cut, or normal ideal, of P is a subset A of P for which A = LU(A). 
The set of all normal ideals of P partially ordered by set inclusion forms a 
complete lattice/5 where the supremum V and infinum A of a subset $ of 
P are given by 

= 

The partially ordered set P can be embedded into its MacNeille completion 
• and this embedding is both supremum and infimum dense. That is to say 
that every element of P is the supremum of elements in the image of P and 
the infimum of elements in the image of P. It has been shown (see[1,5]) that 
any complete lattice into which P can be supremum and infimum densely 
embedded is isomorphic to the MacNeille completion of P. 

It is well known that the MacNellie completion is not particularly 
well behaved with respect to preserving lattice identities. Funayama [3] 
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has shown that the MacNeille completion of a distributive lattice need not 
even be modular. His proof follows by showing that the non-modular five 
element lattice N5 can be embedded into the MacNellie completion of a 
distributive lattice. It is the purpose of this paper to give the following 
result. Recall that a regular embedding is an embedding that preserves all 
existing joins and meets. 

Theorem. Any lattice can be regularly embedded into the MacNeille com- 
pletion of a distributive lattice. 

We begin by constructing the various objects required in the proof. 
For a lattice L, define the following for each y ß L and each integer ra (the 
set of integers will be denoted by Z). 

P is the 

X = LxP 

Xy is the 

y, i.e. 

x• = {(•,•, 
v• = {(•,•, 

{(•,A, 

{(•,A, 
D 

set of all non-empty finite subsets of L. 
X•. 

slab of X for which the first components are dominated by 

Xy =pr•[•-,y]. 
n) ß X ' x _• y,n _• ra) tO {(x,A,n) ' x is a zero of L ). 
n) ß X . y • A)tO 

.) • X.x z VA}u 
n)ßX'n<_m} 

is the sublattice of the power set lattice of X generated by 

{x?, s2'u • •,• • z). • pmi•r, • i• distributive. 
is the collection of all elements of D which are contained in Xv. 
In particular, Nv is a non-empty ideal of D. 

Before diving into the details of the proof, let me give a brief outline of the 
plan. As might be guessed by the notation, the sets Ny are intended to 
be normal ideals of D. For each y ß L, the collection of sets {U•n)m•Z is 
intended to serve as a set of upper bounds of Ny, refined enough to ensure 
that Ny is a normal ideal of D. For a finite non-empty subset A of L, to 
have an embedding of L into D we want the supremum of {Na: a ß A) 
in •) to be NvA. The essential point is that UaeAU• 'a should be an upper 
bound of NvA. Intuitively this says that the sets U• are reasonably full. It 
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is the dual role played by the sets U•' that necessitates their complicated 
definition. 

To simplify notation in the following Lemma, let 6 denote the set of 
generators of the lattice D, i.e. • = {X•n,U•n'y 
and •u be the closure of • under finite non-empty intersections and finite 
non-empty unions respectively. As D is a distributive lattice generated 
by •, any element of D can be expressed as a finite non-empty union of 
elements of •n or dually, • a finite non-empty intersection of members of 
6u. 

A set G in •n h• a representation 
p q 

i=1 j=l 

where p, q are positive integers, not both 0, and ai, bj• L, mi, n 5 • • for 
each 1 • i • p, 1 • j • q. It is not difficult to see •hat if ai = a• for some 
1 • i, k • p then one of the terms X• , X• is redundant. Following this 
re•oning, we can represent G by 

a•A b•B 

where A, B are finite subsets of L, not both empty, and ma, nb are integers 
for each a E A, b E B. Of course, similar statements hold for •u. 

We will have need to use such representations frequently, and • no 
confusion is possible as to the nature of •he en•ities A, B, ma, nb, references 
to their nationalities will be omitted. 

Lemma 1. 

xmin{n,m} i) For a, b • L and n, m integers, X• 
ii) If• is a zero of L then X• • X• and X• 

Z. 

iii) If A, B are •nite subsets of L, not both empty, then 

a•A b•B 

iv) For G • •u ands • L, if VS exists and G • U X, then G • Xvs. 

v) For • • L and G E •n, if G G U• Br ea& integer m, then G • X•. 
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Proof. 

i) 
ii) 

This is a straight forward calculation. 
For (x,A,n) & Xy, if y is a zero of L then x - y, so x is a zero of L 
and x _< VA giving (x,A, n) ß m and (x, n) ß m. 

iii) First we check that special case that y is a zero of L. By part ii) we 
have Xy C_ Uae/, X• • uUbeB U• b since not both of A, B are empty. 
As y is a zero of L, even if B is empty B has a supremum in L and 
vB _> y. 

Assume that y is not a zero of L and that 
UaeA Xa m• U [JbeB U• '• _D Xy. This implies that B must be non- 
empty. Setting t = max{ma,nb ' a ß A,b ß B} + 1, we have 
(y,B,t) ß Xy, so for some b ß B we have (y,B,t) ß U• '•. Then 
either b • B, or t •_ nb or VB _> y. The first two conditions are 
obviously false, giving VB _> y. 

Assume that y is not a zero of L, that VB exists and that 
VB _> y. This implies that B is non-empty. Take (x, C,p) ß Xy 
and consider two cases; that B is contained in C and that B is 
not contained in C. In the first case VC _> VB •_ y >_ x, giving 
that (x,C,p) ß U• • for each b ß B. In the second case, there is 
some element b ß B with b • C, giving (x, C,p) ß U• '•. So, Xy C_ 
u•eBU• '•. 

iv) As G ß 6u, there is a representation 

aEA bEB 

where not both of A, B are empty. If G _D UsesX8 then by part 
iii) we have that VB exists and VB _> s for each s ß S. If vS also 
exists, then VB >_ vS and so by part iii) G __D Xvs. 

v) As G ß 6n, there is a representation 

a•A b•B 

where not both of A, B are empty. By part i) we may assume that 
A has at most one element. 

If y is a unit of L then Xy = X so clearly G C_ Xy. Assume 
then that y is not a unit of L and that z ;• y. 
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If B is non-empty, setting t = min{nb ß b ß B} we have 
(z, {y},t) ß NbeBU• b. But z • V{y), so (z, {y},t) • ,-1 

If G C_ U• n for each integer ra, from the above remarks we may conclude 
that A is non-empty, and consists of a single element, say a. Setting p = 
min{raa,ns' b ß B), we have that (a, {y},p) ß G so (a, {y),p) ß U• n for 
each integer ra. However, this can only occur if a _• V{y) = y giving that 
G C_ X• m• C_ X v. 

Lemma 2. For each y ß L, N v is a normal ideal of D, and if y • z then 

Proof. We must show that N v - LU(Nv). From general principles it follows 
that N v C_ LU(Nv). Note that by applying part iii) of Lemma I for the 
special case of A being empty and B - {y}, we have that U• _D X v for 
each integer ra. So U• is an upper bound of N v for each integer m. Suppose 
G ß LU(Nv) and that G - G1 U... I•1Gn, with n _• 1, is a representation 
of G as a union of members of •n. Then for each I _• i _• n we have 
Gi ß LU(Ny) and in particular Gi C_ U• for each integer m. Then by part 
v) of Lemma 1, for each I _• i _• n we have Gi C_ N v for each integer m. 
Then by part v) of Lemma 1, for each I •_ i _• n we have Gi C_ X v so 
Gi ß N v. Then as N v is an ideal of D,G ß N v. 

To see the further remark, note that if y • z then X• 1 ß N v but 

Lemma 3. IfS C_ L and AS exists then N^• = n•esN•. 

Proof. 

Note that •-• X• = {(x, A, ra) ß X'x _< s for all s ß $) 

= {(x, A, ß X.x < A s) 

So•INs={GßD'GCX, for eachsß$} 

= {G ß D' G C_ X^s} 
= N^s 
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Lemma 4. If $ C_ L and V $ exists then Nvs = LU(U•½sN•). 

Proof. It will be sufficient to show that U(Nvs) = U(u•½sN•) since this 
statement implies that LU(Nvs) = LU(tA•½sNs) and Lemma 2 has sup- 
plied the fact that Nvs is a normal ideal of D so LU(Nvs) = Nvs. 

As Nvs contains tA•½sN•, it follows that U(Nvs) C_ U(tA•½sN•). Sup- 
pose G is an upper bound of tA•½sN• and that G = Gi f• ... CI G,, where 
n >_ 1, is a representation of G as a finite intersection of members of •o- 
Then for each 1 < i < n we have that Gi is an upper bound of tA•esN•, so 
Gi _D tA•½sX•. Then by part iv) of Lemma 1, for each 1 < i < n we have 
that Gi _D Xvs. So G _D Xvs and G is an upper bound of Nvs. 

Lemmas 2,3, and 4 show that the map which sends an element y of 
L to the subset N s of D is a regular embedding of L into the MacNellie 
completion of the distributive lattice D. 
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