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1. Introduction 

By cardinality considerations alone, it is generally impossible to represent an 
algebra as a direct product of directly irreducible algebras. The Pierce sheaf 
representation, in well behaved cases, is a method to represent an algebra as a 
subalgebra of a direct product of directly irreducible algebras. The Pierce sheaf 
was first used to give such representations of commutative rings [29], and has 
been extensively studied by many authors [5], [14]. It was realized early on that a 
similar construction can be applied to nearly every algebra found in practice [12], 
[ 131, [ 1.51. The focus of this paper is the Pierce sheaf representation of a bounded 
lattice. Before proceeding, we mention that the paper assumes a basic knowledge 
of lattice theory. In general, any unfamiliar lattice theoretic terminology can be 
found in [28]. 

There are limitations to the usefulness of the Pierce sheaf representation. For 
an irreducible algebra the representation is entirely useless. Also, in the general 
situation, one has no guarantee that the building blocks used in the representa- 
tion will be directly irreducible, or simpler in any way than the original algebra. 
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However, it is often found that natural conditions lead to a well behaved repre- 
sentation. For instance, commutativity is sufficient to ensure the representation of 
a ring produces a subalgebra of a product of directly irreducible rings. If one is 
interested in a class of algebras where this representation is well behaved and the 
directly irreducible members are well understood, then the sheaf representation 
can be tremendously useful. 

Our aim is to give a detailed account of conditions on a bounded lattice L 
which force the sheaf representation of L to be well behaved. For the reader with 
a knowledge of sheaf representations, we give lattice theoretic conditions which 
ensure the stalks are irreducible, and conditions which imply that equalizers 
are clopen, or regular open. The conditions we describe seem quite natural and 
include a wide variety of lattices. For example, we show that the Z-lattices 
introduced by F. Maeda [27] and studied in [28] have clopen equalizers and 
irreducible stalks, as do the p-algebras introduced by Epstein and Horn [18]. It 
is interesting that some of the conditions used in this paper arose long ago in 
seemingly unrelated ventures - the work of Epstein and Horn was motivated by 
their study of multi-valued logic, while F. Maeda introduced Z-lattices in his 
study of dimension lattices. 

The paper is organized in the following manner. The necessary background 
on the Pierce sheaf representation of a lattice is given in Section 2. We prefer to 
work with the terminology of weak Boolean products as given in [6]. The two 
notions are entirely equivalent, and the reader familiar with sheaves will find the 
transition to weak Boolean products very easy. Also introduced in this section 
are the fundamental concepts of Hausdorlf and weakly Hausdorff lattices. While 
many equivalent characterizations will be given in later sections, a Hausdorff 
lattice is one in which equalizers are clopen and a weakly Hausdorff lattice is one 
in which equalizers are regular open. These concepts are completely described 
in Section 2. 

In the third section we present a sequence of technical lemmas which provide 
the basic link between properties of the Pierce sheaf of a lattice and lattice 
theoretic properties of its centre. We also make the observation that a complete 
lattice satisfies a stronger version of the patchwork property which applies to 
infinite families of disjoint clopen sets. We call this the extended patchwork 
property (also known in the literature [8] as the extension property). 

In the fourth section we characterize Hausdorff lattices; i.e., lattices with 
clopen equalizers. Several different characterizations are given, A lattice L is 
Hausdorff iff for every s E L the map &: 2 -+ L from the centre 2 of L 
to L defined by 43(e) = e A s is residuated. This is shown to be equivalent to 
the set eq(s, t) = {e E 2: e A s = e A t} being a principal ideal of the centre 
of L for each s, t G L. In particular, a complete lattice is Hausdorff iff it is a 
Z-lattice [28], and a bounded distributive lattice is Hausdorff iff it is a B-algebra 
in the sense of [18]. Cignoli [1 I] proved that a weak Boolean product of chains 
is Hausdorff iff it is a p-algebra. 
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The fifth section parallels the fourth. We give several characterizations of 
weakly Hausdorff lattices; i.e., those lattices whose equalizers are regular open. 
A lattice L is weakly Hausdorff iff the maps & described above preserve all 
existing joins in the centre of L which is equivalent to eq(s, t) being a normal 
ideal of the centre for each s, t E L. These conditions can also be phrased in 
terms of a distributivity condition L must satisfy. L is weakly Hausdorff iff for 
any element u of L and any subset T of the centre of L whose join in the centre 
is 1, we have that u = VtET(u A t). 

In Section 6 we describe the connection between weakly Hausdorff lattices 
and Hausdorff lattices. We show that a lattice L is weakly Hausdorff iff L 
can be double-densely embedded into a Hausdorff lattice &f with the extended 
patchwork property. We use the term double-dense embedding to mean a map 
q: L + &f such that every element of M is the join and meet of images of 
elements of L and every element of the centre of M is the join and meet of 
images of elements of the centre of L. 

The seventh section is devoted to studying Hausdorff lattices which have the 
extended patchwork property. Here we make extensive use of results of Car- 
son [8, 91 which connect the first order theory (and even a fragment of second 
order theory!) of the stalks to that of the lattice. We show that the stalks of a 
Hausdorff lattice with the extended patchwork property are irreducible, and char- 
acterize those Hausdorff lattices with the extended patchwork property that have 
the relative centre property. Though the general question of determining when a 
lattice has irreducible stalks is still open, we were able to show that any complete 
lattice with a countable centre does have irreducible stalks. In concluding, we 
show that a Hausdorff lattice with the extended patchwork property and com- 
plete stalks is necessarily complete (see also [8], [20]). This result has certain 
consequences in studying MacNeille completions [20]. 

The eighth and final section of the paper is devoted to giving examples which 
illustrate the scope of our results. Among these, we show that any complete 
lattice which is either (i) continuous, (ii) relatively complemented, (iii) uniquely 
complemented, or (iv) atomistic and dual atomistic is a Hausdorff lattice with 
the extended patchwork property. Using the fact that p-algebras are Hausdorff, 
it follows that any Post algebra and any Lukasiewicz algebra is Hausdorff. We 
also show that an SSC lattice with central covers is weakly Hausdorff. Several 
examples are included to show that certain extensions to our results are not 
possible. 

Throughout the paper A and V are used to denote lattice meet and join. 
All lattices considered will be bounded lattices with 0 and 1 their bounds. The 
operations of set union and set intersection will be denoted by U and n. The set 
complement of the set A will be denoted by AC (the universal set will be clear 
from the context). 
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2. Weak Boolean Products and Sheaves 

In this section we give the necessary background on Boolean products, and their 
relationship to sheaves. We begin with a short review of the Stone space [30] of 
a Boolean algebra. For a more detailed treatment of Stone duality and Boolean 
products, the reader should consult [6]. 

Let B be a Boolean algebra and let p(B) be the set of all maximal ideals 
of B endowed with the Stone topology. Recall that the Stone topology on /3(B) 
has as a basis sets of the form: p(e) = {m E p(B): e $!! m}, where e G B, For 
each e E B, the set b(e) is both open and closed, or cZopen, and all clopen sets 
of D(B) are of this form. The space ,0(B) with the Stone topology is called the 
Stone spuce of B. These spaces are compact, HausdorE and totally disconnected. 
Conversely, any topological space X with these properties is called a Stone space, 
and is homeomorphic to ,0(B), where B is the Boolean algebra of clopen subsets 
of x. 

Subdirect product representations of algebras were introduced in [4]. Let 
{Lm: m E p(B)} be a family of lattices indexed over the elements of the Stone 
space ,0(B). A subdirect product L c nmEpcBj Lm is called a weak Boolean 
product if it satisfies: 

EquaZizers are open. For each s, t E L, [s = t] = {m E ,0(B): So = tm} is 
an open subset of p(B). 

Patchwork properfy. For each s, t E L, e E B there is a u E L such that 
/3(e) c [U = sj and p(e’) 2 [U = tn. 
L is said to be a Boolean product if it also satisfies: 

CZopen equuZizers. For each s, t E L we have [s = t] is a clopen subset of 

WI. 

If L is a weak Boolean product, then the elements of L will be called sections 
and the factors Lm will be called stulks. 

The relationship between weak Boolean products and sheaves is discussed 
in [7]. For completeness, we describe the sheaf associated with a weak Boolean 
product. For L G lJmEptBj Lm a weak Boolean product, let S be the disjoint 
union of the sets Lm. Define 7r: S + /3(B) by T(Z) = m if z E Lm and endow 
S with the topology generated by sets of the form S(s, e) = {So: m E p(e)} 
where s E L, e E B. Then 7r is a local homeomorphism; moreover, the elements 
s E L are global sections of the sheaf (S, 7r). As noted in [25] (see also [20], 
p. 287), the sheaf space S is Hausdorff if and only if equalizers are clopen. 

The Pierce sheaf for a ring was described in [29]. The construction for a 
lattice is similar, but will be described here for completeness. We will employ 
the less cumbersome terminology of Boolean products. Let L be a lattice with 
centre 2. Let X = p(Z). Then, for each m E X, define a congruence relation 
Z -7?2 on L. by s Ed t if there is an e E .Z - m such that e /Y s = e A t. Set 
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Lm = L/ Ed. For each s e L, define Z E nmCx Lm by Zm = [s]~~. Define 
x = {Z s g L}. It is easily seen that z is a weak Boolean product of the 

* family of lattices { Lm. m E X}. Further, the mapping t: L + i defined by 
t(s) = Z is a lattice isomorphism. Thus, L is represented as a weak Boolean 
product over 2. We will refer to this as the usuul represenk.xtion of L over the 
centre 2 of L. Finally, we note in passing that this construction can also be 
employed to represent L as a weak Boolean product over the Stone space of any 
Boolean subalgebra of the centre of L. 

Throughout the paper, we will identify elements in L with sections in the usual 
weak Boolean product representation of L. Thus, when we speak of the stalks of 
L, we refer to the stalks of the usual weak Boolean product representation of L, 
and when we refer to the equalizer [f = gl of two elements f, g E L, we mean 
the equalizer of f and g in the usual weak Boolean product representation of L. 

We will say that a lattice L is Hasdo@ if the usual representation of L is a 
Boolean product. As in [20], we define a lattice L to be we&y Humdo@ if for 
each s, t l L, such that [s = tl is a dense open set, we have s = t. 

A number of natural questions now arise. 

(1) Which lattices are Hausdorff or weakly Hausdorff? 

(2) When are the stalks of a lattice irreducible? 

(3) What happens when the lattice itself is complete? 

(4) If a lattice L has complete stalks, does this imply that L is complete? 

In the sequel, these and similar questions will be addressed. 
We conclude this section with an example of a class of lattices which have 

easily described Boolean product representations. These lattices will be a rich 
source of examples in later sections. 

EXAMPLE 2.1 Let X be a Stone space and i’kf be a bounded lattice which is 
directly irreducible. If we equip &J with the discrete topology, then the set L of 
continuous functions from X to M is a sublattice of the power Mx. The lattice 
L is usually referred to as the Boolean power of M by X [6]. 

Let 2 denote the centre of L. It is easily verified that 2 = {f E L: f(z) E 
{O, 1} for all z E X}. So 2 is just the continuous functions from X to the two 
element lattice 2. It follows that the map -: X + p(Z) defined by 5 = {f E 
2: f(x) = 0} is a homeomorphism. Then for g, h E L and z E X, we have 
that g ~2 h if and only if g(z) = h(z). Therefore, the stalk Lz of the usual 
weak Boolean product representation of L is isomorphic to M. Also, if we set 
K = {x E X: g(x) = h(x)], .t t is easily verified that K is clopen in X (X is 
compact so all members of L have finite range). From the remarks above, the 
equalizer [g = h] in the usual weak Boolean product representation of L is equal 
to 2 which is clopen. 
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In summary, L is a HausdorfT lattice and the stalks of L are all isomorphic 
to &f. The reader should note that the irreducibility of M was only required to 
ensure an easily described Boolean product representation. 

3. Central Equalizers 

In what follows L denotes a lattice with centre 2. Represent L as a weak Boolean 
product over the Stone space X of 2. Let s, t c L. Then the centrul equalizer 
c$s,tisdefinedbyeq(s,t)={ecZ: eAs=eAt}. 

LEMMA 3.1 Let s, t E L, und e E 2. Then [s = t] s ,0(e) ifl e is un upper 
bound in 2 for eq(s, t). 

&-oo& Assume [s = it] 2 ,0(e). W e are to prove that f E eq(s, t) implies 
f < e. If not, then e V f’ < 1, so by Zom there is a prime ideal n such that 
e V f’ E n. Then f $Z n implies sn = -&, since f A s = f A L But now, 
n c [s = t] G p(e), contrary to e 6 n. 

Assume now that f < e for all f G eq(s, t). We must show that [s = t] c 
p(e). Let m E [s = tn. Then f As = f A -L for some f # m. Then f E eq(s, rt), 
so f < e. This forces e @ m, so m G ,0(e), as claimed. cl 

LEMMA 3.2 ,!A s, t E L. Then ,B(f) G [s = t] iff f E eq(s, t). 
Pmc$ If f E eq(s, t) and m E /3(f), then clearly So = tm, so m c [s = t]. 

If conversely p(f) c [s = t] and f # eq(s, t), there exists n E X such that 
eq(s, t) s n and f @ n. But then n E ,0(f) G [s = t] implies sn = -tn. Hence 
for some g c Z-n,gAs = g/It. But now g G eq(s,t) c n produces a 
contradiction. q 

LEMMA 3.3 [s = qj = lJ{p(f): f E eq(s,t)}. 
Z+OC$ Follows from [s = q open and Lemma 3.2. q 

LEMMA 3.4 [S = t] = fi{p(e): e is an upper bound for eq(s, t)}. 

Proof. Using Lemma 3.1, this follows from [s = -L] being closed and 
US = tj c /3(e) iff [S = qj c p(e). q 

Recall that a regulur open set is a set which is equal to the interior of its closure. 

LEMMA 3.5 [S = q is a regular open set iff eq(s, t) is a normal ideal in the 
sense that it is the set of lower bounds of its set of upper bounds. 

Proof, Clear from Lemmas 3.1 and 3.2. q 

We say that L satisfies the extended patchwork proper9 if for any family ( Ki)iE~ 
of pairwise disjoint clopen subsets of the Stone space of 2 and any family (ai)ic~ 
of elements of L, there is an element u E L so that for each i E 1, a agrees with 
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ai on Ki. Carson [8] refers to the extended patchwork property as the extension 
property. We say that a lattice L is orthogonally complete if for any pairwise 
disjoint family (Q)~~I of central elements and every family (ai)iel of elements 
of L (over the same indexing set 1) the family (a% A Q)~~I has a least upper 
bound in L. 

LEMMA 3.6 Let L be a lattice. 
(i) If L is orthogonally complete, then L has the extended patchwork property. 

(ii) Zf L is weakly Hausdofland has the extended patchwork proper& then L 
is orthogonally complete. 

ProoJ (i) Let (.Ki)i,=z be a family of pairwise disjoint clopen sets, and (q)iG~ 
be the associated family of pan-wise disjoint central elements. For any family 
(ai)ieI of elements of L set a = ViEI(ai A q). Then 

aAcj=cjAV(a~Ac~)=V(a~Ac~ACj)=aJACj. 

icr &I 

(Note that central elements always distribute over infinite joins in this manner.) 
The extended patchwork property follows. 

(ii) Let (ci)+~ be a pairwise disjoint family of central elements and (ai)tcI 
be a family of elements of L. We may assume that (c~)~~I is a maximal set of 
pan-wise disjoint central elements, as otherwise we could extend it to such putting 
the new elements oj equal to 0. For (Ki)iG1 the associated family of clopen sets, 
we have that the union of the sets Ki is a dense open set. By applying the 
extended patchwork property we obtain an element a of L which agrees with oi 
on Ki for each i E 1. Clearly a is an upper bound of (ai A ci)icI, but if u < a is 
an upper bound of (ai A ct)icI, then u would agree with a on each Ki. Therefore 
u and a would agree on a dense open set, and since L is weakly Hausdorff, 
u = a. It follows that a = VgI(a% A q). 0 

COROLLARY 3.7 Any complete lattice satisfies the extended patchwork prop- 
erty. 

4. Representation by Boolean Products 

In this section we give several characterizations of Hausdorff lattices. A general 
theme will involve discovering the meaning of assertions of the form e A s = 
e A t for e a central element of the lattice L. It will be useful at the outset 
to mention a connection with congruences on L. Accordingly, we agree to let 
Con(L) denote the lattice of congruences of L. If 0 E Con(L), then O* denotes 
the pseudocomplement of 0. For a, b G L, we agree to let 19~,b be the minimum 
congmence which identifies a and b, while 130 denotes the smallest congruence 
on L. 
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LEMMA 4.1 Let L be a lattice with centre 2. Let e E 2, s, t E L. Then the 
following conditions are equivalent: 

(i) e A s = e A it. 

(ii) &,o < 8Z,t. 
(iii) e = 0 (0&). 
Thus, {e E 2: e A s = e At} = {e E 2: e E 0 (6’z,t)} = {e E 2: 19~,r~ < 0&]. 

ProoJ (i) + (ii) If e A s = e A f, then s G t (Qe,l), so 6s,t < 19~,1. But this 
implies that 13~,t 17 19~,0 = 130, so oe,o < k$ 

(ii) =+- (i) If &,o < @& then ~9~,t < 8:: < 13~,, and e A s = e A t. 

The equivalence of (ii) and (iii) is clear. 0 

We now consider a class of lattices which we will see includes the class of 
Hausdorff lattices. A central cover lattice is a lattice L with a fnnction e: L + 2 
such that for each s E L, e(s) is the smallest element in 2 such that s < e(s). 
It will be convenient to say that 2 is meet reguZar if whenever a subset 2’ of 2 
has a meet e in 2, then e is also the meet of T in L. We call 2 meet compkte 
if 2 is closed under existing meets in L, and note that there are dual notions of 
join complete and join regular, 

LEMMA 4.2 If L is a central cover lattice, then .Z is both meet regular and 
meet complete. 

Pro05 Assume T G 2’ and z = AT in 2. If x is a lower bound for T in L, 
then e(x) is a lower bound for T in 2. Hence x < e(x) < Z, thus showing that 
2 is meet regular. To show that 2 is meet complete, let x = /j T in L. Since 
e(x) is also a lower bound for T, we have e(x) < x. Since x < e(x) is always 
true, it follows that x = e(x), so x E 2. q 

THEOREM 4.3 For a lattice L, the following conditions are equivalent: 
(i) L is a central cover lattice. 

(ii) For each s E L, eq(s, 0) is a principal ideal in 2. 
(iii) For each s E L, [S = Oj is clopen. 
(iv) For each s E L, {e E 2: e E 0 (Oz,o)} is a principaZ ideal of 2. 
(v) For each s E L, {e E 2: I!?~,o < Ol,o} is a principal ideaZ of 2. 

Proof (i) + (ii) Let e(s) denote the minimum central element above s. Note 
that e E eq(s, 0) if and only if s < e’. Let j = e(s). Then eq(s, 0) is a principal 
ideal with generator f’. 

(ii) *(iii) Let eq(s, 0) be the principal ideal in 2 generated by j. It follows 
from Lemma 3.2 that [s = O] = p(f) which is clopen. 

(iii) + (i) Let p(f) = is = 01. Then j’ = e(s). 
The remaining equivalences are clear. cl 

The next Theorem verifies our claim that a central cover lattice is a generalization 
of the notion of a Hausdorff lattice. In preparation for this Theorem we pause to 
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mention that for ordered sets P, Q, a mapping v: P + Q is said to be residzuzted 
if the preimage under 9 of any principal ideal of Q is a principal ideal of P. The 
dual to this notion is called a residuaZ mapping. For each residuated mapping 
9: P -+ Q there is an associated residual mapping p+: Q -+ P. The mapping y+ 
is defined by taking v+(q) to be the generator in P of the preimage of the princi- 
pal ideal [+, q]. We shall make frequent use of the fact that residuated mappings 
preserve arbitrary existing joins, while residual maps preserve arbitrary existing 
meets. A detailed treatment of residuated and residual mappings can be found 
in [2]. 

THEOREM 4.4 For a lattice L, the following conditions are equivalent: 
(i) L is a Hausdor# lattice in the sense that the usual representation of L 

represents it as a BooZean product. 
(ii) For euch s, t E L,eq(s, tt) = {e c 2: e A s = e A t} is a principal ideal 

of 2. 
(iii) For each s, t E L, there exists a centraZ element t : s having the proper9 

thatforeE2, eAs<tiffe<t:s. 
(iv) For each s E L, the mapping &: Z’ -+ L dejned by &(e) = e A s, is 

residuated. 
(v) For each s E L, the mapping q3: Z’ -+ L defined by rlS (e) = e V s, is a 

residual mapping. 
(vi) For each s, t E L, {e E 2: fJe,o < 8z,t} is a principal ideal of 2. 

(vii) For each s, t E L, {e E 2: e E 0 (tJ&)} is a principal ideal of 2’. 
proof (i) + (ii). Let s, t E L. As [s = t] is clopen there is some e G 2 with 

1s = t] = ,0(e). Th e result then follows from Lemmas 3.1 and 3.2. 
(ii) + (iii) Obs ervethateAs<tiffeAs=eAsAtNowtaket:stobe 

the largest element of eq(s, s A t). 
(iii) + (iv) Define 4:: L + 2 by 4$(t) = t : s. Then 4S is residuated with 

4: its associated residual mapping. 
(iv) =+ (i) For each s E L, let 4: denote the residual mapping associated 

with 4S. Then 4$(t) = max{e c 2: e A s < t}. It follows for s, t E L that 
e = 4:(t) A@(s) is the largest element in eq(sJ) = {e E 2: e A s = e At}. 
By Lemma 3.3, [s = t] = b(e) and is therefore clopen. 

Clearly, (iv) and (v) are dual, hence equivalent. The remaining equivalences 
follow from Lemma 4.1. III 

Note that one consequence of Theorem 4.4 is that a lattice L is Hausdorff if and 
only if its dual L* is Hausdorff. This is immediate from the fact that, for each 
s,t~L,andforeve~e~Z,eAs=eAtifandonlyife’Vs=e’Vt.Itshould 
also be noted that for weak Boolean products of bounded chains, the equivalence 
of (i) and (iv) in Theorem 4.4 was established by Cignoli [1 11. 

COROLLARY 4.5 Let L be a Hausdor-lattice with centre 2. Then both L and 
its dual are central cover lattices. 
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Proof By Theorem 4.4, [.s = 01 is clopen for all s G L. Hence by Theorem 
4.3, L is a central cover lattice. As the dual L* is also Hausdorff, it follows that 
L* is also a central cover lattice. 0 

DEFINITION 4.6 The centre 2 of L is called regzdar if it is both meet and 
join regular; similarly, it is called compbete if it is both meet and join complete. 
In particular, if 2 is a complete sublattice of a complete lattice L, then 2 is a 
regular sublattice of L. 

COROLLARY 4.7 Let L be a Hausdor# lattice with centre 2. Then .Z is a 
regular sublattice and a complete sublattice of L. 

Proof This is an immediate consequence of Corollary 4.5 and Lemma 4.2. q 

Remark 4.8 A Z-lattice (see [28]) is a complete lattice L which satisfies the 
following conditions: 

(i) The centre Z(L) is a complete sublattice. 
(ii) If ,z~ E Z(L) for o c 1, then s A (V acl za) = VaEI(s A za) for each s G L. 

We note that a complete lattice L is a Z-lattice if and only if for every s E L the 
mapping r~5~ is residuated. Examples of Z-lattices will be presented in Section 8. 
The following two results are now an immediate consequence of Theorem 4.4. 

COROLLARY 4.9 Let L be a complete lattice. Then L is Hausdorff if and only 
if L is a Z-lattice. 

COROLLARY 4.10 The duaZ of a Z-Lattice is a Z-lattice. 

5. Weakly Hausdorff Lattices 

In Section 4 we gave several conditions which were equivalent to a lattice being 
Hausdorff. In this section we will see that the theory of weakly Hausdorff lat- 
tices has many parallels with the theory of Hausdorff lattices. We begin with 
two technical lemmas. In what follows, Za will denote the principal ideal in 2 
generated by the central element u. 

LEMMA 5.1 Let I be an ideal of 25’. Then x is an upper bound for I iff 
I f-l zzt = {O}. 

Proof Clearly x an upper bound for 1 in 2 implies 1 fl Z&t = {O}. Suppose 
conversely that 1 fl Zzf = {O}. Then if b G 1, b A x’ = 0 implies that b < x. 
Hence z is an upper bound for 1. III 

LEMMA 5.2 An ideal I of .Z is closed under the formation of existing suprema 
in Z if and only if it is normal in the sense that it consists of the set of lower 
bounds of its set of upper bounds. 
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Proof. Let 1 be closed under the formation of existing suprema in 2, and 
suppose u < all upper bounds of 1. Assume o 6 1. Then o cannot be the join 
of ,Za rl 1, since that would force u E 1. Thus Za rl 1 must have an upper 
bound b C u. It is immediate that & rl & fl 1 = .&.,t+ rl 1 = {O}. Hence 
by Lemma 5.1, u’ V b is an upper bound for 1. It follows that a < a’ V b, so 
u = u A (o’ V b) = u A b < b, contrary to b < o. We deduce after all that u 
must have been a member of 1, thus showing that 1 consists of the set of lower 
bounds of its set of upper bounds. The converse is trivially true. 0 

Before beginning our discussion of equivalent characterizations of weakly Haus- 
dorff lattices, we present a weakening of the notion of central cover lattices. This 
serves nicely as a preview of what is to come. 

TI%ORIZM 5.3 For a lattice L with centre 2, the folowing conditions are equi- 
valent: 

(i) 2 is meet regzdax 
(ii) For each s E L, eq(s, 0) is cZosed under existing suprema in 2. 

(iii) For each s G L, [s = 01 is regular open. 
(iv) For each s E L, {e E 2: e G 0(&&J} is closed under existing suprema 

in 2. 
(v) For each s E L, {e E 2: 0 ,,-, < I~~.J} is closed under existing suprema 

in 2. 
(vi) For each s E L, if [s = O] is dense, then s = 0. 

(vii) For any subset T of2 whose join in 2 equaZs 1, ifs A e = Ofor all e E T, 
then s = 0. 

Proof. (i) + (ii) This follows from the fact that for e E 2, e A s = 0 if and 
only if s < e’. 

(ii) @ (iii) is a direct consequence of Lemma 5.2. 
(ii) + (i) Let z = Ai zi exist in 2, and let s be any lower bound for {zi} in 

L. Then ,zi E eq(s,O) for all i implies that z’ E eq(s,O), whence s < z. 
(iv) and (v) are equivalent to (ii) by Lemma 4.1. 
(iii) * (vi) is trivial. 
(vi) =+- (vii) For such a set T we have U{@(e): e E T’} is a dense set contained 

in [s=O]. 
(vii) + (i) Let z = Ai zi exist in 2, and let s be any lower bound for {zi} 

in L. Setting y = z’ A s we have y A z = 0 and y A ,zi = 0 for each i. As 
the join of { z$: i E I} U { z in 2 equals 1, we have that y = 0, whence } 

s < z. cl 

We now show that the lattices described in the above Theorem are related to 
weakly IIausdorff lattices in the same manner in which central cover lattices are 
related to Hausdorff lattices. 
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THEOREM 5.4 Let L be a lattice with centre Z. Then, the following conditions 
are equivalent: 

(i) L is weakly Hausdor# 
(ii) For any subset T of Z whose join in Z equals 1, ifs A e = t A e for all 

e E T, then s = t. 
(iii) If T is a subset of Z whose join in Z equals 1, then for any s E L, s is 

the least upper bound in L of {s A f: f E T}. 
(iv) If T is a subset of Z whose join in Z exists and is equal to e, then for any 

s E L, s A e is the least upper bound in L of {s A f; f E T]. 

(v) For each s E L the mapping e&l Z + L defined by $S(e) = eAs preserves 
all existing suprema in Z. 

(vi) For each s, t E L the set eq(s, t) is closed under existing suprema in Z. 

(vii) For each s, t E L, {e E Z: Oe,o < t3&] is closed under existing suprema 
in Z. 

(viii) For each s, t E L, {e E Z: e E 0 (e$)} is closed under existing suprema 
in Z. 

(ix) For each s, t E L, [s = t] is a regular open set. 

Proof (i) + (ii) If T 2 Z is a subset with join 1, then D = lJeeT ,0(e) is a 
dense open subset of X. Since s, t agree on D, s = t. 

(ii) + (iii) Let T be a subset of Z whose join in Z equals 1, and let t < s be 
anupperboundof{sAf: f~T}.Thenforallf~T,tAf =tAsAf =sAf, 
and therefore s = t. 

(iii) + (iv) Let T b e a subset of Z whose join in 2 equals e. Define S = 
TU {e’}. Since the join in Z of S equals 1, we have s = VfCs(s A f). Therefore 
.SII~ = VfE~CsAeAf) = V~&~AfJ. 

(iv) + (i) Let s, t G L b e such that s, t agree on a dense open set U 2 X. 
Then there is a family {e%: i c 1} 5 Z such that U = lJiC1b(ez). Hence, 
1 = Viczei. NOW 

s = s A 1 = V(s Aei) = v(t Act) = t A 1 = t. 
%EZ &Z 

(iv) 9 (v) is trivial. 
(v) + (vi) Let T c eq(s, t) with the join of T in Z equal to e. As CJ& preserves 

existing suprema, e As is the least upper bound in L of {s A f: f G T}. Similarly, 
e A t is the least upper bound in L of the set {t A f: f E T}. But s A f = t A f 
for all f E T, so e A s = e At. Thus e E eq(s, t). 

(vi) + (ii) Let T be a subset of Z whose join in Z equals 1. If s A e = t A e 
for all e e T, then T z eq(s, t). As eq(s, t) is closed under existing suprema, 1 
is in eq(s, t). Thus s = t. 

The equivalence of (vii) and (viii) with the previous items follows by Lem- 
ma 4.1. 

Finally (ix) e (vi) follows by Lemmas 5.2 and 3.5. q 
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COROLLARY 5.5 Zf L is a weakly Hausdog Zattice with centre 2, then 
(i) The dual of L is weakly Hausdoe 

(ii) 2’ is a regular sublattice of L. 
Proof (i) This follows from condition (ii) of the above Theorem once we note 

thatfore~Zands,t~LwehavesAe=t~eif~donlyifsVe’=tVe~. 
(ii) Clearly the conditions of the previous Theorem all imply the conditions 

of Theorem 5.3. Therefore 2 is meet regular, and as the dual of L is weakly 
Hausdorff, 2 is also join regular. cl 

The following theorem illustrates the relationship between weakly Hausdorff 
lattices and Z-lattices (see Remark 4.8). 

THEOREM 5.6 Let L be a lattice with centre 2. Then, the following are equiv- 
alent. 
(i) L is weakLy Hausdot# 

(ii) 2 is a join regular sublattice of L and if (,z~)~~I is a subset of Z whose join 
exists in L, then for any s E L, s A (VaCI z~) = VaEI(s A z~). (All joins 
being taken in L.) 

ProojY (i) + (ii) That 2 is join regular is given by the above Corollary. Let 
(,z&~I be a subset of 2 whose join in 2 is equal to z. We must show that for 
any s E L, s A ,z is the least upper bound in L of {s A .z~: o E I}. Suppose that 
tcLisisanupperboundof{sA&: aEI}.ThensAzAza=sAtA.zAza 
for each cx g 1. So 

eq(s A z, s A t A z) 2 {za: a E I} U {z’}. 

As L is weakly Hausdorff, we have that s A .z = s A t A z, whence s A .z < t. So 
s A ,z is the least upper bound in L of {s A za: cx E I}. 

(ii) + (i) We will verify condition (iv) of Theorem 5.4. Suppose that 7’ is a 
subset of 2 whose join in 2 exists and is equal to e. We must show that for any 
s E L, s A e is the least upper bound in L of {s A f: f E T}. This would follow 
directly from our assumption if we knew that e was the join of T in L. But this 
is precisely the information given by 2 being a join regular sublattice of L. q 

Remark 5.7 Next we recall some of the parallels which we have seen. In the 
case of Hausdorff lattices: [s = t] is clopen, eq(s, t) is a principal ideal in 2, 
and 4s is residuated. In the case of weakly Hausdorff lattices: [s = tjj is a regular 
open set, eq(s, t) is closed under existing suprema in 2, and 4s preserves existing 
suprema in 2. The reader might also note that in [20], p. 287, the second author 
showed that an algebra A was weakly Hausdorff iff the Boolean algebra B of 
factor congruences of A was a meet regular sublattice of Con(A). 

The reader will recall the definition of complete sublattices given in Defini- 
tion 4.6. 
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THEOREM 5.8 Let L be a weakly Hausdorflattice with centre Z. Zf L is orthog- 
onally complete or complemented, then Z is a complete sublattice of L. 

Proof Let T be a subset of 2 whose join in L equals a, and set A = 
lJzGT[,z = 11 and B equal to the interior of AC. Then A c [a = 11 and 
B z [a = On. So a is neutral on the dense open set A U B, and as L is weakly 
Hausdorff, it follows that a is neutral in L. To show that a is central, it is 
sufficient to show that a has a complement. This is trivial if L is complemented. 
If L is orthogonally complete, an application of the extended patchwork property 
produces an element b which is complementary to a on a dense open subset of 
X. Then as L is weakly Hausdorff, b is a complement of a. The argument to 
show that 2 is closed under existing meets in L is dual to the above. cl 

THEOREM 5.9 Every weakly Hausdorf lattice L whose centre is a complete 
lattice is necessarily Hausdor# in particulan any orthogonally complete weakly 
Hausdor-f lattice is Hausdoti 

Proof Assume that the centre 2 of L is complete. As 2 is a regular sublattice 
of L, it follows immediately from Theorems 5.4 and 4.4 that L is Hausdorff. If 
L is orthogonally complete, then by Theorem 5.8 2 is a complete sublattice of 
L. But all orthogonal subsets of 2 have joins in L, and hence also in 2. It is 
a simple exercise to show that a Boolean algebra is complete iff all orthogonal 
subsets have joins. So 2 is complete, which implies that L is Hausdorff. q 

EXAMPLE 5.10 Let D be the distributive lattice consisting of all subsets of N 
which are either (i) finite (ii) contain all but finitely many odd numbers and 
only finitely many even numbers or (iii) contain all but finitely many numbers. 
It is easy to verify that D is closed under finite unions and intersections and is 
therefore a sublattice of the power set of N. To verify that D is weakly Hausdorff, 
it is enough to verify Theorem 5.4(iii) for the set T consisting of all finite subsets 
of N. However, {{2n + 1}: n E N} is a subset of the centre of D whose join is 
not central. Therefore the centre of D is not a complete sublattice of D. In view 
of Corollary 4.7, D is a weakly Hausdorff lattice which is not Hausdorff. 

EXAMPLE 5.11 Here is an example of a Hausdorff lattice having a complete 
centre, but which is not orthogonally complete. Let 3 denote the three element 
chain 0 < a < 1, and X an infinite set. We then take L to be the set of all j c 3x 
such that fV1 [{a}] is finite. We leave to the reader the routine verification that 
L is Hausdorff, has a complete centre, but is not orthogonally complete. 

6. From Weakly Hausdorff to Hausdorff 

In this section we describe the realtionship between weakly Hausdorff lattices 
and Hausdorff lattices. As we shall see, a lattice is weakly Hausdorff if and only 
if it can be embedded in a well behaved fashion into a Hausdorff lattice. 
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DEFINITION 6.1 Let v be an embedding of a bounded lattice L into a bounded 
lattice M. We say that p is a dense embedding if every element in M is the join 
and meet of images of elements of L, and we say that q is a regular embedding if 
it preserves all existing joins and meets of elements of L. If L can be embedded 
into M, we will denote this by writing L < M. 

LEMMA 6.2 Let 9: L + M be a dense embedding. Then 
(i) q is a regular embedding. 

(ii) v,z E Z(L), then p(z) E Z(M). 
Proof. (i) It is obvious that dense embeddings are regular embeddings. 
(ii) By duality, it is enough to show that for each m E M, m < (m II 

da ” cm ii do- 44s 9 is a dense embedding, there is a subset A 2 L 
so that m = V{q(a): a E A}. As z c Z(L) u = (u A z) V (u A z’) for 
each u G A. Therefore y(u) < (m A v(z)) V (m A ~(2’)) for each CJ E A, so 
m < (m A q(z)) V (m A v(z’)). cl 

DEFINITION 6.3 Let q L + M be a dense embedding. We have seen in the 
above Lemma that the restriction qz(~) of 9 to the centre of L is a mapping 
into the centre of M. We shall say that the dense embedding 9 is double-dense 
if VIZ(L): -W) + ,WW is also a dense embedding. 

Our aim is to show that a lattice L is weakly Hausdorff if and only if there 
is a double-dense embedding from L into an orthogonally complete Hausdorff 
lattice. 

LEMMA 6.4 If L can be double-densely embedded into a weakly Hausdofl 
lattice, then L is weakly Hausdofl 

Proof Let 9: L + M be a double-dense embedding of L into a weakly 
Hausdorff lattice M. Suppose that T 2 Z(L) with VT = 1 (this join being 
taken in Z(L)) and S, t E L with s A e = t A e for all e c T. We must show 
that s = t. As 9 is double-dense, we have that the restriction qz(~) is dense, 
and hence also regular. Thus, V v[T] = 1 (this join being taken in Z(M)). But 
v(s) Ap(e) = q(t) Ay(e) for all e G T and as M is weakly Hausdorff it follows 
that p(s) = p(t). S ince q is an embedding, s = t. 0 

One might hope that any lattice which could be densely emebedded into a weakly 
Hausdorff lattice would be weakly Hausdorff. The following example shows this 
is not the case. 

EXAMPLE 6.5 Consider the family of all maps f from the reals into the real 
unit interval which satisfy the following condition: if f(O) E {O, 1} then f is 
constant on some open interval containing 0. It is easily seen that the collection 
of all such maps is a sublattice L of the family of all maps from the reals into 
the real unit interval, which we shall denote by D. As L contains all functions 



190 GARY D. CROWN ET AL. 

which vanish except at a single point and take on a value strictly less than one 
at that singleton, it follows that L is join dense in D, and by duality L is meet 
dense in D. It is not difficult to verify that D is Hausdorff (it is even a Z-lattice). 
However, L is not weakly Hausdorff. To see this, let T = {e E Z(L): e(0) = O}, 
and note the join of 2’ in Z(L) equals 1. Then taking s, t to be the elements 
of L which take the values l/3 and 2/3 at zero and vanish elsewhere, we have 
s A e = t A e for all e e 2’. Thus contradicting part (ii) of Theorem 5.4. 

DEFINITION 6.6 Let L < flmEx Lm be the usual weak Boolean product rep- 
resentation of L over the Stone space of its centre. We say that a function 

f cz I-ImGc Lm is a dense open section if there is a family (Kt)iC1 of pairwise 
disjoint clopen subsets of X and a family (ai)iC1 of elements of L such that: 
(i) lJiC1 Kz is a dense open subset of X. 

(ii) f agrees with ui on the clopen set Ki for each i E 1. 
In terms of the Pierce sheaf of L, a dense open section is one which is continuous 
on a dense open set. We then define DL to be the collection of all dense open 
sections of L and define a relation 0 on DL by setting fog if f and g agree on 
a dense open subset of X. 

LEMMA 6.7 Let L < JJmCx Lm be the usual weak Boolean product represen- 
tation of L. 
(0 l9-L < l&x JL 

(ii) 19 is a congruence on DL. 
Proof Both these assertions follow as the intersection of two dense open 

subsets of X is a dense open subset of X. 0 

In the following, we let !RL denote the lattice DL/Q and we denote the 0 equiv- 
alence class of an element f E DL by [f]. We also define a map CK L + DL/f3 
by setting a(u) = [a]. It is a simple matter of checking the definitions of weakly 
Hausdor# and the extended patchwork property to verify the following Lemma. 

LEMMA 6.8 Let L < nmEx Lm be the weak Boolean product representation 
of L. 
(i) IJJ: L -+ 32L is an embedding i# L is weakly Hausdor# 

(ii) CC L -+ %L is surjective iff L is has the extended patchwork property. 

LEMMA 6,9 Let L be a bounded lattice. 
(9 zk .f, 9 E DL, [fl 2 [91 8 Uf 2 91 contains a dense open subset of X. 

(ii) If o: L + !RL is an embedding it is a dense embedding. 
Proo$ (i) [f] > [g] iff [f A g] = [g] iff f A g and g agree on a dense open set, 

which in turn is equivalent to saying that [f > gj contains a dense open set. 
(ii) For f a dense open section of L, let (K~)Q be a family of clopen sets 

and (u~)~Q be a family of elements of L so that f agrees with ui on Ki and 
lJiCf K2 is dense in X. Define (gi)iCI by setting gi equal to ui on Ki and equal 
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to 0 on the complement of Ki. Then gi is an element of L, and we clearly have 
that [f] is an upper bound of ([gz])icI. Suppose that h c DL and that [h] is an 
upper bound of ([gi]&I. By the first part of the Lemma we have that [/z > g%j 
contains a dense open set, and therefore [h 2 flJ contains a dense open subset of 
Ki for each i e 1. This implies that [h 2 fl contains a dense open subset of X 
and therefore [h] 2 [f]. So [f] is the least upper bound of the family ([gi])icI. 
The argument to show that [f] is the meet of images of elements of L is dual to 
the above. Therefore, if CY is an embedding, it is a dense embedding. 0 

For R G X, it will be convenient to define XR G nmGx Lm by XR(m) = lm 
if rrz E R and Om otherwise. The following theorem is due to Carson [8]. As 
Carson’s notation differs greatly from our own, we have included a proof of this 
theorem for the convenience of the reader. 

THEOREM 6.10 Let L be a weakly Hausdorf lattice. Then: 
(0 .q~-q = {[XR]: Ix is a regular open subset of X}. 

(ii) 9?L is Hausdor- 
(iii) 3?L is orthogonally complete. 
(iv) CY : L -+ %L is a double-dense embedding. 

Proof We note first that for any open subset U c X, there is a smallest 
regular open subset R c X containing U. This set R is the interior of the 
closure of U. It is also worthwhile to note that U is dense in R. 

(i) It is a routine matter to verify that for an open set U, xu is a dense open 
section of L and [Xu] is central in %L. The difficulty is in showing that every 
central element of %L is of the form [XR] for some regular open set R. 

Suppose that j c DL is such that [f] is central in !J?L. Let g E DL be 
such that [g] is the complement of [f] in !J?L. In particular, f and g must be 
complements on a dense open subset of X. As f, g are dense open sections, we 
can find a family of pairwise disjoint clopen sets (Ki)iG~ and families (u~)~~I 
and (~Q)~~I of elements of L such that f agrees with ui on Ki for each i E 1, g 
agrees with bi on Ki for each i E 1, and lJtel K% is dense in X. By choosing the 
families (u~)~~I and (bt)xe~ wisely, we may also assume that ui agrees with 0 
and bi agrees with 1 on the complement Kf of Ki. In other words ui = f A XK% 
and bx = g V XK; for each i E I. 

As f and g are complements on a dense open subset of X, it follows that 
for each i E 1, uz and bi are also complements on a dense open subset of X. As 
L is weakly Hausdorff, we have that ui and bi are complements for each i E I. 
Further, as [f] and [XK%] are central in !J?L, it follows that [f] A [XKJ = [f A X&] 
must also be central. But [~AXKJ = CY(U%). In particular, Q(u~) is neutral in SL, 
and as CY is an embedding, ui must be neutral in L. As ui is both complemented 
and neutral, it must be central in L. 

As ui is central in L, it follows that ui = x~(~%J. Setting U = UI,-I p(u%), 
we then have that f agrees with xr~ on the dense open set lJzcl Ki. If R is the 
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smallest regular open set containing U, it is then a simple matter to verify that 
f agrees with XR on a dense open set, and hence [f] = [XR]. 

(ii) To see that %L is Hausdorlf, suppose that f,g E DL. Choose families 
(Ki)iG~, (oi)ie~ and (bi)ie~ as above and set D = lJiG1 &. Then [f = gl fl D = 
lJ+=l[ui = bij is an open subset of D. Call this open set U, and let R be the 
smallest regular open set containing U. It is then a routine matter to check that 
Ml II [XRI = k?l A 1~~1 and aat [XR] is the largest central element of !l?L with 
this property. By Theorem 4.4(ii), we have that !RL is Hausdorff. 

(iii) To see that %L is orthogonally complete, it is sufficient to show by 
Lemma 3.6 that ?l?L has the extended patchwork property. Let (&)ie~ be a 
family of pan-wise disjoint regular open subsets of X and let (fi)ie~ be a family 
of elements of DL. Then define f so that f agrees with fi on Ri and set f to be 
0 elsewhere. It is a routine matter to verify that f is a dense open section of L. 
men as [.fl~I kRt] = kill iI kRd f or each i G 1, we have that [f] agrees with 
[f%] on the clopen set associated with [XRJ. 

(iv) As L is weakly Hausdorff, CY is an embedding. Therefore, by the previous 
Lemma, o is a dense embedding. To see that o is double-dense, we have only to 
show that every central element of ZJ?L is the join of images of central elements 
of L. This is a consequence of the first part of this Theorem using the fact that 
every regular open set in X is the union of clopen subsets of X. 0 

We are now in a position to prove our result. 

THEOREM 6.11 Let L be a bounded lattice. ThefoZZowing are equivazent: 
(i) L is weakly Hausdoe 

(ii) L can be double-densely embedded into a weakly Hausdofllattice. 
(iii) L can be double-densely embedded into a Hausdorf lattice. 
(iv) L can be double-densely embedded into an orthogonally complete Hausdofl 

lattice. 
Proof (iv) + (iii) + (ii) are obvious. 
(ii) =+ (i) was established in Lemma 6.4. 
(i) + (iv) By the previous Theorem the map o: L + XL has the desired 

properties. 0 

7. Orthogonally Complete Lattices 

In this section, we study some of the consequences of orthogonal completeness 
on the weak Boolean product representation of a lattice. In particular, we will 
see that orthogonally complete weakly Hausdorlf lattices (which are necessarily 
Hausdorff by Theorem 5.9) have very well behaved Boolean product represen- 
tations. 

The key result on orthogonally complete weakly Hausdorff lattices is due to 
Carson, namely that the equalizer of any first order formula [q(z)] is clopen. 
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This follows by a simple induction on the length of the formula, making use of 
the extended patchwork property to handle existential quantifiers [8, Proposition 
2.17, p. 161 Carson. We will not need the full generality of this result, and in fact 
will be concerned only with the first order formula V(Z, x’) which says that z and 
x’ are complementary central elements of L, and a related formula. Specifically, 
~(x, x’) is the first order formula given by 

= {m E x: (Vy c L)[(f/ v z) A (y v z’) =m (y A x) v (y A z’)]}. 

Note that x, x’ c L are complementary central elements of L iff X = [c+Y(x, x’)]. 

THEOREM 7.1 v L is an orthogonally complete Hausdorf lattice, then the 
stalks of L are directly irreducible. 

Z’rooJ If x G L is such that Z~ is central in Lm, then there is some element 
x’ g L such that rn E [p( x, x’)] = K. Define z = x A XK and Z’ = X’ V XKc. 
Then U&C, .z’)lj = X and therefore .z, z’ are complementary central eIements of 
L. But z Go x and therefore X~ = Om or X~ = lm. 0 

Recall that a lattice L satisfies the reZative centre property if for every element 
cz E L and every element c which is central in [O, u] there is a z E 2 such that 
c = ,Z A u. For elements u, x,x’ E L we define ~(u, x, z’) to be the first order 
formula which states that x A u and x’ A u are complementary central elements 
of the section [O, u] of L. Specifically, ~(u, x,x’) is given by 

Note that x A u and x’ A u are complementaiy central elements of the section 
[o,~] iff x = [c+T(u,x,~~)~~. 

THEOREM 7.2 Let L be an orthogonally comp6ete Hausdo$ lattice. Then L 
has the relative centre property i$f every section [O, CZ~] of every stalk Lm of L 
is directly irreducibze. 

Proof. Assume L has the relative centre property. If u, x, x’ E L are such 
that X~ A CL~ and x& A urn are complementary central elements of [O, Us], 
then nz E [q( u, x, Z’)n = K. Define z = x A XK and Z’ = x’ V X K C .  Then 
[~(u, Z, Z’)J = X, and so .z A u and Z’ A u are complementary central elements of 
[O, u]. As L has the relative centre property, there is some c E 2 with z = c A u. 
Thenxm=hAum which in turn is equal to either Us or Om. Hence the section 
[O, Us] is directly irreducible. 
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Conversely, assume that the sections of the stalks of L are directly irreducible. 
If u, z G L are such that x is central in [O, u] then for each m E X we have 
that xm is central in [O, Us]. Therefore X~ is equal to either Us or Om for each 
m E X. Let K denote the clopen set [x = ~1. Then XK is central in L and 
x=uAxK. 0 

Having seen that orthogonally complete weakly Hausdorlf lattices have irre- 
ducible stalks, we should point out that there are other conditions sufficient to 
guarantee irreducible stalks. 

THEOREM 7.3 If the complemented elements of L are all central then the stalks 
of L are directly irreducible. In particular any distributive lattice has irreducible 
stalks. 

Pro05 If z c L and x m is central in Lm then there is some x’ E L with X~ 
and XL complements in Lm. Setting P = [x A x’ = 01 and Q = [x V x’ = 11 
we have that P II Q is an open set containing the point m As X has a basis 
of clopen sets, there is a clopen set K containing m on which x and x’ are 
complements. Set z = z A XK and 2’ = x’ V XJp. Then z, z’ are complements 
in L and therefore central in L. So X~ = ,z~ is equal to either Om or lm. q 

THEOREM 7.4 1’ L is orthogonally complete and the centre of L is at most 
countable, then the stalks of L are irreducible. 

ProojY Assume that u, b E L are such that uP and bp are complementary 
central elements of Lp. By our standard techniques, we may assume that u and 
b are complements in L, Defining T = {m l X: Us is not neutral in Lm}, it is 
enough to show that p is not in the closure of T, since this would imply there is 
a clopen neighbourhood K of p on which u was neutral and hence central. This 
conclusion is obvious if p is a principal prime ideal, as this would imply that 
{p} was clopen, so we assume that p is non-principal. 

Enumerate the elements of 2 - p as er , e2, . . . , with er = 1. Setting fn = 
A;=1 ei, we have a decreasing chain ft 2 f2 2 . . . of elements of 2 -p such that 
for every e G 2 - p there is some fn < e. In other words @(fl) 2 p(f2) 2 . e. 
is a neighbourhood base of p. As a Stone space is Hausdorff, it follows that 
& ,G(fn) = {p}. Defining & = fn A fA+,, we have that (p(&))neN is a family 
of pan-wise disjoint clopen sets and 

For each n e N with p(&) fl T # 0, h c oose z(n),y(n) c L and m(n) E X 
such that ~~(~1, x(n)m(nj, y(n)m(nj are not a distributive triple in Lmtn). Apply 
the extended patchwork property to get x, y E L so that x agrees with x(n) on 
LWd ad Y w-e= y(n) on p(&) for each n E N with @(&) f? T # 0. 
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As up is neutral in LP, there is a clopen neighbourhood K of p on which 
u, z, y are a distributive triple. As K 2 ,O(fnO) for some nc l IV, we have that 
PC 2 PW = Kfn /I C+1) f or all n > no. It follows that p(fn,)) is a clopen 
neighbourhood of p which is disjoint from T, as required. q 

In particular, the above Theorem shows that the ideal lattice of any countable 
lattice has irreducible stalks. It is not known whether the assumption of a count- 
able centre can be removed from Theorem 7.4. However, the following example 
shows that Theorems 7.1, 7.3 and 7.4 cannot be generalized in some other direc- 
tions . 

EXAMPLE 7.5 Let X be the one point compactification of the natural numbers 
with the discrete topology, say X = N U {co}. Then points in N are clopen. A 
set U c X such that co E U is open iff UC is finite iff U is clopen. Then X is 
compact, Hausdorff, and totally disconnected, hence a Stone space (in fact X is 
the Stone space of the Boolean algebra consisting of all finite subsets of N and 
their complements). Let jV be the five element modular lattice with the three 
atoms CJ, b, c, and let L be the Boolean power of A4 over the Stone space X. As 
we have seen in Example 2.1, the stalks of the Boolean product representation 
of L are all isomorphic to &f. Define 

‘L[ = {x E L: xm # c}. 

It is easily seen that L’ is a sublattice of L and that the centre of L’ is equal to 
the centre of L. It follows that L’ is a modular, Hausdorff lattice with a countable 
centre. But the stalk L’W is a four element Boolean algebra, and hence reducible. 

We also take this opportunity to show that there are complete lattices which are 
not weakly Hausdorlf. 

EXAMPLE 7.6 Let B be an infinite Boolean algebra and L be the ideal lattice 
of B, It is easily seen that the centre of L consists of exactly the principal ideals 
of B. It follows that the centre of L is not a regular sublattice of L, and therefore 
L is not weakly Hausdorff. Note that if B is not complete, the centre of L is not 
complete, even though L is a complete, even upper continuous [l], distributive 
lattice. 

We say that an ideal A of a lattice L is an orthogonally closed ideal if A is 
closed under all existing orthogonal joins of L. For such an ideal A c L we 
define for each m g X, Am = {dm: d E A). 

LEMMA 7.7 Let L be an orthogonally complete Hausdor#lattice and A be an 
orthogonally closed ideal of L. 

(i) For w E L, {m E X: We 2 dm for all d E A} is a clopen set which we 
denote by [W > A]. 
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(ii) FuP-Z E L, if& is the supremum of An, then there is a clopen neighbourhood 
K of n such that lm is the supremum of Am for all m E K. 

(iii) {m E X: Am has a supremum in Lm} is clopen. 

(iv) A has a supremum in L iff Am has a supremum in Lm for all m E X. 
Further if A has a supremum, it is the componentwise supremum. 

I’roof (i) For each w E L and each d E A, we have that [d $ w] is clopen. 
So I’ = U{[d $ WI: d E A} is an open set. We claim that P is clopen, which 
will establish our claim since [w 2 A] is the complement of P. Let (Ki)iC1 be a 
maximal family of pair-wise disjoint clopen subsets of P such that for each i E 1 
there is some di E A so that di $ w on Ki. Let d be the element given by the 
extended patchwork property such that d agrees with di on Ki and d is 0 on the 
clopen set Fc (the closure of an open set is clopen since the centre is complete). 
Note that d is an orthogonal join of elements of A, and therefore d E A. But 
[d $ w] is a clopen set which contains l-l% Ki, and therefore [d $ w] contains P. 
However [d $ w] is clearly contained in P. Therefore P = [d $ w] is clopen. 

(ii) Let (Kt)iC1 b e a maximal family of pairwise disjoint clopen sets such 
that for each i E 1 there is an element wz E L with Ki 2 [We c Z] tl [w% 2 A]. 
Let Q denote the closure of lJi Ki. By the extended patchwork property there is 
an element w E L agreeing with wi on Ki for each i E I. As lJ% Ki 2 [w c 
Z] n [w 2 A], it follows that Q C [w c Z] n [w 2 AJJ. Since Zn is the least upper 
bound of An, it follows that n is not in Q. 

As n is not in the closure of lJi Ki, we can find a clopen set K which is 
contained in [Z 2 A], contains n, and is disjoint from each Ki. If m E K 
and Zm is not the supremum of Am, then there would be some element w E L 
with m E [w > A] fl [w c ZJJ. This would contradict the maximality of the 
family (Kt)tC~. Therefore Zm is the supremum of Am for each m E K and this 
establishes our claim. 

(iii) We know from (ii) that if Zm is the supremum of Am in Lm, then there 
is a clopen neighbourhood K of m such that Zn is the supremum of An for all 
n E K. Let (Kz)iC~ be a maximal family of pan-wise disjoint clopen sets, having 
the property that for each i E 1 there is some Zi E L that is the supremum of A 
on Kz. Let K be the closure of lJ% Ki, and note that K = p(e) is clopen (since 
2 is complete). We now use the extended patchwork property to construct an 
element Z such that Z agrees with Z’ on Ki. Hence Zm is the supremum of Am 
for all m E lJ% Kz. We would be done if we could show that if An did not have 
a supremum, then n $ K. Suppose to the contrary that n E K. We know from 
(i) that [Z > A] is a clopen set that contains lJ Ki. Hence it contains K, so Zn is 
an upper bound for An in Ln. Since An does not have a join in Ln, there is an 
element c c L such that G < Zn, and k is an upper bound of An. By (i), [c 2 A] 
is clopen and contains n. Hence J = [c c Z] n [c > A] is a clopen set containing 
n. Since n is in the closure of lJ Ki, J must have a nonvoid intersection with 
some K$. But if m E J n Ki, then cm < Zm is an upper bound for Am, contrary 
to Zm being the supremum of Am in Lm. 
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(iv) Assume that w is the supremum of A in L. We will show that UJ~ is the 
supremum of Am for each m c X. Assume that cZr, is an upper bound of An 

and that & < We. Then K = [cZ < ~1 rl [d 2 A] is a clopen set containing n. 
By defining e to agree with CZ on K and to agree with w on Kc we would have 
that e is an upper bound of A strictly less than w, a contradiction. 

Conversely, assume that Am has a supremum in Lm for all m E X. Let 
(Ki)te~ be a maximal family of pan-wise disjoint clopen sets such that for each 
i E 1 there is an element Z’ E L so that Zk is the supremum of Am for each 
m E Z&. By (ii) and the maximality of (K,) 1 1Gz it follows that lJi Ki is a dense 
open subset of X. By the extended patchwork property, there is an element 2 G L 
such that Z agrees with Z% on Ki for each i c 1. Then [Z 2 A] is a clopen set 
containing lJi Kz, so [Z > Al = X, and therefore Z is an upper bound of A. But 
if u e L is an upper bound of A, then [Z < ~1 is a clopen set containing lJ K%, 
so [Z < ~1 = X. Therefore Z is the least upper bound of A. 0 

THEOREM 7.8 Let L be a weakly Hausdor# lattice having complete stalks on 
a dense subset U of X. Then L is complete iff it is orthogonally compzete. 

Proof Assume first that L is orthogonally complete, and recall that by The- 
orem 5.9, L is Hausdorff. Let A $ L be a nonempty subset of L. There is a 
smallest orthogonally closed ideal A containing A, and a simple argument shows 
that the uppzr bounds of A are exactly the upper bounds of A. By Lemma 7.7(iii) 
{m E X: Am has a supremum in Lm} is a clopen set containing the dense set 
U, so & has a supremum in Lm for each m E X. Then by Lemma 7.7(iv), 2 
has a supremum in L, and therefore A also has a supremum in L. 

The fact that L complete implies L orthogonally complete follows trivially 
from the definition of orthogonal completeness. 0 

A. Carson [9] has recently discovered that a fragment of the second order theory 
of the stalks is transferable to the full Boolean product. The above result on 
completeness is a special case of this more general theory. We next present two 
examples which show that Theorem 7.8 is reasonably sharp. 

PROPOSITION 7.9 There exists a compZete, distributive, Hausdor- Zattice L 
with an incomplete staZk. 

ProofI Let D = N U {cc} be the natural numbers with a largest element cc 
added. Then D is a complete, irreducible, distributive lattice. In fact D is just a 
chain. Let L be D’; i.e., the lattice D raised to the power of the natural numbers. 
It is easily seen that L is a Hausdorff lattice and that Z(L) is isomorphic to the 
power set of the natural numbers. It follows that for any prime ideal m of 2(,5) 
that Lm is just the ultrapower DN/14 where U is the ultrafilter consisting of all 
elements of the power set of IV which are not in m. Further, each ultrapower of 
D arises in this manner. It is well known that a non-principal ultrapower of D 
is not complete ([24], p. 88). 0 
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EXAMPLE 7.10 By Theorem 7.3, the stalks of any Boolean algebra B are irre- 
ducible Boolean algebras, hence isomorphic to the two element Boolean algebra 
2, and consequently all complete. For any s, t G B, eq(s, i) is the principal ideal 
generated by (s A t) V (s’ A f ), and so any Boolean algebra B is Hausdorff. Thus 
there are incomplete Hausdorff lattices, all of whose stalks are complete. 

Before concluding this section, we give an application of Theorem 7.8 which has 
its origins in [20]. Let V be a variety of algebras such that each A E V has a 
lattice reduct and the central elements of A give rise to direct decompositions of 
the algebra A. Note that the weak Boolean product representation of A is then a 
weak Boolean product of algebras in V. We say that such a variety V is weakly 
Hausdorff if the lattice reduct of each A E V is weakly Hausdorff. 

COROLLARY 7.11 Let V be a weakly Hausdor# variety. Zf the directZy irre- 
ducible members of V are all complete, then V is closed under MacNeille com- 
pletions [26]. In fact, the MacNeille completion of A cz V is $?A. 

Proo$ It is sufficient to show that each A c V can be densely embedded 
into a complete algebra in V [3]. By Lemma 6.9, the map A + !J?A is a dense 
embedding and %A is both orthogonally complete and Hausdorff. So by Theorem 
7.1, the stalks of $?A are directly irreducible, and hence complete. The result now 
follows by Theorem 7.8. 0 

Remark 7.12 If we make the mild assumption that the variety V in the above 
Theorem has only finitely many basic operations, the condition that every directly 
irreducible algebra in V is complete is equivalent to the condition that the class 
of directly irreducible members of V have a finite uniform upper bound on the 
lengths of their chains. To see the equivalence, note first that if the variety V has 
only finitely many basic operations, then there is a first order sentence v such 
that A t= 9 iff A is directly irreducible. Loosely speaking, this sentence p says 
there is no central element other than 0,l whose associated lattice congruence 
is compatible with the basic operations of the algebra. This being said, we then 
have that an ultraproduct of directly irreducible members of V must again be 
directly irreducible. Therefore, if for each n 2 1 there is a directly irreducible 
algebra An in V such that Am has a chain of at least n elements, we may take an 
ultraproduct of the An to find a directly irreducible algebra A E V such that A 
has an infinite chain. Using standard techniques, one can construct an ultrapower 
of A which is not complete. Therefore, if the directly irreducible members of V 
are all complete, there is a finite uniform upper bound on the lengths of their 
chains. The converse follows trivially as any chain finite lattice is complete. 

If V has only finitely many basic operations and the lattice reducts of members 
of V are all distributive we can proceed further. Under these conditions, the 
condition that every directly irreducible member of V is complete is equivalent 
to the condition that there are only finitely many directly irreducibles in V and 
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these directly irreducibles are all finite. This equivalence follows from the above 
once one notices that a distributive lattice having at most n elements in any of 
its chains can have at most Z%-’ elements in total. 

8. Examples 

As a preparation for concluding the paper, it is appropriate that we illustrate the 
scope of our results by showing that they apply to an extremely broad class of 
lattices. Before doing so, it will prove useful to introduce some notation and 
terminology. When dealing with notions of tipper and lower-continuity, we shall 
follow the notation and terminology of [28]. Also, a lattice L with 0 is called 
section semicomplemented (SSC) if u, b c L with a < b implies the existence of 
c c L such that 0 < c < b with c A a = 0. The dual notion is called dud section 
semicomplemented and referred to in symbols by DSSC. 

We start by considering complete lattices, noting in doing so that by Corollary 
4.9, a complete lattice is a Hausdorff lattice if and only if it is a Z-lattice in the 
sense of Remark 4.8. 

EXAMPLE 8.1 The complete lattice L is a Z-lattice if it satisfies any one of the 
following conditions: 

(i) Any continuous lattice L ([28], Remark 5.12, p. 24). 
(ii) L is upper continuous and its centre is join closed. To see that such a 

lattice is Hausdorff, we note first that the centre 2 is necessarily a complete 
lattice; moreover, by upper continuity, the mapping e -+ e A s is residuated, 
so we may apply Theorem 4.4. 

(iii) L is semicomplemented and upper continuous. By (ii), it suffices to show 
that the centre 2 is join closed. To do this, it will suffice to show that 
if (e6)JGD is an upward directed family, then eh t e with each ea e 2 
implies that e c 2. Let ek J, e’. Then for each 6 G D, eb A e’ = 0. By 
upper continuity, e A e’ = 0. If e V e’ < 1, we could find a nonzero 
semicomplement s of e V e’. But then s A e = 0 implies s A e6 = 0 for all 
6, so s < ei for all 6. But then s < e’, contrary to s A e’ = 0. This shows 
that e and e’ are complements. But an easy application of upper continuity 
shows e to be neutral; hence e E 2, as desired. 

(iv) Any lattice L which is SSC and DSSC ([28], Corollary 5.14, p. 25). Among 
these lattices we have: (a) any relatively complemented lattice; (b) any 
lattice having the property that all intervals of the form [O, a] or [b, l] are 
complemented; (c) any lattice that is both atomistic and dual atomistic 
([28], p. 30); (d) any uniquely complemented lattice (such lattices are 
of interest because of Dilworth’s Theorem [16] that any lattice may be 
embedded in a uniquely complemented lattice). 

(v) L is SSC and V-continuous ([28], Theorem 5.13, p. 24). 
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(vi) Any XX-1 attice whose centre is a complete sublattice ([28], Exercise 5.1, 
p. 25). 

(vii) L is SSC, dual semicomplemented and satisfies Axiom (A) of [22] (see 
example 3, p. 178 of [22] and Theorem 2, p. 237 of [23]). 

(viii) The trivial example where L has a finite centre. Of course completeness 
is not required here. 

(ix) Any direct product of Z-lattices is a Z-lattice, as is the dual of any Z- 
lattice. 

The reader should observe that Hausdorff lattices need not be complete. This 
was already illustrated by the class of lattices having a finite centre. But the 
next Theorem also describes an interesting class of lattices which includes any 
bounded relatively complemented lattice, 

THEOREM 8.2 A bounded section compzemented lattice L is Hausdorff if and 
only if it is a central cover lattice. 

Proof. By Theorem 4.3 of the paper, L is a central cover lattice iff for every 
s E L, eq(s, 0) is a principal ideal of 2. We must show that this implies that 
eq(s, t) is a principal ideal of 2 for any s, t E L. Accordingly, let s, t G L, and 
take w to be a complement of s A t in [O, s V t]. Using the fact that e /I s = 
eAt w eAw = 0, we see that eq(s, t) = eq(w,O), thus proving L is Hausdorff. 
The converse implication is trivial. 0 

We turn next to some examples of weakly Hausdorff lattices. 

Remark 8.3 Recall that by Theorem 5.3, the following conditions are equiv- 
alent for any bounded lattice L: 
(i) 2 is meet-regular. 

(ii) For each s E L, eq(s, 0) is closed under existing suprema in 2. 

THEOREM 8.4 Let L be a bounded SC-lattice. Then: 
(i) L is weakly Hausdo@ @ it satisjes the conditions of Remark 8.3. 

(ii) If the centre of L is complete, then L is Hausdor- iff it is a central cover 
lattice. 

Proof (i) Suppose that L satisfies the conditions of Remark 8.3. Let (ei)zEI 
be a family of central elements and suppose e = VteI ei in 2. Let s c L. Suppose 
e /I s were not the join of the family (ei A s)~~I in L. Then there would exist an 
element y < e A s such that y 2 ei A s for all i e I. Use SSC to find an element 
w such that 0 < w < e A s and w A y = 0. Then w A ei = 0 for all i, so each 
et E eq(w, 0). But by Remark 8.3, eq(w,O) is closed under existing suprema 
in Z. Hence e E eq(w,O), contrary to 0 < w < e. The converse implication is 
clear. 

(ii) Suppose first that L is a central cover lattice having a complete centre. 
By (i), L is weakly Hausdotff, and by Theorem 5.9, L is in fact Hausdorff. The 
converse is trivial. 0 
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EXAMPLE 8.5 By [20], Proposition 5, p. 291, any orthomodular lattice in the 
variety generated by a set of orthomodular lattices having a finite uniform upper 
bound on the lengths of their chains is weakly Hausdorff. It is also shown in 
[20] that the directly irreducibles in such a variety are all complete. Therefore 
by Corollary 7.11, any such variety is closed under MacNeille completions. 

EXAMPLE 8.6 Let B denote the lattice of all subsets of an infinite uncountable 
set X, and let L denote the subsets of X that are finite, countably infinite or 
have a finite complement. Then L is a bounded distributive lattice that is weakly 
Hausdorff but is not a central cover lattice. It follows that it is not Hausdorff. 

EXAMPLE 8.7 Let B denote the Boolean algebra consisting of all finite subsets 
of N and their complements, and let X be the Stone space of B. Note that the 
elements of X are exactly the principal prime ideals [+, {n}‘], and the non- 
principal prime ideal oo consisting of all finite subsets of N. A subset U c X 
is clopen iff U consists only of a finite number of principal prime ideals, or if 
UC consists only of a finite number of principal prime ideals. Let 1 be the ideal 
of B consisting of all finite subsets of odd elements of IV; i.e., 1 is the ideal 
of B generated by { {2n + 1 }: n E N}. We define p(1) = lJ{/3(c): c g I}. 
Specifically, p(1) = {[+, {2n+ l}‘]: n E IV}. Note that /?(I) is an open set and 
that there is no smallest clopen set containing p(1) (as 1 has no join in Z?). 

Let 3 represent the three element chain 0 < u < 1, and define f e 3x by 
setting 

fk4 = { 
a ifm=[+,{2n+l}c]forsomen~N, 
0 otherwise. 

We then set L to be the sublattice of 3x generated by the set of all characteristic 
functions XK of clopen subsets K of X and the function f. As 3x is distributive, 
it follows that 

~=-u.f~xK,PxK*~ Kt , KZ are clopen subsets of X}. 

Note that if g E L and g(m) = a for some m E X, then g has no complement 
in 3x, and therefore g can have no complement in L. It follows that the centre 
of L consists exactly of the characteristic functions XK of clopen sets. Clearly 
XK is an upper bound of f iff p(1) c K, so f has no least central upper bound 
in L, and therefore L is not Hausdorff. 

We claim that L is weakly Hausdorff. Let s = (f A XK,) V yyK2 be an ele- 
ment of L. It is sufficient to show that s is the least upper bound of {s A 
x{~}: m is a principal prime ideal of B}, since any subset T of the centre of 
L which joins to 1 has the property that for each principal ideal m E X 
there is an element e E T with x{~} < e. Now s is an upper bound of 
{s A ~1~1: m iS a principal prime ideal of B}. Suppose that t = (f A XN, ) V X& 
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is also an upper bound of this set. Then for any principal prime ideal m of B 
we have that s A ~1~1 < t, and therefore s(m) < t(m). We have only to show 
that s(oo) < t(oo) for the non-principal prime ideal oc of B. As f(co) = 0, it is 
enough to consider the case where s(oo) = 1. In this case, oc E Kz. If oo $! Arz, 
then we would have that Kz n N. is a clopen set containing co. but Kz fl IV; 
must therefore contain some principal prime ideal m, which would contradict 
the assumption that s A ~1~1 < t. 

An interesting feature of this example is that the equalizer [f = 01 appears to 
be the complement of the open set ,8(L). But p(1) is not clopen. Does this not 
imply that this is an equalizer which is not open? The point here is that the weak 
Boolean product representation of L is not exactly what one would at first guess. 
To simplify matters we first identify the Stone space of the centre of L with X. 
The stalks Lm for m = [+, {2n + l}‘] are three element chains, the stalks Lm 
for m = [+, {2n}‘] are two element chains and the stalk Lw is a three element 
chain. The subtle point is that in the weak Boolean product representation, we 
have f $m 0 even though as an element of 3x we have j(co) = 0, It turns out 
that [j = OJj = ,0(L)’ - {oo} and [j = 11 = 0. We are not led to the conclusion 
that [f = ulj is the set /?(I) U {co} (which is not open) since o is not an element 
of L. I3 

The above example leads naturally into the work of Cignoh [1 11. Before present- 
ing the results, we need some terminology. A lattice L is called B-completely 
normul if (a) L is a bounded distributive lattice, (b) for any Z, y E L, there 
co~espondelementss,t~Zsuchthat~~s~~,y~t~~,~dsVt=l. L 
is a dual B-completely normal Zattice in case its dual is a B-completely normal 
lattice. 

Next we consider some conditions on a bounded distributive lattice D with 
centre 2: 

(i) For each Z, y E D, there corresponds a greatest element w = z + y such 
that x A w < y. 

(ii) (~+y)V(y+x)=l. 
(iii) For each Z, y E D, there corresponds a greatest e E 2 such that e A z < y; 

this e is denoted e = x * y. 
(iv) (x*y)V(y*~)=l. 

D is called a Heyting algebra if it satisfies (i); it is called an L-algebra if it 
satisfies (i) and (ii). Bounded distributive lattices satisfying (iii) are called B- 
algebras, and B-algebras that satisfy (iv) are called BL-algebras. Finally, D is 
called a P-algebra if both D and its dual satisfy all four conditions. Note that 
item (iii) above defines exactly the element of the centre that we denoted by t : s 
in Theorem 4.4(iii). Thus by comparing Theorem 4.4(iii) to condition (iii) above, 
we see that a bounded distributive lattice is HausdorfY iff it is a B-algebra. 
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As indicated by [18], Theorem 3.4, p. 199, there is some redundancy in this 
definition of a P-algebra. For convenience of the reader we herewith restate this 
Theorem. 

THEOREM 8.8 (Epstein and Horn). For u bounded distributive luttice D, the 
following are equivalent: 

(i) D is u P-ulgebru. 
(ii) D is a BL-algebra 

(iii) Both D and its dual are L-algebras. 
(iv) Both D and its dual are Heyting algebras, and the prime ideals of D lie in 

disjoint maximal chains. 
(v) D is an L-algebra, and its duul is a Stone algebra. 

(vi) D is an L-algebra whose dual is a central cover lattice; furthermore, if !x 
denotes the largest central element under x, then ! (x V y) = !x V ! y. 

EXAMPLE 8.9 Cignoli [11] shows that a bounded distributive lattice is B- 
completely normal iff it is a weak Boolean product of bounded chains, and 
that such a lattice is Hausdorff if and only if it is a P-algebra. We have already 
provided an example of a lattice that is a weakly Hausdorff Boolean product of 
finite chains, but is not a P-algebra (Example 8.7). 

EXAMPLE 8.10 As shown in [ 181 and [ 191, n-valued Post algebras and n-valued 
Lukasiewicz algebras are P-algebras, and therefore Hausdorff. As the directly 
irreducibles in the varieties of n-valued Post algebras and n-valued Lukasiewicz 
algebras are finite, and therefore complete, we may apply Corollary 7.11 to show 
that each of these varieties is closed under MacNeille completions. In fact, the 
MacNeille completion of an n-valued Post or Lukasiewicz algebra L is given 
by XL. 

It is well known [ll], [17] that any n-valued Post algebra is isomorphic to a 
Boolean power of an n-element chain Cn. Using the techniques of Section 6 we 
can develop a similar representation theory for complete n-valued Lukasiewicz 
algebras. Namely, a complete n-valued Lukasiewicz algebra L is isomorphic to a 
direct product Ll x e . . x Lk where each Li is a Boolean power of an n%-element 
chain Cnt with ni < n. 

Note first that if all of the stalks of L are n-element chains, then L is iso- 
morphic to a Boolean power of Cm if and only if the usual Boolean product 
representation of L contains all constant functions. Next, suppose that L is a 
complete n-valued Lukasiewicz algebra and all the stalks of L are m-element 
chains. As L is orthogonally complete and Hausdorff, we may apply Carson’s 
result that equalizers of first order formulas [q(x)] are clopen. One can easily 
produce a formula pi(~) saying that z is the $ element from the bottom of 
a chain. Then using the compactness of the Stone space X and the patchwork 
property, we can show that all constant functions are in the usual Boolean product 
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representation of L. So L is a Boolean power of the chain Cm, and is therefore 
an m-valued Post algebra. 

Finally, assume that L is a complete n-valued Lukasiewicz algebra. Let $I~ 
be the first order formula characterizing an i-element chain. As [+il is clopen, 
we may partition the Stone space X by a finite number of pairwise disjoint 
non-empty clopen sets [q&, 1, . . . , [q&Jj. This gives a direct decomposition L 2 
L[ x... x &, where each Lz is isomorphic to a Boolean power of an n%-element 
chain. Note that our earlier remarks on MacNeille completions then imply that 
any n-valued Lukasiewicz algebra can be densely embedded into a product of 
Boolean powers of chains. 

Finally, we would like to thank the referee for several helpful suggestions, includ- 
ing Theorem 5.6, Example 6.5 and Remark 7.12. 
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