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ABSTRACT. We show that every lattice L can be embedded into a lattice M 
in such a way that the neutral elements of L are all central in M. Moreover, 
among all such embeddings there is one which is universal. We call this the 
free central extension of L. 

A simple internal characterization of free central extensions is given. 
An extension E of a lattice L is a free central extension of L iff each neutral 

element of L is central in E and E is generated by L U B, where B is the 
Boolean sublattice of the centre of /• generated by the neutral elements 
of L. We further show that the free central extension of a lattice L is an 

essential extension of L which lies in the variety generated by L. These 
results are proved without the use of the axiom of choice. 

In the special case of a distributive lattice, the free central extension 
of L is what is known in the literature as the free Boolean extension of L. 

This topic has been thoroughly investigated by Chen, Griitzer and Schmidt, 
and Peremans. 

If one allows the axiom of choice, the free central extension of a 

bounded lattice L has a particularly simple description. It is the algebra of 
global sections of the Pierce sheaf of L over the Stone space of the Boolean 
sublattice of Con(L) generated by all congruences of the form 9a,0 where 
a, b are neutral elements of L. 
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666 JOHN HARDING 

1. Introduction. 

Central elements play a significant role in lattice theory. An element 
a in a bounded lattice L is central if a is complemented and the sublattice 
generated by a, b, c is distributive for every b, c in L. Central elements are 
significant largely because they correspond to direct decompositions of a 
bounded lattice. A related notion is that of a neutral element in a lattice 

L. An element a is said to be neutral if the sublattice of L generated 
by a, b, c is distributive for each b, c in L. One is clearly tempted to say 
that neutral elements are simply central elements without complements. 
Of course, what is really meant by this type of statement is that any lattice 
L can be extended to a bounded lattice M so that every element which is 
neutral in L is central in M. It is not obvious that this is the case. 

On a related note, a lattice in which every element is neutral is clearly 
a distributive lattice. It is well known that every distributive lattice can 
be embedded into a Boolean lattice, i.e. a lattice in which every element is 
central. This dates back to Stone's representation of a distributive lattice 
as a ring of sets (clearly a ring of sets can be embedded into a field of sets, 
i.e. a Boolean algebra). Unfortunately, Stone's representation theorem 
requires the axiom of choice, or more precisely, the prime ideal theorem 
for distributive lattices. A first attempt at embedding a distributive lattice 
into a Boolean algebra without using the axiom of choice was made by 
MacNeille [7]. There was a gap in his proof which was filled by Peremans 
[10]. Later Gr/•tzer and Schmidt [5], then Chen [2], also provided such 
erabeddings. A particularly simple embedding provided by Gr/•tzer and 
Schmidt will play a prominent role in this paper, albeit in a modified form. 
For a bounded distributive lattice D, the sublattice of Con(D) generated 
by all congruences of the form 0a,b is a Boolean lattice which contains a 
sublattice isomorphic to D. 

For a lattice L we will construct a lattice M so that L is embedded 

in M and for each neutral element a in L, the image of a is central in M. 
This construction is free of the axiom of choice, and we shall see that the 
lattice M lies in the variety generated by L. Therefore, this paper can be 
regarded as a generalization of [2], [5], [10]. The fundamental observation is 
as follows. For a bounded lattice L, the sublattice B of Con(L) generated 
by all congruences of the form 0a,b, where a, b are neutral in L, is a Boolean 
lattice. Then for a bounded lattice L, the extension M is the algebra of 
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global sections of the Pierce sheaf of L over the Stone space of B. Of course, 
some modifications must be made to the presentation of our construction if 
we are to do without the axiom of choice, but this is only a small obstacle. 

This paper is organized in the following fashion. In the second section, 
we give some preliminary definitions and results which will be needed later. 
In the third section, we define the notion of a free central extension of 
a lattice. This is an extension which is universal among all mappings f: 
L ) M for which the neutral elements of L are mapped to central elements 
of M. We also prove some preliminary results, namely that up to a unique 
isomorphism, each lattice can have at most one free central extension. 

In the fourth section, we give some conditions which are suificient to 
guarantee that an extension of a lattice L is a free central extension of L. 
Later we shall see that these conditions are also necessary. In the fifth 
section we construct the free central extension of a bounded lattice. This 

construction is essentially the Pierce sheaf construction mentioned above, 
only phrased in a manner which does not use the axiom of choice. In the 
final section we combine our earlier results. We show that every lattice 
has a free central extension, give a simple internal characterization of free 
central extensions, and show that the free central extension of a lattice L 
is an essential extension of L which lies in the variety generated by L. 

2. Preliminaries. 

Unless explicitly stated, we shall not assume that a lattice has either 
a largest or a least element. However, if a lattice L has a largest element 
(a unit) we shall refer to this largest element as 1L. Similarly, if L has a 
least element (a zero) we shall refer to this least element as 0L. If L has 
both a largest and a least element, we say that L is a bounded lattice. The 
notation a + b is used to indicate the join of a, b, while • ai is used to 
denote the join of a finite family (ai)I. The notation a. b or simply ab is 
used to denote the meet of a, b. We shall never have occasion to consider 
infinite joins or meets. By 'map' we mean lattice homomorphism. 

Definition 2.1. Let L be a lattice. We say that an element x in L is neutral 
if for every y, z in L the sublattice generated by x, y, z is distributive. We 
denote the set of all neutral elements of L by N(L). Note that if L has 
a largest element, then this element must be neutral, and if L has a least 
element, then this element must be neutral. 
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Definition 2.2. Let L be a bounded lattice. We say that an element x in 
L is central if x is neutral and x has a complement in L. We denote the set 
of all central elements of L by Z(L). Note that the bounds 0L and 1L are 
both central. 

The following propositions are well known. Proofs can be found in 

Proposition 2.3. Let L be a lattice. The set N(L) of all neutral elements 
of L is a distributive sublattice of L. 

Proposition 2.4. Let L be a bounded lattice. The set Z(L) of all central 
elements of L is a Boolean sublattice of L. 

Definition 2.5. Let f: L • M. We say that f preserves escisting bounds 
if it satisfies the following conditions 

(i) If L has a unit 1•, then M has a unit 1M and f(l•) = 1M. 
(ii) If L has a zero 0œ, then M has a zero 0• and f(0•) = 0•. 

Definition 2.6. Let f: L • M. We say that f is a neutral map if f 
preserves existing bounds and f[N(L)] C_ N(M). A neutral map which 
happens to be a lattice embedding will be called a neutral embedding. 

Definition 2.7. Let f: L • M where M is a bounded lattice. We say 
that f is a central map if f preserves existing bounds and f[N(L)] C_ Z'(M). 
A central map which happens to be a lattice embedding will be called a 
central embedding. 

The following observations are easily established. 

Lemma 2.8. 

(i) Any central map is neutral. 
(ii) The identity map on M is central iff M is bounded and N(M) = 

(iii) If f: L • M is neutral and g : M • N is neutral, then g o f is 
neutral. 

(iv) If f : L • M is neutral and g : M • N is central, then go f is 
central. 
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Definition 2.9. Let L be a lattice. Construct a bounded lattice L* as 

follows: if L has a zero and a unit then L* is equal to L, if L has a zero 
but no unit then L* is L with a unit adjoined, if L has a unit but no zero 
then L* is L with a zero adjoined, and if L has neither a zero nor a unit 
then L* is L with a zero and a unit adjoined. Let *L : L • L* be the 
identical embedding. Note that ,L preserves existing bounds. 

Definition 2.10. Let f: L • M be a lattice embedding. We say that 
f: L • M is an essential extension of L if for every g: M • K we have 
that g o f is an embedding only if g is an embedding. 

Lemma 2.11. 

(i) The map ,œ: L • L* is an essential extension. 
(ii) The map ,• : L • L* is a neutral embedding. 
(iii) If g: L • K is a central map, then there exists exactly one central 

map g* : L* • K with g* o,• - g. 

Proof. (i) Assume that g: L* • K is not an embedding. We must show 
that g o ,• is not an embedding. This is obvious if L has a zero and a 
unit, since this implies that L* - L. Assume that L has no unit and that 
g(1œ.) - g(x) for some x in L. Then g(y) - g(x) for all y > x in L, showing 
that g o ,œ is not an embedding. The other cases are obviously similar. 

(ii) This is a consequence of the following general fact. If x, y, z are 
elements of a lattice M and z is a bound of M, then the sublattice generated 
by x, y, z is distributive. 

(iii) We extend g to a map g*: L* • K by mapping the bounds of 
L* to the bounds of K. Clearly this is the only possible bound preserving 
extension of g. We must only show that g* is a central map. But this 
follows easily as N(L*) = N(L) U {0œ.,1L.}. [] 

Lemma 2.12. L* is in the variety generated by L. 

Proof. It is well known that the ideal lattice •L of L is in the variety 
generated by L ([3], pg. 69), and the proof of this result depends in no 
way on the axiom of choice. But L* is clearly isomorphic to a sublattice of 
•L. [] 
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3. Free central extensions. 

Definition 3.1. Let L be a lattice. A free central extension of L is a pair 
(E, f) such that 

(i) The map f: L > E is a central embedding. 
(ii) N(E) = Z(E). 
Off) For any central map g: L > K, there is exactly one central map 

h:E >Kwithhof=g. 

Later, in Theorem 6.2, we will show that the second condition is a 
consequence of the other two. 

Proposition 3.2. Let L be a lattice. If (E, f) and (E •, f•) are free central 
extensions of L then there is exactly one isomorphism i: E • E • such 
that i o f = i •. 

Proof. As (E, f) is a free central extension and f•: L > E • is central, 
there is exactly one central map h: E > E • with h o f = f•. Dually, 
there is exactly one central map h • : E • > E with h •of• - f. Then 
h • o h: E > E is a central map, by Lemma 2.8 (iv), and (h • o h) o f = 
h • o f• = f. But the identity map idE: E > E is central, by Lemma 2.8 
(ii), and idE o f = f. The uniqueness condition of free central extensions 
then gives us that h•o h = idz. Dually, h o h • = ida;,. So h: E > E • is an 
isomorphism with h o f = f'. Uniqueness again follows as (E, f) is a free 
central extension. [] 

Proposition 3.3. Let L be a lattice. If (E, f) is a free central extension 
of L*, then (E, f o ,L) is a free central extension of L. 

Proof. We must verify conditions (i) through (iii) of Definition 3.1. 
(i) We must show that f o ,L: L > E is central. But by Lemma 

2.11 (ii) the map ,•: L > L* is neutral, and as (E, f) is a free central 
extension we have that f: L* > E is central. Our result then follows by 
Lemma 2.8 (iv). 

(ii) That N(E) = Z(E) follows immediately as (E, f) is a free central 
extension of L*. 

(iii) We must show that if g: L > K is central then there is exactly 
one central map h: E > K with h o (f o,•) = g. But by Lemma 2.11 
(iii) there is a central map g* : L* > Kwithg*o,• =g. As (E,f) is 
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a free central extension of L*, there is a central map h: E > K with 
hof = g*. It follows that ho(fo,œ) - g. We have only to show that 
h is the only such map. Assume that h': E > K is a central map with 
h'o(fo,œ) = g. Then by Lemma 2.8 (iv) h'of is central, and by the 
uniqueness clause in Lemma 2.11 (iii) we have that h' o f - g*. Then by 
the uniqueness of maps in free central extensions we have that h' -- h. [] 

4. The structure of free central extensions. 

Definition 4.1. Let C be a Boolean algebra and let X be a finite subset 
of C. We say that X is a partition of C if 

y•X=lc andx-y=0forallx•yinX. 

Let D be a sublattice of C such that C is generated as a Boolean algebra 
by D, and D contains 0c, lc. We say that a partition X of C is basic over 
D if each x C X can be expressed in the form x = c. d • where d < c C D. 
If the choice of sublattice D is clear from the context, we will simply say 
that X is a basic partition of C. Finally, if X and Y are partitions, we say 
that Y refines X if for each non-zero y • Y there is x • X with y _< x. 

Lemma 4.2. Let C be a Boolean algebra, D be a sublattice of C which 
generates C as a Boolean algebra and contains Oc and lc, and X, Y, Z be 
partitions of C. 

(i) If Z refines Y and Y refines X, then Z refines X. 
(ii) Any two partitions X,Y of C have a common refinement. 
(iii) Any b • C can be expressed as b- Ecid'i where di < c• • D and 

cid'i . cjd' j = 0 for i • j. 
(iv) Any partition X of C can be refined by a partition which is basic 

over D. 

Proof. (i) Obvious. 
(ii) {x.y:x • X,y • Y} is a refinement of X and Y. 
(iii) As C is generated as a Boolean algebra by D, it follows that each 

b • C can be represented as 

E II b = xi where xi = zij with zij or zij • D for each i, j. 
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As D is a sublattice of C which contains both 0c and 1c we can find families 
ci,di in D with xi = cid' i for each i E I. Further, as cid' i = (ci + di)d' i, we 
may assume that ci, di have been chosen so that di < ci. The statement we 
are to prove follows easily if C is a finite Boolean algebra, as each atom in 
C will have a representation in the form cd' for some d < c ED. 

For an infinite Boolean algebra C, we have noted that any b • C has 
a representation b = y• cid•i where ci, di are a finite family from D. Let D • 
be the sublattice of D generated by (ci, di: i • I) and C' to be the Boolean 
sublattice of C generated by D'. As finitely generated distributive lattices 
and finitely generated Boolean algebras are finite, we have that C' and 
D' are finite. But b • C'. Using the above remarks about finite Boolean 
algebras, we can express b in the form 

b-- y• cidti where di < ci G D' and cid•i ß cjd•j = 0 for i• j. 

As D' is contained in D our result is established. 

(iv) Let X be a partition of C. Applying the third part of this Lemma 
to each x E X we obtain a partition which is basic over D and refines X. [] 

Proposition 4.3. Let C be a Boolean algebra and D be a sublattice of C 
which generates C as a Boolean algebra and contains Oc, lc. If K is a 
Boolean algebra and c• : D > K is a bound preserving map, then there 
is exactly one map /• : C > K which extends c•. This map/• satisfies 

cd'i) = E 

Proof. This is a well known result, however many common proofs use the 
axiom of choice. This is not necessary. We have only one possible candidate 
for this mapping, and it is only a matter of verifying that this map is well 
defined and is a Boolean algebra homomorphism. The details are left to 
the reader. [] 

Assumptions: Throughout the remainder of this section we assume that 
L is a sublattice of a bounded lattice E, so that L contains 0E, 1E and 
satisfies 

(i) N(L) is a sublattice of Z(E). 
(ii) E is generated by L U B, where B is the Boolean sublattice of Z(E) 

generated by N(L). 
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Lemma 4.4. 

(i) Let e,f ß E and X be a partition of B. If e . x = f . x for all 
non-zero x ß X, then e = f . 

(ii) Let (xi)• and (yj)j be partitions of B with (yj)j refining (xi)•. 
Then for any family (Pi)• in L there is a family (qj)• in L with 
• pixi - • qjyj. 

(iii) Let (xi)• be a partition of B and let (pi)• and (qi)• be families in 
L. Then (Epixi) + (E qixi) - E(Pi + qi)xi. 

(iv) Let (xi)• be a partition of B and let (pi)• and (qi)• be families in 
L. Then (y'• pixi) ' (Y'• qixi) = Y'•(Pi ' qi)xi. 

Proof. (i) As X is contained in the centre of E we may distribute freely, so 

e=e. 1 = e- y'}•X = y'}•xe.x= Y'}•xf.x= f. 

(ii) For each j ß J with yj •k 0, set qj = Pi if yj _• xi. If yj = 0, 
make an arbitrary choice for qj. As y/• is central and yk 'yj = 0 for j • k, 
it follows that yk ß • qjyj is equal to y• ß • pixi for all k ß J. Our result 
then follows from the first part of this Lemma. 

(iii) Again by the first part of this Lemma, it is enough to show that 
for eachkß J 

x• . [(Y-•pixi) + (Y•qixi)] -- x• . [Y'}•(Pi + qi)xi]. 

But x• is central and xk .xi = 0 for i • k, so the left side of this expression 
is equal to (p• ß x•) + (q• ß x•) and the right side of this expression is equal 
to (pk + q•) ß x•. Using once more the fact that x• is central, we have our 
result. 

(iv) This follows along similar lines to (iii). [] 

Proposition 4.5. 

(i) E = {Y• pixi : (xi)i is a basic partition of B and each pi ß L}. 
(ii) If aX,... ,a n ß E, then there is a basic partition (xi)• and elements 

ß 

J ß L so thata j=•a•xiforeachj<n. a i _ 

Off) E is in the variety generated by L. 
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Proof. (i) Let 

Q- {•-•pixi: (Xi)l is a basic partition of B and each pi E L} . 

Then Q contains L since p = p(1-0 •) for any p E L. For any b • B we have 
by Lemma 4.2 (iii) that 

b = •cid• where di • ci e D •nd c•d• ß cjdtj = 0 for i • j •nd 
b • = •e•f• where f• • e• e D •nd e•f•. e•f[ = 0 for k • 1. 

So 

-- 1 • •Oek • , b • cid• + fk 
giving that b 6 Q. 

Once we have established that Q is dosed under joins and meets, we 
will have that E - Q, since we assumed that E w•s generated by L U B. 
T•king a = •pixi •nd b = • qjyj, by Lemm• 4.2 we c•n find • b•ic 
p•rtition (z•)K which refines both (xi)i •nd (yj)•. Then by Lemm• 4.4 (ii) 
there •re f•milies (r•)K •nd (s•)K in L with a = Er•z• •nd b= •s•z•. 
It then follows from p•rts (iii) •nd (iv) of Lemm• 4.4 that a ß b •nd a + b 
•re both elements of Q. 

(ii) Using the first p•rt of this Lemm•, e•ch a j c•n be expressed •s • 
sum over some p•rtition of B. A simple induction using Lemm• 4.2 (i) •nd 
(ii) shows that we c•n find • common refinement (z•)K of these p•rtitions. 
Then by Lemm• 4.2 (i) •nd (iv) we c•n find • common refinement of these 
p•rtitions by • b•sic p•rtition (xi)I. Our result then follows by Lemm• 4.4 
(ii). 

(iii) Let u •nd v be n-•ry lattice terms such that L s•tisfies the iden- 
tity u(Z) • v(Z). We must show that E •lso s•tisfies this identity. Let 
al,... , a • be elements of E. Using the second p•rt of this Lemm•, we c•n 
find • p•rtition (x•)• •nd elements p• e L so that a i • i = p•x•. It follows 
from p•rts (iii) •nd (iv) of Lemm• 4.4 that 

u(al,... ,a •) = Eu(p•,... ,p•)x•, •nd 
v(a•,... ,a •) = Ev(p•,... ,p•)x•. 

Then the equality u(a•,... ,a •) = v(a•,... ,a •) follows •s u(p•,... ,p•) is 
equ•l to v(p•,... ,p•) for each k e K. • 
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Lemma 4.6. Let (cidl)• and (ejfj)j be basic partitions of B and (pi)• and 
(qj)j be families in L. Then for any central map A ß L > K 

^! 

(i) (didi )• is a partition of Z(K). 
^! 

(ii) If (ejfj)j refines (cid'i)• andEpicidti -- E qjcjf•, then E•i•idi -' 
^ ! 

^! 

(iii) We may define a map h ' E • K by setting h(a) = •fiididi 
where a = • picid•i . 

(iv) There is exactly one map h' E • K which extends A. 

Proof. (i) This follows from Proposition 4.3 as the map /• ß B ) Z(K) 
^1 

which extends A' N(L) > K must satisfy/•(cd') = •. d . 
^ I 

(ii) As (djfj)• is a partition, by Lemma 4.4 (i)it is enough to show 
that for each j 6 J 

^1 ^1 ^1 ^1 

Choosing i such that ejfj _• cid•i we have that 
^1 ^1 ^1 ^1 ^1 ^1 

However, we have assumed that ¾]Pi½idti- ¾]qjejfj. Taking the meet of 
both sides with ej fj we have that piej fj : qjej fj. It follows that piej + fj 
is equal to qjej + fj, and therefore iSid• + fj: •]jd• + fj. Taking the meet 

^1 ^1 ^l 

with fj gives •djfj = gjdjfj . This yields the desired equality. 
(iii) Let a be an element of E and suppose that 

a = ¾]picid•i and a = y]qjejfj 

are two representations of a with (cid•i)l and (ejfj)• basic partitions. By 
Lemma 4.2 there is a basic partition (r•s•)K refining both of these par- 
titions. Then by part (ii) of Lemma 4.4 there is a family (t•)K so that 
a = • t•r•s•. Using the second part of this Lemma, we have 

^1 ^1 
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Therefore the value of h(a) is independent of the particular representation 
Of a. 

We have only to show that h is a lattice homomorphism. Let a, b be 
elements of E. By Proposition 4.5 (ii) there is a basic partition (cid'i)i and 
families (Pi)l and (qi)• in L with a = 5•'•picid' i and b- • qicid' i. Then by 
Lemma 4.4 (iii) we have that 

a q- b = E(Pi q- qi)cid'i. 

To show that h(a) + h(b) is equal to h(a + b), it is sufficient to show that 
for each i E I 

^, ^, 

[h(a) + h(b)]- = + b). 
^ , 

But it is easy to verify that both of these quantities are (fii + eli) ß didi . A 
similar argument shows that h preserves meets. 

(iv) The map from the third part of this Lemma extends A, as any 
p E L can be represented asp=p(1.0'). Ifk' E > Kisanother map 
extending A, then for any d • N(L) we have that k(d) = • is in Z(K), and 
therefore k(d') must be the unique complement •' of 3. Therefore k agrees 
with hon LO{d'' de N(L)}. Asthisis agenerating set orE, we have 
that k = h. • 

Lemma 4.7. N(E)= Z(E)= B. 

Proof. Clearly N(E) _D Z(E) _D B. Let a • N(E). By Proposition 4.5 (i) 
we can find a basic partition (cid'i)i and a family (pi)• in L so that 

a = 

Taking the meet of a with cid' i we have that picid' i is neutral (recall that 
N(E) is a sublattice of E). Taking the join of this element with di we have 
that (pici) q- d• is neutral. But this is an element of L and N(L) C_ B, so 
(Pi½i) q- di is in B. Taking the meet of this element with d' i we have that 
picid' i is in B and therefore a = 5-•picid' i is in B. [] 

Proposition 4.8. (E, idL) is a free central extension of L. 

Proof. We must show that idL ' L ',' E is central, that N(E) = Z(E), 
and that for any central map g ß L > K there is exactly one central map 
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h: E > K with h o idL = g. The first condition we have assumed. The 
second is Lemma 4.7. If g: L -• K is a central map, then by Lemma 4.6 
(iv) there is exactly one map h: E --> K which extends g. We must show 
that h is central. As h extends g we have that h[N(L)] C_ Z(K). But by 
Lemma 4.7, Z(E) is generated as a Boolean algebra by N(L). It follows 
that h[Z(E)] C_ Z(K). As N(E)= Z(E), our result follows. [] 

Proposition 4.9. (E, idL) is an essential extension of L. 

Proof. Assume that g: E > K and that the restriction of g to L is an 
embedding. We must show that g is an embedding. Let a,b E E. By 
Proposition 4.5 (ii) there is a basic partition (cid[)• and families (Pi)• and 
(qi)• in L with 

a = Epicidti and b = Eqicidti. 

If g(a) = g(b), then g(acid•) is equal to g(bcidti), which implies that g(picid•) 
is equal to g(q•c•d[). Taking the joins of these elements with g(d•) we have 
that 

g((pici) + di) = g((qici) + di). 

But we have assumed that the restriction of g to L is an embedding, which 
implies that (p•c•) + d• is equal to (q•c•) + d•. Taking the meets of these 
elements with d[ we have that picidti is equal to qicidti, and therefore that 
a=b. • 

Proposition 4.10. Let L be a lattice and suppose f: L • E satisfies 

(i) f is a central embedding. 
(ii) E is generated by f[L]UB where B is the Boolean sublattice of Z(E) 

generated by f[N(L)]. 

Then (E, f) is a free central extension of L, the centre of E is equal to B, 
(E, f) is an essential extension of L, and E is in the variety generated by 
L. 

Proof. By Lemma 2.11 (ii) there is a central map f* : L* ) E with 
f* o .• -- f and this map f* is clearly an embedding. It follows that the 
bounded sublattice f*[L*] of E satisfies the assumptions of this section. 
Then by Propositions 4.8, 4.9 and 4.5 (iii) we have that (E, idf.[•.]) is a 
free central extension of f*[L*], an essential extension of f*[L*] and that 
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E is in the variety generated by f*[L*]. Further, by Lemma 4.7, the centre 
of E is equal to B. 

As f*: L* > f*[L*] is an isomorphism, (E,f*)is both a free central 
extension and an essential extension of L*. That (E, f) is a free central 
extension of L follows by Proposition 3.3. That (E, f) is an essential ex- 
tension of L follows from Lemma 2.11 (i) and the fact that the composition 
of essential extensions is an essential extension. That E is in the variety 
generated by L follows from the fact that E is in the variety generated 
by f*[L*], that f*[L*] is isomorphic to L* and that L* is in the variety 
generated by L, the latter being provided by Lemma 2.12. [] 

5. The existence of free central extensions. 

Definition 5.1. Let L be a lattice. For each a • N(L) define 

Aa= {(z,y)• L 2 :x+a-y-l-a}, Va = {(z,y)• L 2 :x.a-y.a}. 

Lemma 5.2. Let L be a lattice and a,b • N(L). 

(i) A a and •7 a are congruences on L. 
(ii) If a _< b, then V'a NAb = Oa,b. 
(iii) •7 a and h a are complementary in Con(L). 
(iv) Aa N A• = Aa5 and Aa + A• = Aa+5. 

We are using Oa,b to denote the congruence generated by (a, b) and Con(L) 
to denote the congruence lattice of L. 

Proof. (i) It is clear that Aa is an equivalence relation on L. Assume that 
(x, y) and (x', y')are in Aa. Then 

(x -t- x') -t- a -- (x -t- a) -t- (x' -t- a) -- (y -t- a) -t- (y' -t- a) -- (y -t- y') -t- a 

which implies that (x + x •, y + y•) is in Aa. Also, as a is neutral 

(xx') -t- a -- (x -t- a)(x' -t- a) -- (y -t- a)(y' -t- a) -- (yy') -9 a 

which implies that (xx •, yy•) is in Aa. Thus /ka is a congruence. A similar 
argument shows that •7 a is also a congruence. 
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(ii) It is clear that if a <_ b then (a, b) • Va • Ab, SO Oa,•, C_ Va • A•,. 
If (x,y) • •7,, • A•,, then 

x = x(x + b) = x(y + 

y - y(y q- b) - y(x q- b), and 

(xy) q- (xa) -- (xy) q- (ya). 

Using the last of these identities and the fact that a is neutral, we have 

x(y q- a) -- (xy) q- (xa) -- (xy) q- (ya) -- y(x q- a). 

Therefore 

•T -- x(y q- b)Oa,b x(y q- a) = y(x + a) Oa, b y(x q- b) -- y 

which implies that (x, y) • Oa,•. 
(iii) By part (ii) we have that •7o. •Ao. = Oa,a the zero of Con(L). For 

any x, y • L we have that 

•T Aa (.T q- a) Va (y + a) •a y. 

So •a • •a is the unit of Con(L). 
(iv) It is clear that if a • b, then •a • •b' It follows that •ab is 

contained in •a • •b and that •a • •b is contained in Aa+•- If (x, y) • 
•a • •b, then as a, b are neutral, it follows that 

x + (ab) = (x + a)(x + b) = (y + a)(y + b) = y + (ab) 

which implies that (x, y) • Aa•, and therefore Aa• = Aa • A•. We have 
only to show that Aa+• is contained in Aa + A•. For any x • L we have 
that 

X•a (x+a) A• (x+a+b) 

and therefore (x, x + a + b) • •a + •b. SO if (x, y) • Aa+•, then x + a + b = 
y + a + b, and therefore (x, y) • •a + •b. • 



680 JOHN HARDING 

Definition 5.3. Let L be a lattice, and define C to be the sublattice of 
Con(L) which is generated by {Aa, V'a'a C N(L)). Note that by Lemma 
5.2 (iii), C is a Boolean sublattice of Con(L). 

Definition 5.4. Define F to be all formal sums ¾•piOi where (0i)i is a 
partition of C and (pi)s is a family of elements of L. We define a relation 
_• on F by setting 

if there is a partition (Ak)K such that 

(i) (Ak)•: refines (Oi)I and ((•j)j. 
(ii) (pi,qj) c At if A• _< Oi, 

We say that a partition such as (A•)•: witnesses the equivalence Y'•piOi 
• qjqSj. Once we have shown that _• is an equivalence relation on F, we 
will denote the equivalence class of • piOi by [Y•. piO•]. 

Lemma 5.5. 

(i) If (A•)•: witnesses y•p•O• •_ Y'•.qjqSj and (5,•)xi is a refinement of 
(A•)•c, then (5,•)xi also witnesses 5-•.piOi •- E qjCJ. 

(ii) _• is an equivalence relation on F. 
(iii) If (Ak)x is a refinement of (0•)•, then for any family (pi)• in L there 

is a family (q•)•c in L with (A•)•c witnessing •p•O• _• 
(iv) For any al,... ,a n • F/_• there is a partition (Oi)• and elements 

J e L so that a j [Y'•. a•Oi]. a i 

(v) _•f (Ak)•: witnesses Ep•Oi -• •rjOj anc• ¾}•qiOi - ¾}•sjqSj, then 
( A• ) K also witnesses E (P• ' q• )Oi --• E (rj ' s• )Oj and E (p• + q• )O• 

Proof. (i) It is clear that (5,•)x/refines both (0i), and (½j)j. Suppose that 
5,• is non-zero and that 5,• < Oi, ½j. Choosing k so that 5,, < A• we have 
that A• < Oi, ½j. So (Pi,qj) • At, and as A t C_ 5'• we have (pi, qj) E •'•. 

(ii) •0 is clearly symmetric and (Oi)• witnesses Ep•O• •- Ep•O•, so we 
need only show that _ is transitive. Assume that 

(A•)•: witnesses 5-•.piOi -• Y•.qjOj and 
witnesses Eq½j rtCt. 
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Choose a common refinement (/•n)N of (Ak)K and (5,•)M. By part (i) we 
have 

witnesses both 

If/•n _< Oi, •kz, then choosing j so that •n _< ½j, we have (Pi, qj) E •t n and 
(qj,rt) • l•. Then as • is transitive, (pi,rz) • •. 

(iii) If 0 =• hk, set q• = Pi if h• _< Oi. If 0 = h• any choice for q• will 
suffice. 

(iv) Suppose that a j = [•qJq)Jl Choose (©i)I to be a common re- k kl' 

finement of the (•)•:3 and then apply part (iii). 
(v) We clearly have that (hk)•: refines both (Oi)i and (½j)j. If h• _< 

Oi, ½j, then 
(pi,rj) • At and (qi,$j) • At. 

As h[ is a congruence, it follows that 

(pi.qi,rj .sj) • • and (Pi +qi,rj + sj) • •. 

So (h•)•: witnesses •(pi 'qi)Oi -• y•(rj . sj)½j and Y•(pi +qi)Oi • y•(rj + 
[] 

Definition 5.6. Let a,b • F/ _•. By Lemma 5.5 (iv), we can find a 
partition (Oi)i and formal sums •-•Pi•, and • qiOi so that a = [Y•PiOi] and 
b = [• qiOi]. Define 

[EPiOi] + [EqiOi] : [E(Pi + qi)Oi] 
[EPiOi] ' [EqiOi] : [E(Pi ' qi)Oi]. 

Note that Lemma 5.5 (v) shows this definition is independent of the par- 
ticular choice of 

Lemma 5.7. Let a•,... ,a n • F/•_ and t be any n-ary lattice term. If 
J (Oi)i is a partition and aie L are such that a j [•-• then 

t(a I ,a n) -[y•t(a• a?)Oi] , ß ß ß • ß . . , ß 

Proof. This follows from Definition 5.6 by an obvious induction. [] 
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Lemma 5.8. Let L be a bounded lattice and let f: L > F/_• be defined 
by f(p) = [pAx]. 

(i) (F/_•, +, .) is a lattice. 
(ii) f is a bound preserving lattice embedding. 

(iii) f(a) = [1Aa + OVa] for each a E N(L). 
(iv) f is a central embedding. 
(v) f(p)f(a)f(b)' = [0Ab + p(Aa. Vb) + OVa] for b < a e N(L). 
(vi) For any basic partition (Aa•-V's•)• of C and any family of elements 

Pie L, [Epi(Aa,. Vb;)] = E[0Ab/ q-pi(Aa•' Vs,)+ OVa,:]. 
(vii) F/_• is generated by f[L] [3 B where B is the Boolean sublattice of 

Z(F/_•) generated by f[N(L)]. 

Proof. (i) By Lemma 5.7, F/_• satisfies all identities which hold in L. In 
particular, F/•_ satisfies the lattice identities. 

(ii) It follows from Lemma 5.7 that for any a e F/•_ that a = [1A•].a 
and a = [0A•] + a, so f preserves the bounds of L. Lemma 5.7 shows that 

[P/•I] q- [qA1]- [(P + q)Ax] and [P/•i]' [qA1]: [(P' q)A•] 
so f is a homomorphism. Finally, if [pAl] = [q/k1] , then there is a partition 
(Oi)• witnessing pal •_ qAx. So (p,q) • O• for all i • I. Therefore (p,q) • 
• 0• which implies that p is equal to q. So f is an embedding. 

(iii) {Aa, Va} witnesses 1Aa + OVa -• aAx. 
(iv) Let a be an element of N(L), and b = [Y]piOi],c = [•qiOi] be 

elements of F/•_. Using Lemma 5.5 (iii), we may assume that (Oi)• refines 
{Aa, Va}. Setting ri = I if Oi <_ Aa and ri = 0 if Oi _< V'a, we have that 
(Oi)•r witnesses 

1Aa + OVa -• •'•riOi. 
Therefore, by the third part of this Lemma, f(a) = [y•'• ViOl]. It then follows 
from Lemma 5.7 that the sublattice generated by f(a), b, c is distributive, 
so f(a) is neutral. Again using the third part of this Lemma, [0Aa + 1Va] 
is a complement of f(a), and therefore f(a) is central. 

(v) Note that {As,Aa ß Vs, Va} is a refinement of {Aa, Va} and 
{As, Vs}. Using the third part of this Lemma, 

f(a) = [lAb + l(Aa. X7b) + O•7a] 
f(b)' = [0As + l(Aa. Vs) + iV'a] and clearly 
f(p) = [pAs +p(Aa-Vs) +pVa]. 
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Our result then follows by Lemma 5.7. 
J Then for each (vi) For each j ß I set q• = 0 for all i • j and qj - pj. 

j ß I, (/•ai' •7b•:)I witnesses 

OAbj q- pj(Aaj ' X7bj) q- O•7aj "• y• j A qi ( ai ' Vbi)' 

Our result then follows from Lemma 5.7. 

(vii) As C is generated as a Boolean algebra by the sublattice D = 
{/•a : a ß N(L)}, Lemma 4.2 (iv) gives that every partition of C can be 
refined by a partition which is basic over D, i.e. a partition of the form 
(/ka•: ß •7b•)I where bi < ai ß N(L). Thus by Lemma 5.5 (iii), for each 
x ß F/•_ there is a representation 

X: [y•Pi(/•ai '•7bl) ] 
where (Aa•. ß Vb,)• is a basic partition and each Pi ß L. So by parts (v) and 
(vi) of this Lemma, 

X: E[0/•bi q- pi(/•al ' Vbl) q- 0Va•] ---- •-•.f(pi)f(ai)f(bi) t 

But f(pi) ß f[L] and by the fourth part of this Lemma, f(a).f(b) • is in the 
Boolean sublattice B of Z(F/_•) generated by f[N(L)]. Therefore F/_• is 
generated by fill •J B. [] 

Proposition 5.9. Let L be a bounded lattice. Then (F/_•, f) is a free 
central extension of L. 

Proof. This follows from Proposition 4.10 by Lemma 5.8 (iv) and (vii). [] 

Remark 5.10. The reader familiar with the Pierce sheaf will recognize F/_• 
as the algebra of global sections of the Pierce sheaf of the lattice L over 
the Stone space of C, where C is the Boolean sublattice of Con(L) defined 
in Definition 5.3. The reason why the map f is not an isomorphism, as 
one familiar with sheaves of rings might expect, is that the congruences in 
C do not permute. If L is not bounded, the global sections of this sheaf 
do not give the free central extension of L. In fact, the global sections of 
this sheaf need not be bounded. An example of this behaviour is provided 
by a lattice whose only neutral element is its unit. For background on the 
Pierce sheaf of a lattice, see [4], [6]. 
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6. Summary. 

Theorem 6.1. Every lattice has a free central extension. 

Proof. This follows by Proposition 5.9 and Proposition 3.3. [] 

Theorem 6.2. Let f: L > E be a central embedding. The following are 
equivalent. 

(i) (E, f) is a free central extension of L. 
(ii) E is generated by f[L]•JB where B is the Boolean sublattice of Z(E) 

generated by f[N(L)]. 
(iii) For any central map g : L > K there exists exactly one bound 

preserving map h : E • Ii' with ho f - g, and this map h is 
central. 

(iv) For any central map g: L • K there is exactly one central map 
h : E • K with h o f = g. 

Further, if these conditions are satisfied, then B is equal to the centre of E. 

Proof. (i) • (ii) Assume that (E, f) is a free central extension of L. Let 
F/•_ be the lattice constructed in Section 5 from the bounded lattice L* 
and let g: L* • F/_• be the embedding given in Section 5. Then by 
Proposition 5.9 we have that (F/•_, g) is a free central extension of L*. By 
Proposition 3.3 we have that (F/_•,g o ,œ) is a free central extension of L. 
But by the uniqueness of free central extensions given in Proposition 3.2 
there is an isomorphism i: F/•_ > E so that i o g o *L: f. By Lemma 5.8 
(vii) we have that F/•_ is generated by g[L*] U C, where C is the Boolean 
sublattice of Z(F/_•) generated by g[N(L*)]. It follows that E is generated 
by iog[L*]Wi[C]. As logo,z, = f, we have that E is generated by/[L]U B 
where B is the Boolean sublattice of Z(E) generated by f[N(L)]. 

(ii) • (i) This follows by Proposition 4.10, which also provides that 
B: z(E). 

(i) =• (iii) Let g: L > I( be central. As E is generated by f[L] U B 
there is at most one bound preserving map h: E > K with h o f = g. But 
(E, f) is a free central extension of L so there is a central map h: E > K 
such that h o f = g. 

(iii) =• (iv) This is trivial. 
(iv) =• (i). We must show that N(E): Z(E). Let (A,c•) be a free 

central extension of E. We will first show that (A, c• o f) is a free central 
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extension of L. Clearly c• o f is a central embedding. Let g: L • K be a 
central map. By assumption there is exactly one central map h: E • K 
with h o f = g. As (A, c•) is a free central extension of E there is a central 
mapq: A > K withqoc•= h. Thenqo(c•of) =hof =g. Suppose 
q•: A > K is a central map with q• o (c• o f) = g. Then q• o c•: E • K 
is central and (q'oc•)of = hof =g and hence q'oc•= h. As (A,c•) is 
a free central extension and q' o c• = q o c• = h we have that q' = q. Thus 
(A, c• o f) is a free central extension of L. 

As we have shown the equivalence of the first two parts of the Theo- 
rem, we have that A is generated by (c• o f)[L] U B where B is the Boolean 
sublattice of Z(A) generated by (c• o f)[N(L)]. Further B = Z(A). But 
the map f is central, so f[N(L)] C_ Z(E). The map c• is also central, so 
(o• o f)[N(L)] C_ c•[Z(E)] C_ Z(A). So c•[Z(E)] is a Boolean sublattice of 
Z(A) containing (c• o f)[N(L)] and therefore c•[Z(E)] = B = Z(A). Sup- 
pose n E E is neutral. Then c•(n) E A is central. So c•(n) ( c•[Z(E)]. As c• 
is an embedding, n • Z(E). Thus N(E) = Z(E). [] 

Theorem 6.3. The free central extension (E, f) of a lattice L is an essen- 
tial extension of L and lies in the variety generated by L. 

Proof. This follows by Theorem 6.2 and Proposition 4.10. [] 

By Lemma 2.8 the composition of neutral maps is a neutral map and 
the composition of central maps is a central map. Clearly the identity 
map of any lattice is neutral. The identity map of a lattice L is central iff 
N(L) - Z(L). We will call a lattice L with N(L) - Z(L) a central lattice. 
Clearly the class of all lattices with neutral maps forms a category œ and 
the class of all central lattices and central maps forms a category C. It is 
easy to see that ½ is a full subcategory of œ. We further have 

Theorem 6.4. The category C of central lattices and central maps is a 
reflective subcategory of the category œ of all lattices and neutral maps. 

Proof. By general considerations of reflectors (see [1], Theorem 2, pg. 28) it 
is enough to show that there is a function which assigns to every lattice A a 
central lattice 7•(A) and a function which assigns to every lattice A a neutral 
map •e(A): A • 7•(A) such that for every central lattice B and every 
neutral map f: A • B there exists a unique central map h: 7•(A) • B 
such that h o •e(A) = f. Let 7•(A) be some free central extension of A, 
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perhaps the lattice F/_• constructed in Section 5 from A*, and let q)• (A) 
be the central embedding of A into this free central extension. Once we 
note that any neutral map f: A > B into a central lattice is a central 
map, the above conditions follow at once from the definition of a free central 
extension. [] 
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