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1. Introduction

In the last twenty years non-additive set functions have played a major role in sev-
eral research areas, including Artificial Intelligence, Mathematical Economics, and
Bayesian Statistics, particularly in the area of upper and lower probabilities (see,
e.g., Grabisch et al. (1994), Schmeidler (1989), and Walley (1991) for an introduc-
tion to their use in these areas). The study of non-additive set functions is also
useful in interval computations where interval probabilities represent uncertainty.
Abandoning additivity is a very important departure from the classical case,
and it is natural to expect that several standard results will no longer hold in
this more general setting. In particular, this is the case for the classical Radon-
Nikodym theorem, a basic result in measure theory with very important applications
in probability theory. Several papers explored to which extent this failure occurs,
and provided conditions under which non-additive counterparts of this famous result
hold (see Graf (1981), Greco (1981a), and Nguyen et al. (1997)). In this paper we
study a version of the Radon-Nikodym Theorem, which is equivalent to the original
one in the classical setting, but different in the non-additive case. More precisely,
the classical result says that given any two countably additive set functions v and
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i defined on a o-algebra U, there exists a U-measurable function f : U — [0, 00)
such that

u(A) = /Afdu forall Ael (1)

provided that u << v (see next section). In the classical case this is equivalent to
saying that for all finite subalgebras U’ of U there exists a U'-measurable function
fu U — [0, 00) such that

u(A) :/ fudv  forall Aeld. (2)
A

However, these two conditions are no longer equivalent for non-additive set func-
tions, as will be seen later. In the paper we focus on this second version of the
Radon-Nikodym theorem, which we call the finite Radon-Nikodym property (ab-
breviated FRNP), and we explore its validity for non-additive set functions. Of
course, the absolute continuity condition p << v is no longer sufficient for (2).
However, our main result contains an interesting characterization of the FRNP,
and provides a simple condition that on top of absolute continuity is equivalent to
(2). Therefore, our result allows one to check easily when two set functions u and
v have the FRNP.

A useful secondary contribution of the paper is to show that, if two non-additive
set functions pu and v are such that either of (1) or (2) holds, then p is alternating
of infinite order whenever v is alternating of infinite order. This provides a very
simple way to generate new alternating of infinite order set functions from old ones.
Moreover, the same result applies to set functions monotone of infinite order, i.e.
belief functions. As an application, we show that all maxitive set functions*are
alternating of infinite order.

The paper is organized as follows. In the second section we give the necessary
background to make the paper reasonably self contained. In the third section we
prove an approximation result for the Choquet integral that we need later, but
which also seems of interest in itself. In the fourth section we prove that if two
set functions (i, v) have the Radon-Nikodym property (abbreviated RNP), i.e. (1)
above holds, and v is alternating of infinite order, then p must also be alternating of
infinite order. In the fifth section we make an observation which allows us to extend
the results of Section 4 to pairs of functions (u,v) which satisfy a weaker condition
than the RNP. This leads us to the definition of the local Radon-Nikodym property
and the finite Radon-Nikodym property. We then prove a simple characterization
of when two functions (i, r) have the finite Radon-Nikodym property. This is our
main result. We use this characterization in Section 6 to prove that any maxitive
function is alternating of infinite order. Finally, Section 7 details the relationships
existing between the three Radon-Nikodym properties that we consider in the paper.

*A set function v : i — [0, 00) is maxitive if u(A U B) = max{u(A), u(B)} for every A, B € U.
Maxitive set functions are important in fuzzy measure theory.
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2. Preliminaries

We begin with definitions of the various notions which will appear in the paper.
For a set U, we say that I/ is an algebra over U if U is a collection of subsets of U
which is closed under complementation and finite unions and intersections. Given
an algebra U over U, we say that a map v : U — [0, 00) is a capacity'if

(i) v(B) = 0.
(i) v(A) < v(B) it AC B.

A function f : U — [0,00) is said to be measurable with respect to U if for
every real number ¢ > 0 the set f![t,o0) is in /. For more general definitions
of measurability we refer the interested reader to Greco (1981b) and Denneberg
(1994).

Given an algebra U over U, a capacity v defined on U, and a function f which
is measurable with respect to U we define

/deVZ/OOOV({ue U: f(u) >t})dt.

This notion of integral is due to Choquet (1953). One should note that the function
g(t) =v({u € U : f(u) > t}) is well defined as f is measurable with respect to U.
Further, as v is monotone, the function g is nonincreasing. As any nonincreasing
function has an extended Riemann integral, the definition is valid. If fU fdv < o0,
we say that f is integrable.

Let u,v be capacities defined on an algebra U over a set U. We say that the
ordered pair (u,v) has the Radon-Nikodym property (abbreviated RNP) if there is
a function f : U — [0, o0), measurable with respect to U, such that

,u(A):/de forall Ae€U.
A

We will further say that p is absolutely continuous with respect to v over U, written
u << v, if v(A) = 0 impies u(A) = 0 for every A € U. In the classicalal setting
the Radon-Nikodym property is linked to absolute continuity by the following well
known result.

Theorem 2.1 Let U be a o-algebra over the set U and let pu, v be countably additive
set functions on U. Then (u,v) has the RNP iff u << v.

Given a capacity p on an algebra U, we say p is alternating of infinite order if

(7)< B (e

Ted
for every Aq,..., A, € U. Here ® denotes the collection of all non-empty subsets of
{1,...,n} and |I| denotes the cardinality of the set I. This notion is important in

tThis is also the usual definition of a fuzzy measure. Of course, even though we stick to the original
mathematical terminology, all our results hold for fuzzy measures as well.
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the theory of capacities and much of this paper shall deal with connections between
the RNP and set functions which are alternating of infinite order.
3. A Lemma

Here we establish, for the Choquet integral, a version of the classical result that the
integral of a function f may be approximated to an arbitrary degree of accuracy by
a simple function f’ < f. We think that this result is of some interest in itself.

Lemma 3.1 Let U be an algebra over a set U, v be a capacity on U, and f be
a function on U which is measurable with respect to U and satisfies fU fdv < oo.
Then for any Ay, ..., A, €U and any € > 0 there exists a map f' such that

(a) f' is measurable with respect to U.

(b) f' is simple.

(c) f'<F.

(d) fAi fldv < fAi fdv < fAi f'dv + € for each i <n.

Proof. We first prove the result in the case that our family A;,..., A, consists
only of a single set A. For each ¢ define

Ar={acA:fla)>1) and g(t) = v(A,).

Then as A; = AN f~'[t,00) we have that A; is in U. Note that g is a decreasing
function defined on the interval [0, c0), and hence is bounded above by g(0) = v(A).
Further, we have directly from the definition of g that

/Ooog(t)dt = /Afdu < 00.

Then, it is possible to find a number A such that

00 A
/ gdt < / gdt + €/4.
Jo Jo

We may further assume that A has been chosen so that g(#) > 0 for all £ < A\. Then
it is possible*to find a function g’ so that (i) ¢’ < g, (ii) ¢’ is strictly decreasing on
[0, A, (iii) ¢’ is continuous on [0, A], (iv) g(A) = 0 and (v)

3

%) A A
/ gdt < / gdt+e/4</ g'dt +¢/2.
0 0 0

fFirst find an appropriate simple function beneath g, then smooth the jump discontinuities with
nearly vertical line segments to obtain a continuous function. Finally, subtract an appropriate
linear function to ensure that we have a strictly decreasing function.
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As ¢' is strictly decreasing and continuous on [0, A] and ¢(0) = v(A), g(A) = 0 there
must be a function h : [0,v(A4)] — [0, A] which is the inverse of g. Clearly h is
strictly decreasing, its range is all of [0, A] and therefore h is also continuous. But

/0A g'(t)dt = /OV(A) h(x)dz.

As with any Riemann integrable function, we can find a simple function A’ < h such
that the integral of h' over [0,v(A)] is within €/2 of the integral of h. Assume that
0 =m0 < -+ <xp, =v(A) is the partition associated with the simple function h'.
We may clearly assume that ' is as large as possible with respect to this partition.
This means that

h(z) = h(z;) forall =z € [z 1,z

Therefore )

v(A) v(A)
/ hdx = Z(:UZ —x;1)h(x;) > / hdz — €/2.
0 0

i=1

Rearranging this sum we have that

v(A) n—1 v(A)
/0 ' (z)dz = Z zi(h(z;) — h(zip)) > /0 hdz — €/2. (3)

Note that 0 = h(z,) < - < h(z1), 80 U = Ap(s,) 2 -+ 2 Ap(s,). Next we define
f':U —[0,00) by setting

h(’El) ifue Ah(wl)

f’(u) _ h(’Eg) ifue Ah(wQ) — Ah(wl)
h(’En) ifue Ah(wn) — Ah(

Tp—1)

Then by the definition of A; we have that f' < f. Also, the inverse image under
f' of any interval [t,00) is of the form Aj(,,) and therefore f' is measurable with
respect to U. Surely f’ is simple. We have only to verify condition (d). But

/Af’d” - /OOO v({a € A: f'(a) > t})dt.

And as 0 = h(x,) < --- < h(z;) we have this integral equal to
n—l .h(zi)
> / v({a € A: f'(a) > t})dt.

i=1 7 h(wigr)

Which in turn is equal to
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Then as v(Ap(,,)) = g(h(z;)) = z; we have

n—1

fldv = "(h(x;) = h(zig1));.

A i=1

Comparing this with (3) gives that

/Af'dVS/AdeS/Af'dque.

Having established our result in the case that our family consists of only a single

set, we now consider the general case of a finite family of sets Ay,..., A,,. From
what we have shown we know that for each i < n we can find a simple function f;
with
/ fidv < / fdv < / fldv +e.
A; A; A;
Then take f’ to be the pointwise supremum of the f. O

4. The RNP and alternating functions

In this section we shall prove that if a pair of capacities (u,v) have the RNP, then
u is alternating of infinite order whenever v is alternating of infinite order. This
provides a very simple way to generate new alternating capacities from old ones.
It is important to note that the function f which realizes a pair (u,v) having the
RNP need only be integrable and not bounded.

Theorem 4.1 Suppose that the pair (u,v) has the RNP onUd. Then u is alternating
of infinite order whenever v is alternating of infinite order.

Proof. We first establish the result under the assumption that i/ is finite. Let f
be the ¢{-measurable function from U to the interval [0, co) with u(A) = [, fdv for
each A € U, or equivalently

ua) = [ ofae as s >

As the algebra U is finite, the function f can take only finitely many values, say
G <--- < B If we set By = 0 we may write the above integral as

n B
w0 =3 [ vae as @) 2 at
k=17 Pr—1

Defining By, = {u € U : f(u) > B} for each k < n we then have

n

p(A) = Z(ﬂk — Be—1)v(Br N A). (4)

k=1

As this equation is valid for all A € U we have in particular
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(ﬂA) ;ﬂk—ﬁk v (BkmﬁAZ). (5)

i=1

But By N(; 4i = (N;(Bx N 4;), and as v is alternating of infinite order we have

v (Bk N (n] AZ-) > o(=nty (U(B,c N AZ-)) . (6)

i=1 Ie® I

Here @ is used to denote all non-empty subsets of {1,...,n}. Thenas |J;(BxNA4;) =
By, N{J; A; we may substitute (6) into (5) to obtain

z (ﬂ Ai> <Y B =B) Yo (1) (Bk n UAZ) :
i=1 k=1 Ied I
Rearranging this sum we have
I (ﬂ Ai) > (- ‘I‘HZ Br — Br—1)v (BkﬂUAi> :
i=1 Ieo 1

Which by (4) gives

o) < gevmon(ya).

This establishes our result in the case that i/ is finite.

We now consider the general case in which &/ may be infinite. Given A;,..., A, €
U, the subalgebra F of U generated by A,,..., A, is finite. So by Lemma 3 1, for
each e > 0 we can find a simple function f' < f, measurable with respect to U, such
that

/f’dl/g/fdl/g/f'du+e forall AeF.
A JA JA

Then as f' is simple we can find a finite subalgebra G of ¢/ such that (i) G contains
F and (ii) f’ is measurable with respect to G. Define o : G — [0, 00) by setting

4= /A fldv.

Unraveling the definitions

o(A) < u(A) <o(A)+e forall AeF. (7)

But by definition (o, v) has the RNP on the finite algebra G. And as v is alternating
of infinite order on U it is also alternating of infinite order on G. As we have
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established our result for the finite case, we have that o is alternating of infinite
order on G. Hence

@prly)

lIed

Here @ is used to denote the collection of all non-empty subsets of {1,...,n}.

But by (7)
(009 (04)-

and as there are 2" — 1 sets in ®

S (1), (UA> S (-pl (LIJAZ->+(2”1)€.

Ied lIed

Together with (7) and (8), this implies

(f9)< g n{ye)

lIed I

As this holds for any € > 0 our result follows. |

Remark. Theorem 4.1 clearly holds for k-alternating set functions as well, where
k is any natural number. Moreover, Theorem 4.1 also holds for capacities which are
monotone of infinite order’(i.e., belief functions). Indeed, proceeding as in the last
proof it can be proved that if (i, v) has the RNP on U, then u is monotone of infinite
order (k order) whenever v is monotone of infinite order (k order). Again, this is a
very simple way to generate new k-monotone capacities (e.g. belief functions) from
old ones.

5. The Local Radon-Nikodym property

In this section we define the local Radon-Nikodym property and the finite Radon-
Nikodym property and show that the result of the previous section applies to a pair
of capacities (u,v) which satisfies the local or finite Radon-Nikodym property. We
also derive a simple characterization of the finite Radon-Nikodym property, which
will be used in the next section to show that any maxitive function is alternating
of infinite order.

§ A capacity is monotone of infinite order if

w402 X0 ) a0
i=1 Ied® I
for every Aj,..., A, € U. It is easy to check that a capacity v is alternating of infinite order if

and only if its dual capacity 7, defined by v(A) =1 — v(A€) for all A € U, is monotone of infinite
order.
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Definition Let u,v be capacities on an algebra U. For a subalgebra V of U we say
that (u,v) have the RNP on V if the restrictions of u,v to V have the RNP. This
means that there is a function f which is measurable with respect to V with

u(A) = /Afdu forall A e V.

(i) We say that (u,v) have the local Radon-Nikodym property (abbreviated LRNP)
if every finite collection of subsets of U is contained in a subalgebra on which

(u,v) have the RNP.

(ii) We say that (i, v) have the finite Radon-Nikodym property (abbreviated FRNP)
if (1, v) have the RNP on every finite subalgebra of U.

For countably additive set functions defined on o-algebras the properties RNP,
LRNP, and FRNP are all equivalent, and by the classical Radon-Nikodym Theorem
they hold if and only if y << v. If the set functions are finitely additive, then LRNP
and FRNP are equivalent, and they hold if and only if 4 << v. However, they are
no longer equivalent to the RNP, which is a stronger property in the finitely additive
case (cf. Theorem 7.1). For capacities the only implications that hold are RNP =
LRNP and FRNP = LRNP. In the last section we shall give examples which show
that there are no other logical relationships between these notions. But first, we
prove a version of Theorem 4.1 for the LRNP.

Theorem 5.1 Suppose that the pair (u,v) has the LRNP on U. Then u is alter-
nating of infinite order whenever v is alternating of infinite order.

Proof. Given Ay,..., A, in U find a subalgebra U’ on which (i, v) have the RNP.
As v is alternating of infinite order on I/ it is also alternating of infinite order on U’.
By Theorem 4.1 it follows that u is also alternating of infinite order on U’. Then

as A, ..., A, are all elements of U’ we have
u (ﬂ Az‘) <> (=nlHy <U Az‘) :
i=1 Ied 1
where @ is the collection of all non-empty subsets of {1,...,n}. As this is valid for
any Ayp,..., A, in U we have that y is alternating of infinite order on U. O

If there is a simple characterization of the LRNP it has eluded us. However,
we do have a simple characterization of the FRNP and hence a simple condition
sufficient to guarantee the LRNP. Before describing this result, we introduce some
notation. We say that a capacity v, defined on an algebra i/, is null additive if
v(A) = 0 implies ¥(AU B) = v(B) for all A, B € U. Note that if v is null additive,
then for any integrable function f

v(A) = 0 implies / fdv = fdv forall A, Bel.
B B\A
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Therefore, if f, f' are integrable functions such that {z : f(z) # f'(z)} is contained
in some A € U with v(A) =0, then [, fdv = [, f'dv for all B e U.
If u, v are capacities on an algebra U we define v : Y — [0, 00) by setting

A)Jv(A ifv(A) #0
V(A):{g( A iquA;:O

Note that if y << v then p(A) = v(A)v(A) for all A € U.

Theorem 5.2 Let u,v be capacities defined on an algebra U. Then the first condi-
tion below implies the second. If we assume that v is null additive, then the second
condition implies the first (and hence that p is null additive).

(i) p << v and for all A, B disjoint sets in U

Y(A) <v(B) = u(AU B) — u(B) = v(A)[v(AU B) — v(B)].
(ii) (w,v) have the FRNP.

Proof. (i) = (ii). Let F be a finite subalgebra of Y. As the atoms of F partition
U we may define a function f : U — [0,00) by setting f(z) = v(A) if A is an
atom containing x. Clearly f is F-measurable. We prove by induction on n that if
Aq,..., A, are distinct atoms of F with v(A4;) < --- < y(A4,) then

n

(a) if n > 2, then v(A4;) < 7(U Ap).

n n n n

(b) v(Av({J A) = u(lJ 4) — ([ 4) +v(Anw( 49

i=1 i=1 =2 i=2

n

(c) u(A) = [, fdv where A = U A;.
i=1
As every element of F can be expressed as the union of such an indexed family, this
claim will establish our result.
n = 1. Part (a) is vacuous. Asv(f)) = 0 part (b) reduces to showing (41 )v(4;) =
(A1) which follows as p << v. And similarly part (c) follows as

(A1)
| e e 4 1@ 2 e = anuan.

. Set B = |J!_, A;. To establish part (a) note that if  is in B then
A;) for some i > 2 and in particular f(x) > v(A;). The indexed family of
atoms As, ..., A, satisfies our inductive hypothesis and therefore u(B) = [, fdv.

~ N

(A1)
[ gdvz [ wta € B @) > e =2 (A)0(E)
J B 0
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we have that u(B) > ~v(A)v(B). If v(B) # 0 division gives v(B) > ~v(A;). If
v(B) = 0 then v(Ay) = 0 and hence y(A4s) = 0. But y(41) < v(A2). In any event,
part (a) is established. Note that A; and B are disjoint and we have just shown
that y(A41) < v(B). So part (b) follows from our hypothesis (i). To establish part
(c) note that [, fdv is equal to

7(Ar) n n ) n
/0 v({z € U Ai s f(z) > t))dt + Z/ v({z € U A s f(z) > t))dt.

q=2 FY(AQ*I)

7(Aq

Which in turn is equal to

(A (U Ai) + ) [7(Ay) — (4 1)]v U Ai |-

Note that this expression is valid even if v(A4,_1) = v(A4,) for some g. Rewriting,
this expression is equal to

dovAgr [ UA ] =D v [ U A
g=1 i=gq 9=2 i=q

Using the instance of part (b) we have just established as well as other instances
which follow from the inductive hypothesis on the indexed family A4,,..., A, gives

the above expression equal to

n n n

SlelUA ] =l U A +rv@)v| U 4 —ZW(Aqfl)V .UAi

=1 i=q i=g+1 i=g+1

Which simplifies to

3 {u : Ail —p Lnj A; ] ;
qg=1 [ i=q i=g+1 J
which is equal simply to u(o Ap).

i=1
(ii) = (i). Surely if (u,v) have the FRNP then p << v. Suppose that A, B are

disjoint sets with v(A) < v(B). Let F be the subalgebra of U generated by A, B
and let f : U — [0, 00) be an F-measurable function with

w(F) = / fdv forall FeF.
F
As A, B are atoms of F, or empty, it follows that the restriction of f to A must be

constant, as is the restriction of f to B. If v(A) = 0 then the particular value f
takes on A is irrelevant to the above formula, as v is null additive. But if v(A4) #0
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then it follows easily that f must take the constant value y(A) on A. Therefore
we may assume that f(z) = y(A) for all z € A and similarly f(z) = v(B) for all
x € B. As we assumed that v(A) < (B) we have that u(A U B) is equal to

v(A) v(B)
/ v({x € AUB : f(z) > t})dt -I-/ v({x € AUB: f(z) > t})dt.
Jo 7(A)

Which in turn is equal to
Y(A)v(AU B) + (v(B) = v(A)v(B).

Note that this equality holds even if y(A) = v(B). As u << v we have y(B)v(B) =
u(B) and therefore

(AU B) — u(B) = 1(A)W(AU B) - v(B)] 0

6. Maxitive set functions

We now give an application of the results of the previous section. In particular, we
show that maxitive set functions, an important class of capacities, are alternating
capacities of infinite order.

Definition Given an algebra U, we say that a set function p is mazxitive on U if

u(AU B) = max{u(A), u(B)} for every A,B € U.

As we shall see, maxitive set functions on U are related to a particular set
function I'yy which is defined by setting

1 ifA
F“(A):{ 0 ;fAig

We shall often refer to I'yy as I' when the algebra U is clear from the context.

Lemma 6.1 For any capacity p onU, the pair (u,T') has the FRNP iff u is mazitive.

Proof. We first show that if y is maxitive, then (u, ") has FRNP. Surely p << T.
Assume A, B are disjoint sets. We must show

V(A) <v(B) = (AU B) — u(B) = v(A)[T(AU B) - T(B)].

Assume y(A) < v(B). This implies u(A) < u(B) even in the case that one of
A, B is the emptyset. Then as p is maxitive u(A U B) = u(B). Thus u(AU B) —
w(B) = 0. If either A, B is the emptyset, then v(A) = 0. If neither A, B is the
emptyset then I'(AU B) — I'(B) = 0.

Next we show that if (u,I') have the FRNP then p is maxitive. Assume that
u(A) < wp(B). If B is empty, then u(A U B) = pu(A) = 0 and this is equal to the
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maximum of {u(A), u(B)}. If B is not empty, then by the above characterization
of the FRNP we have

H(AU B) — u(B) = 1(A)[L(AU B) — I(B)].

And as B # () we have '(AU B) — I'(B) = 0. Thus u(AU B) = u(B) and as
w(B) = max{u(A), u(B)} our result is established. O

Using Theorem 5.1 we obtain an alternative proof of the following result given
in Nguyen et al. (1997).

Theorem 6.2 If u is mazitive on U, then u is alternating of infinite order.

Proof. As p is maxitive, the pair (u, ') has the FRNP and hence the LRNP. Once
it is established that T is alternating of infinite order on U, our result will follow
from Theorem 5.1. It is not difficult to give an elementary proof of this based on
the fact that for any n > 1 there are exactly as many subsets of {1,...,n} of even
cardinality as odd. But we shall instead direct the reader to the more general result
contained in Proposition 3 of Marinacci (1996). O

7. Some counter-examples

In this section we show that RNP # FRNP and FRNP # RNP. In view of the fact
that RNP = LRNP and FRNP = LRNP this also provides that LRNP # RNP
and LRNP # FRNP.

Theorem 7.1 Let L be the Lebesgue measurable subsets of the real interval (0,1)
and v be Lebesgue measure on L. There exists a map p: L —> [0,1] such that

(i) u is monotone and u(P) = 0.
(il) w is finitely additive.

(iil) p<<v

(v) u takes only the values 0 and 1.

(
(

Proof. Let 7 = {A € £ : v(A) = 0}, i.e. T is all sets of Lebesgue measure zero.
For each natural number n > 1 define a subset A,, by setting

,v) has the FRNP.

)

)

(iv) p is not countably additive.
)

(vi) (u

(vii) (u,v) does not have the RNP.

1
n+1’

1
=) for n>1.
n

A, =]

Obviously the A,,’s are a countable family of pairwise disjoint Lebesgue measurable
sets whose union is all of (0,1). Consider the set
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J=TU{A, :n>1}

No finite union of members of 7 equals all of (0,1) and 7 is contained in £. Thus
J generates a proper ideal of £ and hence is contained in a maximal proper ideal
P of L. Note that as P is a maximal proper ideal of £ we have that for any A € £
exactly one of A and A€ is in P. The notation A° denotes the complement, of the
set A. So we can define a map u: £ — [0, 1] by setting

0 ifAeP
“(A)_{ 1 ifA¢gP

It is well known that p is a homomorphism from £ to the two element Boolean
algebra {0,1}. Then considered as a set function, it follows that p is monotone,
u(@) = 0, and p is finitely additive. But there is a countable family of pairwise
disjoint sets A, in P whose union is not in P. So u is not countably additive. Clearly
u takes only the values 0 and 1, and as P was constructed to contain all sets of
Lebesgue measure zero, u << v. Thus the first five properties have been established.
The sixth property follows from the finite additivity of 4 and v. We have only to
show that (u,v) does not have the RNP. Suppose that f: (0,1) — [0,00) is an £
measurable function. Define a map 7 : £L — [0, 00) by setting

m(4) = /A fdv.

Translating the definition of this integral we have
w(A) :/ v({a€ A: f(a) > t})dt.
0

As v is usual Lebesgue measure, fooo v({a € A: f(a) > t})dt is nothing other the
usual Lebesgue integral. But the Lebesgue integral is countably additive, more
precisely, the function 7 defined above is countably additive. Thus @ could not
possibly equal p as u is not countably additive. So (u,v) does not have the RNP.
O

Having shown that FRNP % RNP, even for finitely additive functions, we next
provide an example that shows RNP # FRNP, even for finite algebras.

Theorem 7.2 There is an eight element algebra U and maps p,v : U — [0,00) so
that (u,v) has the RNP but (u,v) does not have the FRNP.

Proof. Let A, B, C be any disjoint non-empty sets. Let U be their union and ¢ be
the algebra of subsets of U generated by A, B,C. Then

U=1{0,A,B,C,AUB,AUC,BUC,U}.
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Define v : U — [0, 0) by specifying v(f) = 0, v(4) = 1, v(B) = 1, v(C) = 2,

14

(AUB)=1,v(AUC) =2, v(BUC) =2and v(U) = 3. As A, B,C partition U

we may define a function f: U — [0, 00) by setting

1 ifzeA
fx)=< 2 ifzeB
3 ifzeC

Then f is 4-measurable. Define p : tf — [0, 00) by setting u(A) = [, fdv. By our
construction, we have (u,v) has the RNP. We need a few calculations.

3
0

u(O):/Cfdu:/ v(C)dt = 3 x 2 = 6.

u(AuB):/0 I/(AUB)dt+/12V(B)dt:1+1:2.

u(U):/Olu(U)dt+/12u(BuC)dt+/ju(C)dt:3+2+2:7,

Recall that v(C) = 2, v(AU B) = 1 and v(U) = 3. Therefore v(C) = 3 and

v

(AUB) =2. So y(AU B) < v(C). But replacing the above values yields

p(U) = w(C) # (AU B)[p(U) — v(C)].

As v is null additive, Theorem 5.2 proves that (u,v) does not have the FRNP. O
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