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Local Radon-Nikodym Derivatives of Set FunctionsJOHN HARDINGNew Mexico State University, Las Cruces, NM 88003, USAE-mail: jharding@nmsu.eduMASSIMO MARINACCIUniversity of Toronto, Toronto, Canada, M5S 3G7E-mail: massimo@chass.utoronto.caNHU T. NGUYENNew Mexico State University, Las Cruces, NM 88003, USAE-mail: nnguyen@nmsu.eduandTONGHUI WANGNew Mexico State University, Las Cruces, NM 88003, USAE-mail: twang@nmsu.eduReceived 17 April 1997RevisedKeywords: Alternating of in�nite order; Belief functions; Capacities; Choquet integral;Maxitive functions; Radon-Nikodym derivatives.1. IntroductionIn the last twenty years non-additive set functions have played a major role in sev-eral research areas, including Arti�cial Intelligence, Mathematical Economics, andBayesian Statistics, particularly in the area of upper and lower probabilities (see,e.g., Grabisch et al. (1994), Schmeidler (1989), and Walley (1991) for an introduc-tion to their use in these areas). The study of non-additive set functions is alsouseful in interval computations where interval probabilities represent uncertainty.Abandoning additivity is a very important departure from the classical case,and it is natural to expect that several standard results will no longer hold inthis more general setting. In particular, this is the case for the classical Radon-Nikodym theorem, a basic result in measure theory with very important applicationsin probability theory. Several papers explored to which extent this failure occurs,and provided conditions under which non-additive counterparts of this famous resulthold (see Graf (1981), Greco (1981a), and Nguyen et al. (1997)). In this paper westudy a version of the Radon-Nikodym Theorem, which is equivalent to the originalone in the classical setting, but di�erent in the non-additive case. More precisely,the classical result says that given any two countably additive set functions � and1



2 Local Radon-Nikodym Derivatives of Set Functions� de�ned on a �-algebra U , there exists a U-measurable function f : U �! [0;1)such that �(A) = ZA fd� for all A 2 U (1)provided that � << � (see next section). In the classical case this is equivalent tosaying that for all �nite subalgebras U 0 of U there exists a U 0-measurable functionfU 0 : U �! [0;1) such that�(A) = ZA fU 0d� for all A 2 U 0: (2)However, these two conditions are no longer equivalent for non-additive set func-tions, as will be seen later. In the paper we focus on this second version of theRadon-Nikodym theorem, which we call the �nite Radon-Nikodym property (ab-breviated FRNP), and we explore its validity for non-additive set functions. Ofcourse, the absolute continuity condition � << � is no longer su�cient for (2).However, our main result contains an interesting characterization of the FRNP,and provides a simple condition that on top of absolute continuity is equivalent to(2). Therefore, our result allows one to check easily when two set functions � and� have the FRNP.A useful secondary contribution of the paper is to show that, if two non-additiveset functions � and � are such that either of (1) or (2) holds, then � is alternatingof in�nite order whenever � is alternating of in�nite order. This provides a verysimple way to generate new alternating of in�nite order set functions from old ones.Moreover, the same result applies to set functions monotone of in�nite order, i.e.belief functions. As an application, we show that all maxitive set functions�arealternating of in�nite order.The paper is organized as follows. In the second section we give the necessarybackground to make the paper reasonably self contained. In the third section weprove an approximation result for the Choquet integral that we need later, butwhich also seems of interest in itself. In the fourth section we prove that if twoset functions (�; �) have the Radon-Nikodym property (abbreviated RNP), i.e. (1)above holds, and � is alternating of in�nite order, then � must also be alternating ofin�nite order. In the �fth section we make an observation which allows us to extendthe results of Section 4 to pairs of functions (�; �) which satisfy a weaker conditionthan the RNP. This leads us to the de�nition of the local Radon-Nikodym propertyand the �nite Radon-Nikodym property. We then prove a simple characterizationof when two functions (�; �) have the �nite Radon-Nikodym property. This is ourmain result. We use this characterization in Section 6 to prove that any maxitivefunction is alternating of in�nite order. Finally, Section 7 details the relationshipsexisting between the three Radon-Nikodym properties that we consider in the paper.�A set function � : U �! [0;1) is maxitive if �(A [ B) = maxf�(A); �(B)g for every A;B 2 U .Maxitive set functions are important in fuzzy measure theory.



International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 32. PreliminariesWe begin with de�nitions of the various notions which will appear in the paper.For a set U , we say that U is an algebra over U if U is a collection of subsets of Uwhich is closed under complementation and �nite unions and intersections. Givenan algebra U over U , we say that a map � : U �! [0;1) is a capacityyif(i) �(;) = 0.(ii) �(A) � �(B) if A � B.A function f : U �! [0;1) is said to be measurable with respect to U if forevery real number t � 0 the set f�1[t;1) is in U . For more general de�nitionsof measurability we refer the interested reader to Greco (1981b) and Denneberg(1994).Given an algebra U over U , a capacity � de�ned on U , and a function f whichis measurable with respect to U we de�neZU fd� = Z 10 �(fu 2 U : f(u) � tg)dt:This notion of integral is due to Choquet (1953). One should note that the functiong(t) = �(fu 2 U : f(u) � tg) is well de�ned as f is measurable with respect to U .Further, as � is monotone, the function g is nonincreasing. As any nonincreasingfunction has an extended Riemann integral, the de�nition is valid. If RU fd� <1,we say that f is integrable.Let �; � be capacities de�ned on an algebra U over a set U . We say that theordered pair (�; �) has the Radon-Nikodym property (abbreviated RNP) if there isa function f : U �! [0;1), measurable with respect to U , such that�(A) = ZA fd� for all A 2 U :We will further say that � is absolutely continuous with respect to � over U , written� << �, if �(A) = 0 impies �(A) = 0 for every A 2 U . In the classicalal settingthe Radon-Nikodym property is linked to absolute continuity by the following wellknown result.Theorem 2.1 Let U be a �-algebra over the set U and let �; � be countably additiveset functions on U . Then (�; �) has the RNP i� � << �.Given a capacity � on an algebra U , we say � is alternating of in�nite order if� n\i=1Ai! �XI2�(�1)jIj+1� [I Ai!for every A1; : : : ; An 2 U . Here � denotes the collection of all non-empty subsets off1; : : : ; ng and jI j denotes the cardinality of the set I . This notion is important inyThis is also the usual de�nition of a fuzzy measure. Of course, even though we stick to the originalmathematical terminology, all our results hold for fuzzy measures as well.



4 Local Radon-Nikodym Derivatives of Set Functionsthe theory of capacities and much of this paper shall deal with connections betweenthe RNP and set functions which are alternating of in�nite order.3. A LemmaHere we establish, for the Choquet integral, a version of the classical result that theintegral of a function f may be approximated to an arbitrary degree of accuracy bya simple function f 0 � f . We think that this result is of some interest in itself.Lemma 3.1 Let U be an algebra over a set U , � be a capacity on U , and f bea function on U which is measurable with respect to U and satis�es RU fd� < 1.Then for any A1; : : : ; An 2 U and any � > 0 there exists a map f 0 such that(a) f 0 is measurable with respect to U .(b) f 0 is simple.(c) f 0 � f .(d) RAi f 0d� � RAi fd� � RAi f 0d� + � for each i � n.Proof. We �rst prove the result in the case that our family A1; : : : ; An consistsonly of a single set A. For each t de�neAt = fa 2 A : f(a) � tg and g(t) = �(At):Then as At = A \ f�1[t;1) we have that At is in U . Note that g is a decreasingfunction de�ned on the interval [0;1), and hence is bounded above by g(0) = �(A).Further, we have directly from the de�nition of g thatZ 10 g(t)dt = ZA fd� <1:Then, it is possible to �nd a number � such thatZ 10 gdt < Z �0 gdt+ �=4:We may further assume that � has been chosen so that g(t) > 0 for all t � �. Thenit is possiblezto �nd a function g0 so that (i) g0 � g, (ii) g0 is strictly decreasing on[0; �], (iii) g0 is continuous on [0; �], (iv) g(�) = 0 and (v)Z 10 gdt < Z �0 gdt+ �=4 < Z �0 g0dt+ �=2:zFirst �nd an appropriate simple function beneath g, then smooth the jump discontinuities withnearly vertical line segments to obtain a continuous function. Finally, subtract an appropriatelinear function to ensure that we have a strictly decreasing function.



International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 5As g0 is strictly decreasing and continuous on [0; �] and g(0) = �(A), g(�) = 0 theremust be a function h : [0; �(A)] �! [0; �] which is the inverse of g. Clearly h isstrictly decreasing, its range is all of [0; �] and therefore h is also continuous. ButZ �0 g0(t)dt = Z �(A)0 h(x)dx:As with any Riemann integrable function, we can �nd a simple function h0 � h suchthat the integral of h0 over [0; �(A)] is within �=2 of the integral of h. Assume that0 = x0 < � � � < xn = �(A) is the partition associated with the simple function h0.We may clearly assume that h0 is as large as possible with respect to this partition.This means that h(x) = h(xi) for all x 2 [xi�1; xi]:Therefore Z �(A)0 h0dx = n�1Xi=1(xi � xi�1)h(xi) > Z �(A)0 hdx� �=2:Rearranging this sum we have thatZ �(A)0 h0(x)dx = n�1Xi=1 xi(h(xi)� h(xi+1)) > Z �(A)0 hdx� �=2: (3)Note that 0 = h(xn) < � � � < h(x1), so U = Ah(xn) � � � � � Ah(x1). Next we de�nef 0 : U �! [0;1) by settingf 0(u) =8>>><>>>: h(x1) if u 2 Ah(x1)h(x2) if u 2 Ah(x2) �Ah(x1)...h(xn) if u 2 Ah(xn) �Ah(xn�1)Then by the de�nition of At we have that f 0 � f . Also, the inverse image underf 0 of any interval [t;1) is of the form Ah(xi) and therefore f 0 is measurable withrespect to U . Surely f 0 is simple. We have only to verify condition (d). ButZA f 0d� = Z 10 �(fa 2 A : f 0(a) � tg)dt:And as 0 = h(xn) < � � � < h(x1) we have this integral equal ton�1Xi=1 Z h(xi)h(xi+1) �(fa 2 A : f 0(a) � tg)dt:Which in turn is equal to n�1Xi=1 (h(xi)� h(xi+1))�(Ah(xi)):



6 Local Radon-Nikodym Derivatives of Set FunctionsThen as �(Ah(xi)) = g(h(xi)) = xi we haveZA f 0d� = n�1Xi=1 (h(xi)� h(xi+1))xi:Comparing this with (3) gives thatZA f 0d� � ZA fd� � ZA f 0d� + �:Having established our result in the case that our family consists of only a singleset, we now consider the general case of a �nite family of sets A1; : : : ; An. Fromwhat we have shown we know that for each i � n we can �nd a simple function f 0iwith ZAi f 0id� � ZAi fd� � ZAi f 0id� + �:Then take f 0 to be the pointwise supremum of the f 0i . 24. The RNP and alternating functionsIn this section we shall prove that if a pair of capacities (�; �) have the RNP, then� is alternating of in�nite order whenever � is alternating of in�nite order. Thisprovides a very simple way to generate new alternating capacities from old ones.It is important to note that the function f which realizes a pair (�; �) having theRNP need only be integrable and not bounded.Theorem 4.1 Suppose that the pair (�; �) has the RNP on U . Then � is alternatingof in�nite order whenever � is alternating of in�nite order.Proof. We �rst establish the result under the assumption that U is �nite. Let fbe the U-measurable function from U to the interval [0;1) with �(A) = RA fd� foreach A 2 U , or equivalently�(A) = Z 10 �(fa 2 A : f(a) � tg)dt:As the algebra U is �nite, the function f can take only �nitely many values, say�1 � � � � � �n. If we set �0 = 0 we may write the above integral as�(A) = nXk=1 Z �k�k�1 �(fa 2 A : f(a) � tg)dt:De�ning Bk = fu 2 U : f(u) � �kg for each k � n we then have�(A) = nXk=1(�k � �k�1)�(Bk \ A): (4)As this equation is valid for all A 2 U we have in particular



International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 7� n\i=1Ai! = nXk=1(�k � �k�1)� Bk \ n\i=1Ai! : (5)But Bk \TI Ai = TI(Bk \ Ai), and as � is alternating of in�nite order we have� Bk \ n\i=1Ai! �XI2�(�1)jIj+1� [I (Bk \ Ai)! : (6)Here � is used to denote all non-empty subsets of f1; : : : ; ng. Then asSI(Bk\Ai) =Bk \SI Ai we may substitute (6) into (5) to obtain� n\i=1Ai! � nXk=1(�k � �k�1)XI2�(�1)jIj+1� Bk \[I Ai! :Rearranging this sum we have� n\i=1Ai! �XI2�(�1)jIj+1 nXk=1(�k � �k�1)� Bk \[I Ai! :Which by (4) gives � n\i=1Ai! �XI2�(�1)jIj+1� [I Ai! :This establishes our result in the case that U is �nite.We now consider the general case in which U may be in�nite. Given A1; : : : ; An 2U , the subalgebra F of U generated by A1; : : : ; An is �nite. So by Lemma 3.1, foreach � > 0 we can �nd a simple function f 0 � f , measurable with respect to U , suchthat ZA f 0d� � ZA fd� � ZA f 0d� + � for all A 2 F :Then as f 0 is simple we can �nd a �nite subalgebra G of U such that (i) G containsF and (ii) f 0 is measurable with respect to G. De�ne � : G �! [0;1) by setting�(A) = ZA f 0d�:Unraveling the de�nitions�(A) � �(A) � �(A) + � for all A 2 F : (7)But by de�nition (�; �) has the RNP on the �nite algebra G. And as � is alternatingof in�nite order on U it is also alternating of in�nite order on G. As we have



8 Local Radon-Nikodym Derivatives of Set Functionsestablished our result for the �nite case, we have that � is alternating of in�niteorder on G. Hence � n\i=1Ai! �XI2�(�1)jIj+1� [I Ai! : (8)Here � is used to denote the collection of all non-empty subsets of f1; : : : ; ng.But by (7) � n[i=1Ai! � � n[i=1Ai! � � n[i=1Ai!+ �and as there are 2n � 1 sets in �XI2�(�1)jIj+1� [I Ai! �XI2�(�1)jIj+1� [I Ai!+ (2n � 1)�:Together with (7) and (8), this implies� n\i=1Ai! �XI2�(�1)jIj+1� [I Ai!+ 2n�:As this holds for any � > 0 our result follows. 2Remark. Theorem 4.1 clearly holds for k-alternating set functions as well, wherek is any natural number. Moreover, Theorem 4.1 also holds for capacities which aremonotone of in�nite orderx(i.e., belief functions). Indeed, proceeding as in the lastproof it can be proved that if (�; �) has the RNP on U , then � is monotone of in�niteorder (k order) whenever � is monotone of in�nite order (k order). Again, this is avery simple way to generate new k-monotone capacities (e.g. belief functions) fromold ones.5. The Local Radon-Nikodym propertyIn this section we de�ne the local Radon-Nikodym property and the �nite Radon-Nikodym property and show that the result of the previous section applies to a pairof capacities (�; �) which satis�es the local or �nite Radon-Nikodym property. Wealso derive a simple characterization of the �nite Radon-Nikodym property, whichwill be used in the next section to show that any maxitive function is alternatingof in�nite order.xA capacity is monotone of in�nite order if�( n[i=1Ai) �XI2�(�1)jIj+1�(\I Ai)for every A1; : : : ; An 2 U . It is easy to check that a capacity � is alternating of in�nite order ifand only if its dual capacity ��, de�ned by ��(A) = 1� �(Ac) for all A 2 U , is monotone of in�niteorder.



International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 9De�nition Let �; � be capacities on an algebra U . For a subalgebra V of U we saythat (�; �) have the RNP on V if the restrictions of �; � to V have the RNP. Thismeans that there is a function f which is measurable with respect to V with�(A) = ZA fd� for all A 2 V :(i) We say that (�; �) have the local Radon-Nikodym property (abbreviated LRNP)if every �nite collection of subsets of U is contained in a subalgebra on which(�; �) have the RNP.(ii) We say that (�; �) have the �nite Radon-Nikodym property (abbreviated FRNP)if (�; �) have the RNP on every �nite subalgebra of U .For countably additive set functions de�ned on �-algebras the properties RNP,LRNP, and FRNP are all equivalent, and by the classical Radon-Nikodym Theoremthey hold if and only if � << �. If the set functions are �nitely additive, then LRNPand FRNP are equivalent, and they hold if and only if � << �. However, they areno longer equivalent to the RNP, which is a stronger property in the �nitely additivecase (cf. Theorem 7.1). For capacities the only implications that hold are RNP )LRNP and FRNP ) LRNP. In the last section we shall give examples which showthat there are no other logical relationships between these notions. But �rst, weprove a version of Theorem 4.1 for the LRNP.Theorem 5.1 Suppose that the pair (�; �) has the LRNP on U . Then � is alter-nating of in�nite order whenever � is alternating of in�nite order.Proof. Given A1; : : : ; An in U �nd a subalgebra U 0 on which (�; �) have the RNP.As � is alternating of in�nite order on U it is also alternating of in�nite order on U 0.By Theorem 4.1 it follows that � is also alternating of in�nite order on U 0. Thenas A1; : : : ; An are all elements of U 0 we have� n\i=1Ai! �XI2�(�1)jIj+1� [I Ai! ;where � is the collection of all non-empty subsets of f1; : : : ; ng. As this is valid forany A1; : : : ; An in U we have that � is alternating of in�nite order on U . 2If there is a simple characterization of the LRNP it has eluded us. However,we do have a simple characterization of the FRNP and hence a simple conditionsu�cient to guarantee the LRNP. Before describing this result, we introduce somenotation. We say that a capacity �, de�ned on an algebra U , is null additive if�(A) = 0 implies �(A [B) = �(B) for all A;B 2 U . Note that if � is null additive,then for any integrable function f�(A) = 0 implies ZB fd� = ZBnA fd� for all A; B 2 U :



10 Local Radon-Nikodym Derivatives of Set FunctionsTherefore, if f; f 0 are integrable functions such that fx : f(x) 6= f 0(x)g is containedin some A 2 U with �(A) = 0, then RB fd� = RB f 0d� for all B 2 U .If �; � are capacities on an algebra U we de�ne 
 : U �! [0;1) by setting
(A) = � �(A)=�(A) if �(A) 6= 00 if �(A) = 0Note that if � << � then �(A) = 
(A)�(A) for all A 2 U .Theorem 5.2 Let �; � be capacities de�ned on an algebra U . Then the �rst condi-tion below implies the second. If we assume that � is null additive, then the secondcondition implies the �rst (and hence that � is null additive).(i) � << � and for all A;B disjoint sets in U
(A) � 
(B)) �(A [ B)� �(B) = 
(A)[�(A [ B)� �(B)]:(ii) (�; �) have the FRNP.Proof. (i) ) (ii). Let F be a �nite subalgebra of U . As the atoms of F partitionU we may de�ne a function f : U �! [0;1) by setting f(x) = 
(A) if A is anatom containing x. Clearly f is F-measurable. We prove by induction on n that ifA1; : : : ; An are distinct atoms of F with 
(A1) � � � � � 
(An) then(a) if n � 2, then 
(A1) � 
( n[i=2Ai).(b) 
(A1)�( n[i=1Ai) = �( n[i=1Ai)� �( n[i=2Ai) + 
(A1)�( n[i=2Ai).(c) �(A) = RA fd� where A = n[i=1Ai.As every element of F can be expressed as the union of such an indexed family, thisclaim will establish our result.n = 1. Part (a) is vacuous. As �(;) = 0 part (b) reduces to showing 
(A1)�(A1) =�(A1) which follows as � << �. And similarly part (c) follows asZ 
(A1)0 �(fx 2 A1 : f(x) � tg)dt = 
(A1)�(A1):n � 2. Set B = Sni=2 A1. To establish part (a) note that if x is in B thenf(x) = 
(Ai) for some i � 2 and in particular f(x) � 
(A1). The indexed family ofatoms A2; : : : ; An satis�es our inductive hypothesis and therefore �(B) = RB fd�.As ZB fd� � Z 
(A1)0 �(fx 2 B : f(x) � tg)dt = 
(A1)�(B)



International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 11we have that �(B) � 
(A1)�(B). If �(B) 6= 0 division gives 
(B) � 
(A1). If�(B) = 0 then �(A2) = 0 and hence 
(A2) = 0. But 
(A1) � 
(A2). In any event,part (a) is established. Note that A1 and B are disjoint and we have just shownthat 
(A1) � 
(B). So part (b) follows from our hypothesis (i). To establish part(c) note that RA fd� is equal toZ 
(A1)0 �(fx 2 n[i=1Ai : f(x) � tg)dt+ nXq=2 Z 
(Aq)
(Aq�1) �(fx 2 n[i=1Ai : f(x) � tg)dt:Which in turn is equal to
(A1)�  n[i=1Ai!+ nXq=2[
(Aq)� 
(Aq�1)]�0@ n[i=qAi1A :Note that this expression is valid even if 
(Aq�1) = 
(Aq) for some q. Rewriting,this expression is equal tonXq=1 
(Aq)�0@ n[i=qAi1A� nXq=2 
(Aq�1)�0@ n[i=qAi1A :Using the instance of part (b) we have just established as well as other instanceswhich follow from the inductive hypothesis on the indexed family Aq ; : : : ; An givesthe above expression equal tonXq=124�0@ n[i=qAi1A� �0@ n[i=q+1Ai1A+ 
(Aq)�0@ n[i=q+1Ai1A35� nXi=2 
(Aq�1)�0@ n[i=qAi1A :Which simpli�es to nXq=124�0@ n[i=qAi1A� �0@ n[i=q+1Ai1A35 ;which is equal simply to �( n[i=1Ai).(ii) ) (i). Surely if (�; �) have the FRNP then � << �. Suppose that A;B aredisjoint sets with 
(A) � 
(B). Let F be the subalgebra of U generated by A;Band let f : U �! [0;1) be an F-measurable function with�(F ) = ZF fd� for all F 2 F :As A;B are atoms of F , or empty, it follows that the restriction of f to A must beconstant, as is the restriction of f to B. If �(A) = 0 then the particular value ftakes on A is irrelevant to the above formula, as � is null additive. But if �(A) 6= 0



12 Local Radon-Nikodym Derivatives of Set Functionsthen it follows easily that f must take the constant value 
(A) on A. Thereforewe may assume that f(x) = 
(A) for all x 2 A and similarly f(x) = 
(B) for allx 2 B. As we assumed that 
(A) � 
(B) we have that �(A [ B) is equal toZ 
(A)0 �(fx 2 A [B : f(x) � tg)dt+ Z 
(B)
(A) �(fx 2 A [ B : f(x) � tg)dt:Which in turn is equal to
(A)�(A [ B) + (
(B)� 
(A))�(B):Note that this equality holds even if 
(A) = 
(B). As � << � we have 
(B)�(B) =�(B) and therefore�(A [ B)� �(B) = 
(A)[�(A [ B)� �(B)]: 26. Maxitive set functionsWe now give an application of the results of the previous section. In particular, weshow that maxitive set functions, an important class of capacities, are alternatingcapacities of in�nite order.De�nition Given an algebra U , we say that a set function � is maxitive on U if�(A [ B) = maxf�(A); �(B)g for every A;B 2 U .As we shall see, maxitive set functions on U are related to a particular setfunction �U which is de�ned by setting�U(A) = � 1 if A 6= ;0 if A = ;We shall often refer to �U as � when the algebra U is clear from the context.Lemma 6.1 For any capacity � on U , the pair (�;�) has the FRNP i� � is maxitive.Proof. We �rst show that if � is maxitive, then (�;�) has FRNP. Surely � << �.Assume A;B are disjoint sets. We must show
(A) � 
(B)) �(A [ B)� �(B) = 
(A)[�(A [B)� �(B)]:Assume 
(A) � 
(B). This implies �(A) � �(B) even in the case that one ofA;B is the emptyset. Then as � is maxitive �(A [ B) = �(B). Thus �(A [ B) ��(B) = 0. If either A;B is the emptyset, then 
(A) = 0. If neither A;B is theemptyset then �(A [ B)� �(B) = 0.Next we show that if (�;�) have the FRNP then � is maxitive. Assume that�(A) � �(B). If B is empty, then �(A [ B) = �(A) = 0 and this is equal to the



International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 13maximum of f�(A); �(B)g. If B is not empty, then by the above characterizationof the FRNP we have�(A [ B)� �(B) = 
(A)[�(A [ B)� �(B)]:And as B 6= ; we have �(A [ B) � �(B) = 0. Thus �(A [ B) = �(B) and as�(B) = maxf�(A); �(B)g our result is established. 2Using Theorem 5.1 we obtain an alternative proof of the following result givenin Nguyen et al. (1997).Theorem 6.2 If � is maxitive on U , then � is alternating of in�nite order.Proof. As � is maxitive, the pair (�;�) has the FRNP and hence the LRNP. Onceit is established that � is alternating of in�nite order on U , our result will followfrom Theorem 5.1. It is not di�cult to give an elementary proof of this based onthe fact that for any n � 1 there are exactly as many subsets of f1; : : : ; ng of evencardinality as odd. But we shall instead direct the reader to the more general resultcontained in Proposition 3 of Marinacci (1996). 27. Some counter-examplesIn this section we show that RNP 6) FRNP and FRNP 6) RNP. In view of the factthat RNP ) LRNP and FRNP ) LRNP this also provides that LRNP 6) RNPand LRNP 6) FRNP.Theorem 7.1 Let L be the Lebesgue measurable subsets of the real interval (0; 1)and � be Lebesgue measure on L. There exists a map � : L �! [0; 1] such that(i) � is monotone and �(;) = 0.(ii) � is �nitely additive.(iii) � << �(iv) � is not countably additive.(v) � takes only the values 0 and 1.(vi) (�; �) has the FRNP.(vii) (�; �) does not have the RNP.Proof. Let I = fA 2 L : �(A) = 0g, i.e. I is all sets of Lebesgue measure zero.For each natural number n � 1 de�ne a subset An by settingAn = [ 1n+ 1 ; 1n ) for n � 1:Obviously the An's are a countable family of pairwise disjoint Lebesgue measurablesets whose union is all of (0; 1). Consider the set



14 Local Radon-Nikodym Derivatives of Set FunctionsJ = I [ fAn : n � 1g:No �nite union of members of J equals all of (0; 1) and J is contained in L. ThusJ generates a proper ideal of L and hence is contained in a maximal proper idealP of L. Note that as P is a maximal proper ideal of L we have that for any A 2 Lexactly one of A and Ac is in P . The notation Ac denotes the complement of theset A. So we can de�ne a map � : L �! [0; 1] by setting�(A) = � 0 if A 2 P1 if A 62 PIt is well known that � is a homomorphism from L to the two element Booleanalgebra f0; 1g. Then considered as a set function, it follows that � is monotone,�(;) = 0, and � is �nitely additive. But there is a countable family of pairwisedisjoint sets An in P whose union is not in P . So � is not countably additive. Clearly� takes only the values 0 and 1, and as P was constructed to contain all sets ofLebesgue measure zero, � << �. Thus the �rst �ve properties have been established.The sixth property follows from the �nite additivity of � and �. We have only toshow that (�; �) does not have the RNP. Suppose that f : (0; 1) �! [0;1) is an Lmeasurable function. De�ne a map � : L �! [0;1) by setting�(A) = ZA fd�:Translating the de�nition of this integral we have�(A) = Z 10 �(fa 2 A : f(a) � tg)dt:As � is usual Lebesgue measure, R10 �(fa 2 A : f(a) � tg)dt is nothing other theusual Lebesgue integral. But the Lebesgue integral is countably additive, moreprecisely, the function � de�ned above is countably additive. Thus � could notpossibly equal � as � is not countably additive. So (�; �) does not have the RNP.2 Having shown that FRNP 6) RNP, even for �nitely additive functions, we nextprovide an example that shows RNP 6) FRNP, even for �nite algebras.Theorem 7.2 There is an eight element algebra U and maps �; � : U �! [0;1) sothat (�; �) has the RNP but (�; �) does not have the FRNP.Proof. Let A;B;C be any disjoint non-empty sets. Let U be their union and U bethe algebra of subsets of U generated by A;B;C. ThenU = f;; A;B;C;A [ B;A [ C;B [ C;Ug:



International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 15De�ne � : U �! [0;1) by specifying �(;) = 0, �(A) = 1, �(B) = 1, �(C) = 2,�(A [ B) = 1, �(A [ C) = 2, �(B [ C) = 2 and �(U) = 3. As A;B;C partition Uwe may de�ne a function f : U �! [0;1) by settingf(x) =8<: 1 if x 2 A2 if x 2 B3 if x 2 CThen f is U-measurable. De�ne � : U �! [0;1) by setting �(A) = RA fd�. By ourconstruction, we have (�; �) has the RNP. We need a few calculations.�(C) = ZC fd� = Z 30 �(C)dt = 3� 2 = 6:�(A [ B) = Z 10 �(A [ B)dt+ Z 21 �(B)dt = 1 + 1 = 2:�(U) = Z 10 �(U)dt+ Z 21 �(B [ C)dt + Z 32 �(C)dt = 3 + 2 + 2 = 7:Recall that �(C) = 2, �(A [ B) = 1 and �(U) = 3. Therefore 
(C) = 3 and
(A [ B) = 2. So 
(A [B) � 
(C). But replacing the above values yields�(U)� �(C) 6= 
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