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Abstract. We show that the variety of ortholattices has the strong amalgamation property and that
the variety of orthomodular lattices has the strong Boolean amalgamation property, i.e. that two
orthomodular lattices can be strongly amalgamated over a common Boolean subalgebra. We give
examples to show that the variety orthomodular lattices does not have the amalgamation property
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orthomodular lattices of bounded height can have the Boolean amalgamation property.
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1. Introduction

Following the terminology of Gratzer [1, p. 252 ff], a V-formation in a cl#&®f
algebras is a quintupléB, L1, L, ¢1, ¢o) WhereB, L4, L, are algebras ik and
¢; (i = 1, 2)is an algebra-embedding 8finto L;. An amalgam of the V-formation
in K is a triple (C, 1, ¥») whereC € K, the; are algebra-embeddings bf
into C satisfyingyr1 o g1 = ¥, o @y.

Ly
N
B C
N S

L,

The amalgam is strong if, in additionf1(L1) N Y2(Ly) = vY1(p(B))(=
Y2(@2(B))) holds. The V-formation can be (strongly) amalgamated if there exists a
(strong) amalgam of it. A clask has the (strong) amalgamation property iff every
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V-formation in K can be (strongly) amalgamated. We will pay special attention to
the case thaB is a Boolean algebra. In this case we talk of Boolean amalgamation.

In this paper we study amalgamation in the class of ortholattices, orthomodular
lattices and modular ortholattices. Throughout we abbreviate ortholattice as OL,
orthomodular lattice as OML, and modular ortholattice as MOL. OLs stands not
only for the plural of OL, but also for the class of all OLs, etc.

The question of amalgamation in these classes has so far received little attention.
The simplest case was dealt with by MacLaren [8]. HereL, are OMLs andB is
the two-element Boolean algebra. A strong amalgamation in OMLs is obtained by
“identifying” the bounds in the disjoint union df, and L,. The construction has
become known as the horizontal sumigfandL,. This is a very special case of
Greechie’s celebrated paste job [2]. His assumptions ard.thand L, are OMLs
and that there exists an element B such thatp; (B) is the union of the principal
ideal [0, ¢; (a)] and the principal filtefy; (a’), 1] in L;. Strong amalgamation in
OMLs is again obtained by “identifying;(B) and¢,(B) in the disjoint union
of L, andL,. A considerably more complicated case was investigated by Schulte-
Monting [9]. Here it is again assumed thiat and L, are arbitrary OMLs but that
fori = 1,2 ¢;(B) is a subalgebra of the centre bf. It is shown that in this case
we also have strong amalgamation in OMLSs.

In Section 2 of this paper we show that OLs have the strong amalgamation
property. The proof is an easy adaptation of a well-known construction first used by
Jonsson [4] to show that lattices have the strong amalgamation property. The bulk
of the paper, in which we show that OMLs have the strong Boolean amalgamation
property, is contained in Sections 6 and 7. The remaining results we have are neg-
ative. In Section 3 we show that OMLs do not have the amalgamation property.
In our counter-examplé.; and L, are finite andB is MO3. (Recall that M@ is
the MOL consisting of 2 incomparable elements and the bounds.) In Section 4
we show that MOLs do not have Boolean amalgamation and in Section 5 we show
the same for every non-Boolean variety of OMLs which is generated by OMLs of
bounded height. In both counter-exampRss an eight element Boolean algebra.

A note on notation. Iff is a map thery,x is the restriction off to X, idy is the
identity map ofX, |X| is the cardinal number of. In the last two sections we use
A < Bfor*“Ais asubalgebra aB”.

For background information concerning OMLs the reader is referred to [6].
Both authors gratefully acknowledge support by the Natural Sciences and Engi-
neering Research Council of Canada, grant 0002985 (G.B.) and grant OGP0155640
(J.H).

2. The Partial Amalgam, Amalgamation of OLs

The definition of amalgamation as given in the introduction is often cumbersome
to work with. It can, in most cases, be replaced by the following simpler concept.
Define a special V-formation to be a tripl®, L1, L,) whereB = L, N L, is a sub-
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algebra of bothL; andL,, confusing, as usual, the algebras with their underlying
sets. A special V-formation gives rise to the V-formati@h L1, L, idg, idg) and

hence the concept of amalgamation as defined in the introduction can be applied
to special V-formations. It turns out that under weak assumptions on aKlgdss
existence of amalgams of V-formations and special V-formations are equivalent.
We are sure the reader will find it easy to verify the following observation which
makes this statement precise.

OBSERVATION. LetK be a class of algebras which is closed under isomor-
phisms and letB, L1, Lj, ¢1, ¢2) be a V-formation inkK. Then the following two
statements are equivalent.

1. (B, L1, L, ¢1, @) can be (strongly) amalgamated &h

2. There exists a special V-formatiaq®B, K1, K») in K and two isomorphisms
fit Ki — L; satisfying f;;5 = ¢; such that(B, K1, K») can be (strongly)
amalgamated iK .

The following construction of the partial amalgam of a special V-formation is
well known and has been used before, see [4].

DEFINITION. LetLq, L, be OLs and assumB = L; N L, is a subalgebra of
bothL; andL,, i.e. that(B, L1, L,) is a special V-formation. Let; be the partial

ordering of L,;. Define a relation< in L, U L, by settinga < b if one of the

following conditions is satisfied.

l.a,beL;anda <; b.
2.aeLi—L;,beL;—L; (i # j)andthere exista& € Bsuchthau <; m <; b.

It is easily seen thak is a partial ordering ofL, U L, and that ifa,b € L;
then the join and meet aof and b in L; is the same as in the partially ordered
setL, U L, and that the union of the orthocomplementationd.inand L, is an
orthocomplementation af; U L,. ThusL, U L, becomes an orthocomplemented
poset which we call the partial amalgamiof and L.

Simple examples show that the partial amalgam is not in general a lattice. It
is, however, well known and easy to prove that the MacNeille completion of an
orthocomplemented pos@tcarries a unique orthocomplementation extending the
orthocomplementation aP, hence becomes an OL. L¢t L, U L, — C be the
canonical embedding of this partial amalgam into its MacNeille completion and
definey; = fi.,. It is then obvious thatC, v, ) is a strong amalgam of the
special V-formation B, L, L,). We thus obtain

THEOREM 1. OLs have the strong amalgamation property.
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3. OMLs do not Have the Amalgamation Property

We consider the special V-formati@®, L., L,) whereL, andL, are given by the
following Greechie diagrams.

R) [ / /

1 1y

e [ m
p-- ®- o /

p

L]_ L2

The letters attached to the vertices denote atoms. ptissn atom of..; and
a co-atom ofL,, etc. We assume thdt;, L, have the subalgebra generated by
{p,q, s} incommon, but nothing else. Thlls= L1 N L, is MOS3.

Assume now that this special V-formation could be amalgamated in OMLs by
(C, ¥1, ¥r2). Identifying the elements aof; with their images undey; we would
obtain

l=mvg<mvgvVe=mVb=mvaVe.
Sincea < ¢ andm < s < ¢’ this would give
avm=eée
and
rr=mvp=mvavc=eéeve=1,
a contradiction. We thus have

THEOREM 2. OMLs do not have the amalgamation property.

4. MOLs do not Have Boolean Amalgamation

As we will see later a V-formatioiB, L1, Ly, ¢1, ¢2) in OMLSs can be strongly
amalgamated in OMLs iB is a Boolean algebra. As opposed to this we will show
in this section that a V-formation as above in MOLs cannot be amalgamated in
MOLs even if B is an eight element Boolean algebra.

Let B be an eight-element Boolean algebra generated by the chaincO<
y < 1. Let P be (the OL of subspaces of) a non-arguesian orthocomplemented
projective plane. For the existence of these see [3, 10]. Défine P x 2, where
2 is the two-element Boolean algebra andddbe an atom ofP. Let L, be an
arbitrary orthocomplemented projective planeyebe a co-atom (line) of., and
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lete, f, g < m be atoms ofL,. Clearly there exist OL-embeddings. B — L;
satisfying

p1(x) =(0,1), @1(y) =(a, D), @x)=e, @2y)=m.

Assume now that the resulting V-formation could be amalgamated in MOLs by
(C, ¥1, ¥2). Note that

Y1(0, 1) = ¥r1(p1(x)) = Y2(@2(x)) = Yr2(e)
and

Vi(a, 1) = Y1(@1(y)) = Va(p2(y)) = Y2(m).

Note furthermore that the sublattiée = [(0, 1), (1, 1)] of L, is isomorphic with
P and hence simple as a lattice. Also the sublatfice- {0, e, f, g, m} of L, is
simple. Now letp: C — [],., M; be a subdirect representation ©f wherey is
an OL-embedding o€ into the product of the subdirectly irreducible MO
and if pr; is theith projection, the maps ps ¢ are ontoM;. Since

¥1(0,1) # ¥1(a, 1)

there exists an indexe I such that

pri (¢ (¥1(0, 1)) # pri(¢(Y1(a, 1)).

Thus the homomorphism ps ¢ o 1 does not collapse the elemeri® 1) and
(a, 1) of E. SinceE is simple it follows that pro ¢ o v restricted toE is a lattice
embedding off into M;. Since

pr; (¢ (¥2(e))) = pr;(¢(¥1(0, 1)))
and

pri (p(¥2(m))) = pri(¢(Y1(a, 1))

the homomorphism pb ¢ o 1> does not collapse the elemeatandm of F and it
follows that the restriction of pe ¢ o Y, to F is a lattice embedding of into M;.
In particular,

pr; (¢ (y2(e))) # 0.

SinceE is lattice-isomorphic withP it follows that pr(¢(¥1(E))) contains a four-
element chain with smallest element

pri (¢ (¥1(0, 1)) = pr;(¢(¥2(e))) # 0.

It follows that M; contains a five-element chain and hence, by [5], is arguesian.
But P is isomorphic with a sublattice af#7; and is not arguesian, which is a
contradiction. Thus we have

THEOREM 3. MOLs do not have Boolean amalgamation.
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5. Boolean Amalgamation in OMLs of Bounded Height

We show in this section that the fact that OMLs have Boolean amalgamation is no
longer true if one replaces the variety of all OMLs by a variety of OMLs gener-
ated by OMLs of bounded height. In order to be precise we make the following
assumption.

We assume that > 3 is a natural number; tha? is a variety of OMLs in
which every chain in a subdirectly irreducible membebdfas at most elements
and that there exists a subdirectly irreducible membef V which contains an
n-element chain. We show that such a variety does not have Boolean amalgamation
even if B is the eight-element Boolean algebra.

Let B be an eight-element Boolean algebra generated by the chaincO<
y < 1. Let L be a subdirectly irreducible member ®f containing am-element
chain and letz be an atom of such a chain. Defihg = L, = L x 2. Then there
exist OL-embeddingg;: B — L; satisfying

p1(x) = (0,1), ¢1(y) =(a,1), ¢2x) =(@,0), ¢2y)=(10).

We show that the resulting V-formation cannot be amalgamatad in
Assume now thatC, v, ¥,) was an amalgam of the above V-formation in

V. DefineE = [p1(x), 1] = [(0, 1), (1, )] and F = [0, ¢2(y)] = [(0, 0), (1, 0)].
Clearly E andF are lattice isomorphic witlh, andL is chain-finite and subdirectly
irreducible as an OML, hence simple as a lattice. ThusE) andy»(F) are simple
as lattices. Note that

Va(p2(x)) = Yra(@’, 0) € Yra(F),

Va(@2(x)) = Y1(pa(x)) = ¥1(0, 1) € ¥ (E),

V1(p1(y)) = ¥a(a, 1) € y(E),

V1(@1(y)) = Y2(e2(y) = ¥2(1, 0) € Yo F).

Thus

V2(@2(x)), Y1(p1(y)) € Ya(E), Ya(F).

Now let ¢: C — [],.; M; be a subdirect product representation®fby
subdirectly irreducible OML3/; andw; = pr; o ¢. Since

Y2(@2(x)) < Ya(e2(y)) = Ya(e1(y)),
there exists an indexe I such that

w; (Y2(@2(x)) < w; (Ya(ea(y))).

Since v (p2(x)) and ¥ (p1(y)) both belong toy,(E) and y»(E) it follows that
the restriction ofw; to 1 (E) and toy,(F) are lattice embeddings. But; (1 (E))
contains am-element chain with smallest elemant(y(¢1(x))). Sincep,(0) <
@2(x) in F we obtain

wi (Y2(¢2(0)) < wi(Y2(@2(x))) = w; (Y1(p1(x))) # 0.
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Thus M; contains an(n + 1)-element chain contradicting Jénsson’s celebrated
lemma [1]. Thus our V-formation cannot be amalgamate®.inWe thus have

THEOREM 4. If 'V is a non-Boolean variety of OMLs generated by OMLs of
bounded height the® does not have Boolean amalgamation.

6. Boolean Amalgamation, Preliminaries

LEMMAG6.1. LetL,, L, be OMLS,B = L1 N L, < L4, L>, B Boolean,a ¢
L1 U L,. Then fori = 1, 2 there exist OMLsVM;, Boolean algebrasB; < M;,
OL-embeddings;: L; — M; and an isomorphismy: B; — B, such that

1 o(B)=0o(L;)NB; < B,

2. Q2p = Y OB,

3. if L; is infinite then|L;| = |M,]|,

4. ifeec L;andm =maxb € B | b < e} thena;(m) =maxXb € B; | b < a;(e)},
5.iffa € L; then{b € B; | b < a;(a)} has a maximum.

Proof. Define
X={xeB|x <a}.
Forc € L; define¢ € L} by
¢(x) =cforall x € X.
Define

a* =idy,
Bla] is the subalgebra a8 generated bya*} U {¢ | ¢ € B},
L;[a] is the subalgebra af¥ generated bya*} U {¢ | ¢ € L;}.

Define relation®); in L;[a] by
f0ig < there existk € X suchthafk, >]1C{x e X | f(x) = g(x)}.
Here[k, —] = {x € X | kK < x}. Noting thato; is a congruence iii;[a] define

M; = L;lal/b;,
B ={f/0; | f € Blal}.

Clearly B[a] is a subalgebra af;[a] (i = 1, 2) and henceB; < M;. But B[a] is
a subalgebra of the Boolean algel#& and henceB; is Boolean. It is easy to see
that the map

a; L; — M; defined byx,(c) = 5/9,
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is an OL-embedding. Clearly; (B) C «;(L;) N B;. Assume: € L; ande;(¢) € B;.
Thenc/6; = f/6; for some f € B[a] and hence there exists € X such that
[k, >]1C {x € X | ¢(x) = f(x)}. In particular,c(k) = f(k) and thus = f(k) €
B. Then asB; and;(L;) are subalgebras dff; so also is their intersection. We
have thus proved

(D) oi(B) = o;(L;) N B; < B;.

Note that the restrictions @f andf, to B[a] agree, thus there is an isomorphism
y. By — By such that/(f/6,) = f/0. for all f € B[al.

It is easy to see that

(2) oz =y 0 ayp.

As M; is generated by; (L;) U {a*/6;} it follows that

(3) if L; is infinite then|L;| = |M;|.

(4)Ifee L;andm =max{b € B | b < e}thena;(m) =maxb € B; | b < a;(e)}.

Note thatn € B and hence; (m) € B;. But
mkx)=m<e=c¢e(x) forallxeX.

Hencew; (m) < «;(e). Assumeb € B;. Then there existg € Bla] withb = f/6;.
As

fx)ses f(x) =m,
thus
f10i <e/b; & f/6; <m]b;.
Henceb < «;(e) < b < a;(m), proving (4).
(B)a*/6; = max{b € B; | b < a;(a)}.
Note thata* € B[a] and hencer*/6; € B;. Also
adx)=x<a=a(x) forallxeX
and hence
a*/6; < alt; = a;(a).

Assumeb € B; andb < «;(a). Then there exist§ € B[a] such thath = f/6;.
SinceB[a] is a Boolean algebra generated by the subalg@btab € B} and the
singleton{a*}, there exist, d € B such that

f=(@@ AV (@ Ad.
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Sinceb < «;(a) there existg € X such that
[k, >]S{xre X | f(x) =aln}.
Butforx € X,
f)<ax)e AV Ad)<a & x'Ad<a,
hencek’ Ad < a andd < a. Thusifd < x € X then
fX)=GxAre) v Ad) <x=a*(x),
hence
d,—>]1S{xreX| fx) =a"(x)}

andb = f/6; < a*/6;, proving (5) and the lemma. O

LEMMAG6.2. LetLq, Ly, be OMLS,B = L1 N L, < L4, L>, B Boolean,a €
L, U L,. Then there exist OMLE1(a), L,(a) and a Boolean algebra(a) such
that

1. B < B(a) = Li(a) N La(a) < Li(a), La(a),

2.L; < Li(a),

3.if L; is infinite then|L;| = |L;(a)|,

4. ifee LiyUL,andm =maxXb € B | b < e} thenm =maxXb € B(a) | b < e},
5.{b € B(a) | b < a} has a maximum,

6. B(Cl) N (Ll U Lz) = B.

Proof. Let M;, B;, «;, y be as in the previous lemma. Choose setd1, D,
which are pairwise disjoint and disjoint with, U L, such that their cardinal
numbers allow the existence of bijectiops §1, 8, where

@11 A — By —a1(B),
Si: Di — Mi — (Oli(Li) U B,)

Defineg, = y o 1. Asy: By — Bs is an isomorphism withy o aq 3 = app We
thus have thap, is a bijection

©2. A — Bz — Olz(B).
Fori =1, 2 defineL;(a) = L; U AU D; and define mapg;: L;(a) — M; by

fi|L,~ =,
fi|A = @i,
fiIDi == Si.
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Note that

fi(L) = o; (L)),

fi(A) = Bi — o;(B),

fi(D)) = M; — (o;(L;) UB,).
By assumptiong; (B) = «;(L;) N B; and thusf;(A) = B; — «;(L;). Itis easy to
see that the setf (L1), f1(A), f1(Dy) are pairwise disjoint with unio; and the

setsf>(L2), f2(A), f2(D,) are pairwise disjoint with union,. As the restrictions
of f;to L;, A, D; are bijections it follows that

Q) fi: Li(a) - M; is a bijection.

Define now operations;, A;, 10,1 in Li(a) by

bvic= fHfib) v fi(0)),
baie= i) A fi()),
b= fTHAB),
0 = £;1(0),
L= f,
where the operations on the right-hand side of the equations are takén In

is clear that with these definitions; (a) becomes an OML and; becomes an
OL-isomorphism betweenh; (a) and M;.

(2) In L; the original operations/, A, ’, 0, 1 agree withv;, A0, L, SOL; <
Li(a).
Forb, c € L;,

bVic = f7Hfi(b)V fie)) (vin M)
= f N i) Vai(c)) (same
= fHai(b V) (vin L,
= fHfib Vo)

= bVe.

bt = fNABY)  (in M)
= fi ;b)) (same
= fi Y eu®)) (inL)
= fHAD))

= b

That the remaining operations are the same is a consequence of this.
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(3) fipua: BU A — B, is a bijection.

This follows asf; is one-one,f;(A) = B; — «;(B) and f;(B) = «;(B). ASy o
ayp = agp andy o g1 = @, itis easy to see that

(4) fob) =y (fa(b)) forallb e BUA,

(5) £, 1) = f;(y~2(b)) forall b € B,.

It follows from (4) and (5) that inB U A = Li(a) N Ly(a) the OL-operations of
Li(a) andL,(a) coincide and yield elements &fU A. If we defineB(a) to be the
subalgebraB U A of L; we thus have

(6) fiipua: B(a) — B, is anisomorphism, hence
(7) B < B(a) = L1(a) N Ly(a) < Li(a), Lo(a) andB(a) is Boolean.

Since f; is an isomorphism betweeh; (a) and M; the cardinal number of,; (a)
equals that off;. By our choice ofM;, if L; is infinite then|L;| = |M;|. Thus

(8) If L; is infinite then|L;| = |L;(a)|.
9 Ifee LiULy,andm = maxb € B |b < e}thenm =maxb € B(a) | b < e}.

Assumee € L;, b € B(a) andb < e. We have to show that < m. Clearly f; (b) <
fi(e) = a;(e). By our choice ofy; we havew;(m) = maxb € B; | b < a;(e)} and
hencef;(b) < a;(m) = f;(m). AS fipua iS an isomorphisnd < m, proving (9).

(10){b € B(a) | b < a} has a maximum.

Assumea € L;. By our choice ofB; the set{b € B; | b < «;(a)} has a maximum
m. Then f,"'(m) € B(a) and asy; is an embeddingf, *(m) = o, *(m) < a.
Assume thab € B(a) andb < a. Thenf;(b) € B; and f;(b) < fi(a) = «;(a)
and hencef;(b) < m. As f; pua Is an isomorphisnd < ffl(m), proving (10) and
hence Lemma 6.2. O

The OMLsL;(a), Lo(a) in the previous lemma are, of course, hot completely
determined byL,, L, anda. Using AC we may, however, assume that specific
OMLs Li(a), Lo(a) are chosen for everny.q, L,,a as in the assumption of
Lemma 6.2. We will assume this in the proof of the next lemma.

LEMMAG6.3. LetLq, L, be OMLS,B = L1 N L, < L4, Ly, B Boolean. Then
there exist OML4.7, L}, and a Boolean algebr#’ such that

1.B<B =LyNL,<L, L,

2L, <L (i=12),

3. ILj| < max{|La|, |Lal},

4 ifee LyUL,andm =maxXb e B |b <e}thenm =maxb e B' | b < e},
5. foreverya € L, U L, the set{b € B’ | b < a} has a maximum,

6. B'N (LU Ly) = B.
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Proof.If L1 or L, is finite thenB is finite and we may choose, = L; andB’ =
B. We may thus assume that and L, are infinite. Define,. = max{|L4|, |L2|}.
Clearly . = |Ly U L,|. Enumerate the elements hy(considered as an initial
ordinal). ThusL, U Ly = {a, | n < A}. For everyu < A define recursively OMLs
L1,, Ly, and Boolean algebrag, by
Bo=B, Ligo=Li, Lz=L,,
B,i1= B,(a,), Lyt = Ly, (ay), Ly = Ly, (ay),

By=|JB.. Ly=|JLw. Lay=|JLa ifpisalimitordinal

v<p v<p v<p
Define
B = B, L;_ =L, and L/2 = Iy.

It is an easy exercise to show thélt L7, L}, have the desired properties. O

As before we may again assume that giveanL,, B as in the previous lemma
specificB’, L), L', are chosen satisfying the previous lemma.

LEMMAG6.4. LetLq,, L, be OMLS,B = L1 N L, < Ly, Ly, B Boolean. Then
there exist OML4.,, L, and a Boolean algebra® such that

1. B SEZZJ_HZZ 521,22,

2. L,' < Z,' (l = 1, 2),

3. foreverya € L, U L, the set{b € B’ | b < a} has a maximum,

4. BN (LU L,) = B.

Proof. Forn < w define recursively OML4.4,, L,, and Boolean algebraB,
by
Bo=B, Lig=L;, Ly=Loy,
Bn+l - B;;’ Lln+l - Lél_n’ L2n+l - L/Zn

Put

EZUB”, Z]_ZUL]_,, and ZZZULZn

n<w n<w n<w

It is again an easy exercise to see tRaind theL; have the desired properties:

7. Boolean Amalgamation of OMLs

THEOREMGS. Let (B, L1, Ly, @1, ¢2) be a V-formation in OMLs, wher8 is a
Boolean algebra. Then this V-formation can be strongly amalgamated on OMLs.

Proof. It follows from the observation in Section 2 that we may actually assume
thatB = L1 N L, is a subalgebra of both, and L, and thatpy s = ¢ = idg,
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i.e. that(B, L1, L») is a special V-formation. Choode;, L, B as in Lemma 6.4
and assume that the new special V-formati@n L, L,) can be strongly amalga-
mated in OMLs by(C, 11, ¥2). Theniitis easy to see thet, yr1,..,, ¥ 1,) strongly
amalgamates the original V-formation. We may thus work under the assumptions

(1)B=LiNLy<Ly L,
(2) for everya € Ly U Ly, a = max{b € B | b < a} exists.

Let P = L, U L, be the partial amalgam as defined in Section 2. It is then easy to
see that for every € P,

a=min{be B|a<b)exists and a’ = (a),d = (a).
Furthermore, it is an easy consequence of the definition of the partial amalgam that
)ifaeL;,beL;(i+#j)theninP:a<bsa<bsa<bsacshb.

ForX C P letuX (or u(X)) be the set of all upper bounds #&fin P and let/X
(ori(X)) be the set of all lower bounds a&fin P. If a, b € P we define

[a,bli ={x € Li |a <x < b}.
(4 faeLi,be Lrthen

LiNu{a, by =[aVvb,1], LoNu{a, by =[avVvb,1],, in particular
ula,b) =[avb, 11 UlaVb,1],,

LiNI{a,b} =[0,a A b, LryNl{a,b} =[0,a A bl, inparticular
l{a,b) = [0,a A bl U[O, a A bly.

Note thata, » € L, and hence: v b exists inL; and hence inP and the same for
the remaining joins and meets. Clearly

LiNu{a,b} D aVvb,1].

If a,b < x € Lythen, by (3)a v b < x, proving the first equation. The second
eqguation follows by symmetry and the third is a consequence of the first two. The
rest follows by duality.

(5) Fora € Ly, b € Ly,

LiNl(u{a,b}) =0, (aVvb)A(@Vvb)]y and
LoNI(u{a,b}) =0, (aV.b) A (a@Vb)l,, inparticular
I(u{a,b}) =[0,(@aVvb) A @V b1 UI[O, (@Vh)A@V b,

We show the first equality. By (4) we have

lu{a, b)) =1l(laVvb,11U[aV b, 1) =l{aVvb,avb}
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hence by (4)
LiNIlu{a,b}) =0, (aV b) A (@Vb).

Recall that a normal ideal i? is a setA C P satisfyingA = [(u(A)) or
equivalently, for which there exists a S€tC P such thatA = [(X). We define a
normal idealA to be finitely generated iff there exists a finite #ec P such that
A =1u(F)).

(6) For A C P the following are equivalent.
1. A is a finitely generated normal ideal.
2. There existi € L1, b € L, such that
(a) LiNA=][0,a]1,LoNA=]0, b],,
D) a=(avb) A@vb)andb = (aVb)A(aVvb).
3. Thereexist € L1,d € L,suchthat.;NA = [0, cAd]1, LoNA = [0, cAd]».

1 = 2. By assumption there exists a finite $esuch thatA = I (u(F)). Define
x = \/(F NLy),y= \/(F N Ly).
Clearlyu(F) = u{x, y}. ThusA = l(u{x, y}) and, by (5),
LinA=[0,(x vV y)AEV I, L NA=[0,(x V) AKXV Yo
With
a=xVY)AXVY), b=xVYIIANEXVY)
we obtain 2(a). But > x A (x) =x AX =xandb > y Ay =y. Thus
A = Il(ufx, y}) < l(ufa, b}) S 1(u(A)) = A,
henceA = [(u{a, b}) and, by (5),
LiNA=I0,(aVvb)A@Vbl, LyNA=10,(aVvb)A @V bl

These equations together with 2(a) clearly imply 2(b).
2=3.Putc=avb,d=aVhb.

3 = 1.By (4),A = l{c,d} and henceA is a normal ideal. Clearly(A) =
u{c Ad, c Ad} and hence

A=I1wu(A) =Ilu{cnd,cANd}).

ThusA is finitely generated.

Let C be the set of all finitely generated normal ideals;Nebe the set of all
normal ideals, the standard form of the MacNeille completio® pfind let f be
the canonical embedding &f into N, i.e. f(a) = [0, a].
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(7) C is a sub-OL ofN generated by (P).

AssumeA, B € C. Then there exist finite sefs, G C P such thatA = [(u(F)),
B = l(u(G)). Clearly

FUG C AUB Cl(u(FUG)).
Thus

[w(AUB)) € l(u(l(u(FUG)))) =Ilu(FUQG))
and

[(u(FUG)) S l(u(AU B)),
and hence

[(u(FUG)) =1(u(AU B)).

Since the last set is the join df and B in N it follows that this join belongs t@.
The orthocomplement of A € N is defined byAt = [(A’) whereA’ = {a’ |
ae A}.As A € C, by (6), A is of the form

A=1[0a]4U[0,b], withae Ly, be L.
It follows that
A =[d,1U[V,1], and A’ =1{d,b'}.
Thus, by (4),
LiNAT=[0,a A1 and LN A" =0, (a) AD]>

and A+ e C by (6). ThusC is a subalgebra oN. If A e C then, by (6), there
existsc € L1, d € L, such that

LiNA=[0,cAd]y and L,NA=10,cAdl.
By (4) this implies that
A=I{c,d}=1[0,cIN[0,d] = f(c)N f(d).

Thus A is the meet of two elements g¢f(P) and hence” is generated by (P),
proving (7).
(8) If u,v € P andifu v v exists inP thenu Vv =u v v, and dually.

Clearlyuvv <uvve Bandhenc& Vv <uvv.Alsou,v <u Vv e Bhence
u,v <uVvwvandu Vv <uVu,proving (8).

(9) C is an OML.
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AssumeA, B € C, A € B andA* N B = {0}. We have to show that = B. By
(6) there exist elements ¢ € L1, b, d € L, such that

LiNA= [O, a]l and LyNA= [O, b]z,
LiNB=[0,cAd]y and LN B =[0,cAd], with
a=@Vvb)yA(@vb) and b= (aVb)A@Vvb).

Clearly At = I{a’, b’} and, by (4),
LiNAT=1[0,a A ()11 and L,N At =[0, @) Ab'1,.
SinceA C Bwe havea < ¢ Ad andb < ¢ A d, and hence
avb<cA@vb) and avb<dA(@vb).
SinceA+ N B = {0} we have
an® AeAd=0 and @) Ab AcAd=0.
But a commutes wittb, hence

an® AeA@vb)y=d Ab) Aera<d AB) Aend=0,

@' AV ANdA@VD)=(@ AV AdAb< (@ AV AcAnd=0.
Thus

avb=cA@vb) and avb=dn (@vb).
Furthermore

(avbyA@vb) = (avb)AdA(avVvb)

= (@aVvb)rdA(@vb) (by(8)

(avbynd
= aVv(bArd) (asa, bcommute withd)

< cAd

and

a A(B)YVd)YANe~nd = d ADB)Y Acand (asb commutes withl)
=0 (asaVvb<o).

Thus
a=(@Vvb)A@Vb) =cnd.
By symmetry we obtain

b=(@Vvb A@Vvb) =cnd.
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The last two equations prowe = B and hence (9).
Define nowy; = fi;,. Then itis clear thatC, ¥1, ¥») strongly amalgamates
our V-formation, proving Theorem 5. O

8. Concluding Remarks

There is an abundance of open problems connected with the questions dealt with
in this paper. Here are some samples.

We have considered only very few varieties of OLs, namely OLs, OMLs, OMLs
generated by members of bounded height and MOLs. What about other varieties
of OLs? are there any which have (strong, Boolean) amalgamation?

In Sections 6 and 7 we proved that OMLs have strong Boolean amalgamation.
In our example showing that OMLs do not have the amalgamation progevgs
MO3. Is there a counter-example in whighis MO2? Since every variety of OMLs
which does not consist of Boolean algebras only contains MO2, the question seems
natural. We do not know the answer.

Connected with the question of amalgamation in a variety is the question wheth-
er epimorphisms are surjective, see [7]. It is well known and easy to prove that in
every variety with the strong amalgamation property epimorphisms are surjective.
Thus epimorphisms in OLs are surjective. We do not know whether epimorphisms
in OMLs are surjective.
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