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Abstract. We show that the variety of ortholattices has the strong amalgamation property and that
the variety of orthomodular lattices has the strong Boolean amalgamation property, i.e. that two
orthomodular lattices can be strongly amalgamated over a common Boolean subalgebra. We give
examples to show that the variety orthomodular lattices does not have the amalgamation property
and that the variety of modular ortholattices does not even have the Boolean amalgamation prop-
erty. We further show that no non-Boolean variety of orthomodular lattices which is generated by
orthomodular lattices of bounded height can have the Boolean amalgamation property.
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1. Introduction

Following the terminology of Grätzer [1, p. 252 ff], a V-formation in a classK of
algebras is a quintuplet(B,L1, L2, ϕ1, ϕ2) whereB,L1, L2 are algebras inK and
ϕi (i = 1,2) is an algebra-embedding ofB intoLi . An amalgam of the V-formation
in K is a triple(C,ψ1, ψ2) whereC ∈ K, theψi are algebra-embeddings ofLi
intoC satisfyingψ1 ◦ ϕ1 = ψ2 ◦ ϕ2.
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The amalgam is strong if, in addition,ψ1(L1) ∩ ψ2(L2) = ψ1(ϕ1(B))(=
ψ2(ϕ2(B))) holds. The V-formation can be (strongly) amalgamated if there exists a
(strong) amalgam of it. A classK has the (strong) amalgamation property iff every
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194 G. BRUNS AND J. HARDING

V-formation inK can be (strongly) amalgamated. We will pay special attention to
the case thatB is a Boolean algebra. In this case we talk of Boolean amalgamation.

In this paper we study amalgamation in the class of ortholattices, orthomodular
lattices and modular ortholattices. Throughout we abbreviate ortholattice as OL,
orthomodular lattice as OML, and modular ortholattice as MOL. OLs stands not
only for the plural of OL, but also for the class of all OLs, etc.

The question of amalgamation in these classes has so far received little attention.
The simplest case was dealt with by MacLaren [8]. HereL1, L2 are OMLs andB is
the two-element Boolean algebra. A strong amalgamation in OMLs is obtained by
“identifying” the bounds in the disjoint union ofL1 andL2. The construction has
become known as the horizontal sum ofL1 andL2. This is a very special case of
Greechie’s celebrated paste job [2]. His assumptions are thatL1 andL2 are OMLs
and that there exists an elementa ∈ B such thatϕi(B) is the union of the principal
ideal [0, ϕi(a)] and the principal filter[ϕi(a′),1] in Li. Strong amalgamation in
OMLs is again obtained by “identifying”ϕ1(B) andϕ2(B) in the disjoint union
of L1 andL2. A considerably more complicated case was investigated by Schulte-
Mönting [9]. Here it is again assumed thatL1 andL2 are arbitrary OMLs but that
for i = 1,2 ϕi(B) is a subalgebra of the centre ofLi. It is shown that in this case
we also have strong amalgamation in OMLs.

In Section 2 of this paper we show that OLs have the strong amalgamation
property. The proof is an easy adaptation of a well-known construction first used by
Jónsson [4] to show that lattices have the strong amalgamation property. The bulk
of the paper, in which we show that OMLs have the strong Boolean amalgamation
property, is contained in Sections 6 and 7. The remaining results we have are neg-
ative. In Section 3 we show that OMLs do not have the amalgamation property.
In our counter-exampleL1 andL2 are finite andB is MO3. (Recall that MOn is
the MOL consisting of 2n incomparable elements and the bounds.) In Section 4
we show that MOLs do not have Boolean amalgamation and in Section 5 we show
the same for every non-Boolean variety of OMLs which is generated by OMLs of
bounded height. In both counter-examplesB is an eight element Boolean algebra.

A note on notation. Iff is a map thenf|X is the restriction off toX, idX is the
identity map ofX, |X| is the cardinal number ofX. In the last two sections we use
A ≤ B for “A is a subalgebra ofB”.

For background information concerning OMLs the reader is referred to [6].
Both authors gratefully acknowledge support by the Natural Sciences and Engi-
neering Research Council of Canada, grant 0002985 (G.B.) and grant OGP0155640
(J.H.).

2. The Partial Amalgam, Amalgamation of OLs

The definition of amalgamation as given in the introduction is often cumbersome
to work with. It can, in most cases, be replaced by the following simpler concept.
Define a special V-formation to be a triple(B,L1, L2) whereB = L1∩L2 is a sub-
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AMALGAMATION OF ORTHOLATTICES 195

algebra of bothL1 andL2, confusing, as usual, the algebras with their underlying
sets. A special V-formation gives rise to the V-formation(B,L1, L2, idB, idB) and
hence the concept of amalgamation as defined in the introduction can be applied
to special V-formations. It turns out that under weak assumptions on a classK the
existence of amalgams of V-formations and special V-formations are equivalent.
We are sure the reader will find it easy to verify the following observation which
makes this statement precise.

OBSERVATION. LetK be a class of algebras which is closed under isomor-
phisms and let(B,L1, L2, ϕ1, ϕ2) be a V-formation inK. Then the following two
statements are equivalent.

1. (B,L1, L2, ϕ1, ϕ2) can be (strongly) amalgamated inK.
2. There exists a special V-formation(B,K1,K2) in K and two isomorphisms
fi: Ki → Li satisfyingfi|B = ϕi such that(B,K1,K2) can be (strongly)
amalgamated inK.

The following construction of the partial amalgam of a special V-formation is
well known and has been used before, see [4].

DEFINITION. Let L1, L2 be OLs and assumeB = L1 ∩ L2 is a subalgebra of
bothL1 andL2, i.e. that(B,L1, L2) is a special V-formation. Let≤i be the partial
ordering ofLi. Define a relation≤ in L1 ∪ L2 by settinga ≤ b if one of the
following conditions is satisfied.

1. a, b ∈ Li anda ≤i b.
2. a ∈ Li−Lj , b ∈ Lj−Li (i 6= j) and there existsm ∈ B such thata ≤i m ≤j b.
It is easily seen that≤ is a partial ordering ofL1 ∪ L2, and that ifa, b ∈ Li
then the join and meet ofa and b in Li is the same as in the partially ordered
setL1 ∪ L2 and that the union of the orthocomplementations inL1 andL2 is an
orthocomplementation ofL1 ∪ L2. ThusL1 ∪ L2 becomes an orthocomplemented
poset which we call the partial amalgam ofL1 andL2.

Simple examples show that the partial amalgam is not in general a lattice. It
is, however, well known and easy to prove that the MacNeille completion of an
orthocomplemented posetP carries a unique orthocomplementation extending the
orthocomplementation ofP , hence becomes an OL. Letf : L1 ∪ L2 → C be the
canonical embedding of this partial amalgam into its MacNeille completion and
defineψi = f|Li . It is then obvious that(C,ψ1, ψ2) is a strong amalgam of the
special V-formation(B,L1, L2). We thus obtain

THEOREM 1. OLs have the strong amalgamation property.
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196 G. BRUNS AND J. HARDING

3. OMLs do not Have the Amalgamation Property

We consider the special V-formation(B,L1, L2) whereL1 andL2 are given by the
following Greechie diagrams.

•s •q
• •

b•a •
e

•
•

p • • •c

L1

•s′ •q ′
• •

u•r •
m

•
•

p′ •

L2

The letters attached to the vertices denote atoms. Thusp is an atom ofL1 and
a co-atom ofL2, etc. We assume thatL1, L2 have the subalgebra generated by
{p, q, s} in common, but nothing else. ThusB = L1 ∩ L2 is MO3.

Assume now that this special V-formation could be amalgamated in OMLs by
(C,ψ1, ψ2). Identifying the elements ofLi with their images underψi we would
obtain

1= m ∨ q ≤ m ∨ q ∨ e = m ∨ b′ = m ∨ a ∨ e.
Sincea ≤ e′ andm ≤ s ≤ e′ this would give

a ∨m = e′

and

r ′ = m ∨ p′ = m ∨ a ∨ c = e′ ∨ c = 1,

a contradiction. We thus have

THEOREM 2. OMLs do not have the amalgamation property.

4. MOLs do not Have Boolean Amalgamation

As we will see later a V-formation(B,L1, L2, ϕ1, ϕ2) in OMLs can be strongly
amalgamated in OMLs ifB is a Boolean algebra. As opposed to this we will show
in this section that a V-formation as above in MOLs cannot be amalgamated in
MOLs even ifB is an eight element Boolean algebra.

Let B be an eight-element Boolean algebra generated by the chain 0< x <

y < 1. Let P be (the OL of subspaces of) a non-arguesian orthocomplemented
projective plane. For the existence of these see [3, 10]. DefineL1 = P × 2, where
2 is the two-element Boolean algebra and leta be an atom ofP . Let L2 be an
arbitrary orthocomplemented projective plane; letm be a co-atom (line) ofL2 and
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AMALGAMATION OF ORTHOLATTICES 197

let e, f, g < m be atoms ofL2. Clearly there exist OL-embeddingsϕi: B → Li
satisfying

ϕ1(x) = (0,1), ϕ1(y) = (a,1), ϕ2(x) = e, ϕ2(y) = m.
Assume now that the resulting V-formation could be amalgamated in MOLs by

(C,ψ1, ψ2). Note that

ψ1(0,1) = ψ1(ϕ1(x)) = ψ2(ϕ2(x)) = ψ2(e)

and

ψ1(a,1) = ψ1(ϕ1(y)) = ψ2(ϕ2(y)) = ψ2(m).

Note furthermore that the sublatticeE = [(0,1), (1,1)] of L1 is isomorphic with
P and hence simple as a lattice. Also the sublatticeF = {0, e, f, g,m} of L2 is
simple. Now letϕ: C → ∏

i∈I Mi be a subdirect representation ofC, whereϕ is
an OL-embedding ofC into the product of the subdirectly irreducible MOLsMi

and if pri is theith projection, the maps pri ◦ ϕ are ontoMi. Since

ψ1(0,1) 6= ψ1(a,1)

there exists an indexi ∈ I such that

pri(ϕ(ψ1(0,1))) 6= pri(ϕ(ψ1(a,1))).

Thus the homomorphism pri ◦ ϕ ◦ ψ1 does not collapse the elements(0,1) and
(a,1) of E. SinceE is simple it follows that pri ◦ ϕ ◦ψ1 restricted toE is a lattice
embedding ofE intoMi. Since

pri(ϕ(ψ2(e))) = pri (ϕ(ψ1(0,1)))

and

pri(ϕ(ψ2(m))) = pri(ϕ(ψ1(a,1)))

the homomorphism pri ◦ϕ ◦ψ2 does not collapse the elementse andm of F and it
follows that the restriction of pri ◦ ϕ ◦ψ2 toF is a lattice embedding ofF intoMi .
In particular,

pri(ϕ(ψ2(e))) 6= 0.

SinceE is lattice-isomorphic withP it follows that pri(ϕ(ψ1(E))) contains a four-
element chain with smallest element

pri(ϕ(ψ1(0,1))) = pri(ϕ(ψ2(e))) 6= 0.

It follows thatMi contains a five-element chain and hence, by [5], is arguesian.
But P is isomorphic with a sublattice ofMi and is not arguesian, which is a
contradiction. Thus we have

THEOREM 3. MOLs do not have Boolean amalgamation.
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198 G. BRUNS AND J. HARDING

5. Boolean Amalgamation in OMLs of Bounded Height

We show in this section that the fact that OMLs have Boolean amalgamation is no
longer true if one replaces the variety of all OMLs by a variety of OMLs gener-
ated by OMLs of bounded height. In order to be precise we make the following
assumption.

We assume thatn ≥ 3 is a natural number; thatV is a variety of OMLs in
which every chain in a subdirectly irreducible member ofV has at mostn elements
and that there exists a subdirectly irreducible memberL of V which contains an
n-element chain. We show that such a variety does not have Boolean amalgamation
even ifB is the eight-element Boolean algebra.

Let B be an eight-element Boolean algebra generated by the chain 0< x <

y < 1. LetL be a subdirectly irreducible member ofV containing ann-element
chain and leta be an atom of such a chain. DefineL1 = L2 = L× 2. Then there
exist OL-embeddingsϕi : B → Li satisfying

ϕ1(x) = (0,1), ϕ1(y) = (a,1), ϕ2(x) = (a′,0), ϕ2(y) = (1,0).
We show that the resulting V-formation cannot be amalgamated inV.

Assume now that(C,ψ1, ψ2) was an amalgam of the above V-formation in
V. DefineE = [ϕ1(x),1] = [(0,1), (1,1)] andF = [0, ϕ2(y)] = [(0,0), (1,0)].
ClearlyE andF are lattice isomorphic withL andL is chain-finite and subdirectly
irreducible as an OML, hence simple as a lattice. Thusψ1(E) andψ2(F ) are simple
as lattices. Note that

ψ2(ϕ2(x)) = ψ2(a
′,0) ∈ ψ2(F ),

ψ2(ϕ2(x)) = ψ1(ϕ1(x)) = ψ1(0,1) ∈ ψ1(E),

ψ1(ϕ1(y)) = ψ1(a,1) ∈ ψ1(E),

ψ1(ϕ1(y)) = ψ2(ϕ2(y)) = ψ2(1,0) ∈ ψ2(F ).

Thus

ψ2(ϕ2(x)), ψ1(ϕ1(y)) ∈ ψ1(E),ψ2(F ).

Now let ϕ: C → ∏
i∈I Mi be a subdirect product representation ofC by

subdirectly irreducible OMLsMi andwi = pri ◦ ϕ. Since

ψ2(ϕ2(x)) < ψ2(ϕ2(y)) = ψ1(ϕ1(y)),

there exists an indexi ∈ I such that

wi(ψ2(ϕ2(x)) < wi(ψ1(ϕ1(y))).

Sinceψ2(ϕ2(x)) andψ1(ϕ1(y)) both belong toψ1(E) andψ2(E) it follows that
the restriction ofwi toψ1(E) and toψ2(F ) are lattice embeddings. Butwi(ψ1(E))

contains ann-element chain with smallest elementwi(ψ1(ϕ1(x))). Sinceϕ2(0) <
ϕ2(x) in F we obtain

wi(ψ2(ϕ2(0))) < wi(ψ2(ϕ2(x))) = wi(ψ1(ϕ1(x))) 6= 0.
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AMALGAMATION OF ORTHOLATTICES 199

ThusMi contains an(n + 1)-element chain contradicting Jónsson’s celebrated
lemma [1]. Thus our V-formation cannot be amalgamated inV. We thus have

THEOREM 4. If V is a non-Boolean variety of OMLs generated by OMLs of
bounded height thenV does not have Boolean amalgamation.

6. Boolean Amalgamation, Preliminaries

LEMMA 6.1. Let L1, L2 be OMLs,B = L1 ∩ L2 ≤ L1, L2, B Boolean,a ∈
L1 ∪ L2. Then fori = 1,2 there exist OMLsMi , Boolean algebrasBi ≤ Mi ,
OL-embeddingsαi: Li →Mi and an isomorphismγ : B1→ B2 such that

1. αi(B) = αi(Li) ∩ Bi ≤ Bi,
2. α2|B = γ ◦ α1|B ,
3. if Li is infinite then|Li| = |Mi |,
4. if e ∈ Li andm = max{b ∈ B | b ≤ e} thenαi(m) = max{b ∈ Bi | b ≤ αi(e)},
5. if a ∈ Li then{b ∈ Bi | b ≤ αi(a)} has a maximum.

Proof.Define

X = {x ∈ B | x ≤ a}.
Forc ∈ Li definec̃ ∈ LXi by

c̃(x) = c for all x ∈ X.
Define

a∗ = idX,

B[a] is the subalgebra ofBX generated by{a∗} ∪ {c̃ | c ∈ B},
Li[a] is the subalgebra ofLXi generated by{a∗} ∪ {c̃ | c ∈ Li}.

Define relationsθi in Li[a] by

f θig ⇔ there existsk ∈ X such that[k,→] ⊆ {x ∈ X | f (x) = g(x)}.
Here[k,→] = {x ∈ X | k ≤ x}. Noting thatθi is a congruence inLi[a] define

Mi = Li[a]/θi,
Bi = {f/θi | f ∈ B[a]}.

ClearlyB[a] is a subalgebra ofLi[a] (i = 1,2) and henceBi ≤ Mi . But B[a] is
a subalgebra of the Boolean algebraBX and henceBi is Boolean. It is easy to see
that the map

αi: Li →Mi defined byαi(c) = c̃/θi
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200 G. BRUNS AND J. HARDING

is an OL-embedding. Clearlyαi(B) ⊆ αi(Li)∩Bi . Assumec ∈ Li andαi(c) ∈ Bi.
Then c̃/θi = f/θi for somef ∈ B[a] and hence there existsk ∈ X such that
[k,→] ⊆ {x ∈ X | c̃(x) = f (x)}. In particular,c̃(k) = f (k) and thusc = f (k) ∈
B. Then asBi andαi(Li) are subalgebras ofMi so also is their intersection. We
have thus proved

(1) αi(B) = αi(Li) ∩ Bi ≤ Bi.
Note that the restrictions ofθ1 andθ2 toB[a] agree, thus there is an isomorphism

γ : B1→ B2 such thatγ (f/θ1) = f/θ2 for all f ∈ B[a].
It is easy to see that

(2) α2|B = γ ◦ α1|B .

AsMi is generated byαi(Li) ∪ {a∗/θi} it follows that

(3) if Li is infinite then|Li | = |Mi |.
(4) If e ∈ Li andm = max{b ∈ B | b ≤ e} thenαi(m) = max{b ∈ Bi | b ≤ αi(e)}.
Note thatm ∈ B and henceαi(m) ∈ Bi . But

m̃(x) = m ≤ e = ẽ(x) for all x ∈ X.
Henceαi(m) ≤ αi(e). Assumeb ∈ Bi. Then there existsf ∈ B[a] with b = f/θi.
As

f (x) ≤ e⇔ f (x) ≤ m,
thus

f/θi ≤ ẽ/θi ⇔ f/θi ≤ m̃/θi.
Henceb ≤ αi(e)⇔ b ≤ αi(m), proving (4).

(5) a∗/θi = max{b ∈ Bi | b ≤ αi(a)}.
Note thata∗ ∈ B[a] and hencea∗/θi ∈ Bi. Also

a∗(x) = x ≤ a = ã(x) for all x ∈ X
and hence

a∗/θi ≤ ã/θi = αi(a).
Assumeb ∈ Bi andb ≤ αi(a). Then there existsf ∈ B[a] such thatb = f/θi.
SinceB[a] is a Boolean algebra generated by the subalgebra{b | b ∈ B} and the
singleton{a∗}, there existc, d ∈ B such that

f = (a∗ ∧ c̃) ∨ (a∗′ ∧ d̃).
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AMALGAMATION OF ORTHOLATTICES 201

Sinceb ≤ αi(a) there existsk ∈ X such that

[k,→] ⊆ {x ∈ X | f (x) ≤ ã(x)}.
But for x ∈ X,

f (x) ≤ ã(x)⇔ (x ∧ c) ∨ (x′ ∧ d) ≤ a ⇔ x′ ∧ d ≤ a,
hencek′ ∧ d ≤ a andd ≤ a. Thus ifd ≤ x ∈ X then

f (x) = (x ∧ c) ∨ (x′ ∧ d) ≤ x = a∗(x),
hence

[d,→] ⊆ {x ∈ X | f (x) ≤ a∗(x)}
andb = f/θi ≤ a∗/θi, proving (5) and the lemma. 2

LEMMA 6.2. Let L1, L2 be OMLs,B = L1 ∩ L2 ≤ L1, L2, B Boolean,a ∈
L1 ∪ L2. Then there exist OMLsL1(a), L2(a) and a Boolean algebraB(a) such
that

1. B ≤ B(a) = L1(a) ∩ L2(a) ≤ L1(a), L2(a),
2. Li ≤ Li(a),
3. if Li is infinite then|Li| = |Li(a)|,
4. if e ∈ L1 ∪ L2 andm = max{b ∈ B | b ≤ e} thenm = max{b ∈ B(a) | b ≤ e},
5. {b ∈ B(a) | b ≤ a} has a maximum,
6. B(a) ∩ (L1 ∪ L2) = B.

Proof. Let Mi,Bi, αi, γ be as in the previous lemma. Choose setsA,D1,D2

which are pairwise disjoint and disjoint withL1 ∪ L2 such that their cardinal
numbers allow the existence of bijectionsϕ1, δ1, δ2 where

ϕ1: A→ B1− α1(B),

δi: Di →Mi − (αi(Li) ∪ Bi).
Defineϕ2 = γ ◦ ϕ1. As γ : B1→ B2 is an isomorphism withγ ◦ α1|B = α2|B we
thus have thatϕ2 is a bijection

ϕ2: A→ B2− α2(B).

For i = 1,2 defineLi(a) = Li ∪ A ∪Di and define mapsfi: Li(a)→Mi by

fi|Li = αi,
fi|A = ϕi,
fi|Di = δi .
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202 G. BRUNS AND J. HARDING

Note that

fi(Li) = αi(Li),
fi(A) = Bi − αi(B),
fi(Di) = Mi − (αi(Li) ∪ Bi).

By assumption,αi(B) = αi(Li) ∩ Bi and thusfi(A) = Bi − αi(Li). It is easy to
see that the setsf1(L1), f1(A), f1(D1) are pairwise disjoint with unionM1 and the
setsf2(L2), f2(A), f2(D2) are pairwise disjoint with unionM2. As the restrictions
of fi toLi,A,Di are bijections it follows that

(1) fi: Li(a)→ Mi is a bijection.

Define now operations∨i ,∧i , ′i ,0i ,1i in Li(a) by

b ∨i c = f −1
i (fi(b) ∨ fi(c)),

b ∧i c = f −1
i (fi(b) ∧ fi(c)),

b
′i = f −1

i (fi(b)
′),

0i = f −1
i (0),

1i = f −1
i (1),

where the operations on the right-hand side of the equations are taken inMi . It
is clear that with these definitionsLi(a) becomes an OML andfi becomes an
OL-isomorphism betweenLi(a) andMi .

(2) In Li the original operations∨,∧, ′,0,1 agree with∨i ,∧i ,′i ,0i ,1i , soLi ≤
Li(a).

Forb, c ∈ Li,
b ∨i c = f −1

i (fi(b) ∨ fi(c)) (∨ in Mi)

= f −1
i (αi(b) ∨ αi(c)) (same)

= f −1
i (αi(b ∨ c)) (∨ in Li)

= f −1
i (fi(b ∨ c))

= b ∨ c.

b
′i = f −1

i (fi(b)
′) (′ in Mi)

= f −1
i (αi(b)

′) (same)

= f −1
i (αi(b

′)) (′ in Li)
= f −1

i (fi(b
′))

= b′.

That the remaining operations are the same is a consequence of this.
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AMALGAMATION OF ORTHOLATTICES 203

(3) fi|B∪A: B ∪ A→ Bi is a bijection.

This follows asfi is one-one,fi(A) = Bi − αi(B) andfi(B) = αi(B). As γ ◦
α1|B = α2|B andγ ◦ ϕ1 = ϕ2 it is easy to see that

(4) f2(b) = γ (f1(b)) for all b ∈ B ∪ A,

(5) f −1
2 (b) = f −1

1 (γ −1(b)) for all b ∈ B2.

It follows from (4) and (5) that inB ∪ A = L1(a) ∩ L2(a) the OL-operations of
L1(a) andL2(a) coincide and yield elements ofB ∪A. If we defineB(a) to be the
subalgebraB ∪ A of Li we thus have

(6) fi|B∪A: B(a)→ Bi is an isomorphism, hence

(7)B ≤ B(a) = L1(a) ∩ L2(a) ≤ L1(a), L2(a) andB(a) is Boolean.

Sincefi is an isomorphism betweenLi(a) andMi the cardinal number ofLi(a)
equals that ofMi . By our choice ofMi , if Li is infinite then|Li| = |Mi |. Thus

(8) If Li is infinite then|Li | = |Li(a)|.
(9) If e ∈ L1∪L2 andm = max{b ∈ B | b ≤ e} thenm = max{b ∈ B(a) | b ≤ e}.
Assumee ∈ Li, b ∈ B(a) andb ≤ e. We have to show thatb ≤ m. Clearlyfi(b) ≤
fi(e) = αi(e). By our choice ofαi we haveαi(m) = max{b ∈ Bi | b ≤ αi(e)} and
hencefi(b) ≤ αi(m) = fi(m). Asfi|B∪A is an isomorphismb ≤ m, proving (9).

(10) {b ∈ B(a) | b ≤ a} has a maximum.

Assumea ∈ Li. By our choice ofBi the set{b ∈ Bi | b ≤ αi(a)} has a maximum
m. Thenf −1

i (m) ∈ B(a) and asαi is an embeddingf −1
i (m) = α−1

i (m) ≤ a.
Assume thatb ∈ B(a) andb ≤ a. Thenfi(b) ∈ Bi andfi(b) ≤ fi(a) = αi(a)

and hencefi(b) ≤ m. Asfi|B∪A is an isomorphismb ≤ f −1
i (m), proving (10) and

hence Lemma 6.2. 2

The OMLsL1(a), L2(a) in the previous lemma are, of course, not completely
determined byL1, L2 and a. Using AC we may, however, assume that specific
OMLs L1(a), L2(a) are chosen for everyL1, L2, a as in the assumption of
Lemma 6.2. We will assume this in the proof of the next lemma.

LEMMA 6.3. Let L1, L2 be OMLs,B = L1 ∩ L2 ≤ L1, L2, B Boolean. Then
there exist OMLsL′1, L

′
2 and a Boolean algebraB ′ such that

1. B ≤ B ′ = L′1 ∩ L′2 ≤ L′1, L′2,
2. Li ≤ L′i (i = 1,2),
3. |L′i| ≤ max{|L1|, |L2|},
4. if e ∈ L1 ∪ L2 andm = max{b ∈ B | b ≤ e} thenm = max{b ∈ B ′ | b ≤ e},
5. for everya ∈ L1 ∪ L2 the set{b ∈ B ′ | b ≤ a} has a maximum,
6. B ′ ∩ (L1 ∪ L2) = B.
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Proof.If L1 orL2 is finite thenB is finite and we may chooseL′i = Li andB ′ =
B. We may thus assume thatL1 andL2 are infinite. Defineλ = max{|L1|, |L2|}.
Clearly λ = |L1 ∪ L2|. Enumerate the elements byλ (considered as an initial
ordinal). ThusL1∪L2 = {aµ | µ < λ}. For everyµ ≤ λ define recursively OMLs
L1µ,L2µ and Boolean algebrasBµ by

B0 = B, L10= L1, L20= L2,

Bν+1 = Bν(aν), L1ν+1 = L1ν(aν), L2ν+1 = L2ν(aν),

Bµ =
⋃
ν<µ

Bν, L1µ =
⋃
ν<µ

L1ν, L2µ =
⋃
ν<µ

L2ν if µ is a limit ordinal.

Define

B ′ = Bλ, L′1 = L1λ and L′2 = l2λ.
It is an easy exercise to show thatB ′, L′1, L

′
2 have the desired properties. 2

As before we may again assume that givenL1, L2, B as in the previous lemma
specificB ′, L′1, L

′
2 are chosen satisfying the previous lemma.

LEMMA 6.4. Let L1, L2 be OMLs,B = L1 ∩ L2 ≤ L1, L2, B Boolean. Then
there exist OMLsL1, L2 and a Boolean algebraB such that
1. B ≤ B = L1 ∩ L2 ≤ L1, L2,
2. Li ≤ Li (i = 1,2),
3. for everya ∈ L1 ∪ L2 the set{b ∈ B ′ | b ≤ a} has a maximum,
4. B ∩ (L1 ∪ L2) = B.

Proof. For n < ω define recursively OMLsL1n, L2n and Boolean algebrasBn
by

B0 = B, L10= L1, L20= L2,

Bn+1 = B ′n, L1n+1 = L′1n, L2n+1 = L′2n.
Put

B =
⋃
n<ω

Bn, L1 =
⋃
n<ω

L1n and L2 =
⋃
n<ω

L2n.

It is again an easy exercise to see thatB and theLi have the desired properties.2

7. Boolean Amalgamation of OMLs

THEOREM 5. Let (B,L1, L2, ϕ1, ϕ2) be a V-formation in OMLs, whereB is a
Boolean algebra. Then this V-formation can be strongly amalgamated on OMLs.

Proof. It follows from the observation in Section 2 that we may actually assume
thatB = L1 ∩ L2 is a subalgebra of bothL1 andL2 and thatϕ1|B = ϕ2|B = idB ,
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i.e. that(B,L1, L2) is a special V-formation. ChooseL1, L2, B as in Lemma 6.4
and assume that the new special V-formation(B,L1, L2) can be strongly amalga-
mated in OMLs by(C,ψ1, ψ2). Then it is easy to see that(C,ψ1|L1, ψ2|L2) strongly
amalgamates the original V-formation. We may thus work under the assumptions

(1)B = L1 ∩ L2 ≤ L1, L2

(2) for everya ∈ L1 ∪ L2, a = max{b ∈ B | b ≤ a} exists.

Let P = L1 ∪ L2 be the partial amalgam as defined in Section 2. It is then easy to
see that for everya ∈ P ,

a = min{b ∈ B | a ≤ b} exists and a′ = (a)′, a′ = (a)′.
Furthermore, it is an easy consequence of the definition of the partial amalgam that

(3) if a ∈ Li, b ∈ Lj (i 6= j) then inP : a ≤ b⇔ a ≤ b⇔ a ≤ b⇔ a ≤ b.

ForX ⊆ P let uX (or u(X)) be the set of all upper bounds ofX in P and letlX
(or l(X)) be the set of all lower bounds ofX in P . If a, b ∈ P we define

[a, b]i = {x ∈ Li | a ≤ x ≤ b}.
(4) If a ∈ L1, b ∈ L2 then

L1 ∩ u{a, b} = [a ∨ b,1]1, L2 ∩ u{a, b} = [a ∨ b,1]2, in particular

u{a, b} = [a ∨ b,1]1 ∪ [a ∨ b,1]2,
L1 ∩ l{a, b} = [0, a ∧ b]1, L2 ∩ l{a, b} = [0, a ∧ b]2, in particular

l{a, b} = [0, a ∧ b]1 ∪ [0, a ∧ b]2.
Note thata, b ∈ L1 and hencea ∨ b exists inL1 and hence inP and the same for
the remaining joins and meets. Clearly

L1 ∩ u{a, b} ⊇ [a ∨ b,1]1.
If a, b ≤ x ∈ L1 then, by (3),a ∨ b ≤ x, proving the first equation. The second
equation follows by symmetry and the third is a consequence of the first two. The
rest follows by duality.

(5) Fora ∈ L1, b ∈ L2,

L1 ∩ l(u{a, b}) = [0, (a ∨ b) ∧ (a ∨ b)]1 and

L2 ∩ l(u{a, b}) = [0, (a ∨ b) ∧ (a ∨ b)]2, in particular

l(u{a, b}) = [0, (a ∨ b) ∧ (a ∨ b)]1 ∪ [0, (a ∨ b) ∧ (a ∨ b)]2.
We show the first equality. By (4) we have

l(u{a, b}) = l([a ∨ b,1]1 ∪ [a ∨ b,1]2) = l{a ∨ b, a ∨ b}

ORDE0012.tex; 11/06/1998; 12:02; p.13



206 G. BRUNS AND J. HARDING

hence by (4)

L1 ∩ l(u{a, b}) = [0, (a ∨ b) ∧ (a ∨ b)]1.
Recall that a normal ideal inP is a setA ⊆ P satisfyingA = l(u(A)) or

equivalently, for which there exists a setX ⊆ P such thatA = l(X). We define a
normal idealA to be finitely generated iff there exists a finite setF ⊆ P such that
A = l(u(F )).
(6) ForA ⊆ P the following are equivalent.

1.A is a finitely generated normal ideal.
2. There exista ∈ L1, b ∈ L2 such that

(a) L1 ∩ A = [0, a]1, L2 ∩ A = [0, b]2,
(b) a = (a ∨ b) ∧ (a ∨ b) andb = (a ∨ b) ∧ (a ∨ b).

3. There existc ∈ L1, d ∈ L2 such thatL1∩A = [0, c∧d]1, L2∩A = [0, c∧d]2.
1⇒ 2. By assumption there exists a finite setF such thatA = l(u(F )). Define

x =
∨
(F ∩ L1), y =

∨
(F ∩ L2).

Clearlyu(F) = u{x, y}. ThusA = l(u{x, y}) and, by (5),

L1 ∩A = [0, (x ∨ y) ∧ (x ∨ y)]1, L2 ∩ A = [0, (x ∨ y) ∧ (x ∨ y)]2.
With

a = (x ∨ y) ∧ (x ∨ y), b = (x ∨ y) ∧ (x ∨ y)
we obtain 2(a). Buta ≥ x ∧ (x) = x ∧ x = x andb ≥ y ∧ y = y. Thus

A = l(u{x, y}) ⊆ l(u{a, b}) ⊆ l(u(A)) = A,
henceA = l(u{a, b}) and, by (5),

L1 ∩A = [0, (a ∨ b) ∧ (a ∨ b)]1, L2 ∩ A = [0, (a ∨ b) ∧ (a ∨ b)]2.
These equations together with 2(a) clearly imply 2(b).

2⇒ 3. Putc = a ∨ b, d = a ∨ b.
3 ⇒ 1. By (4),A = l{c, d} and henceA is a normal ideal. Clearlyu(A) =

u{c ∧ d, c ∧ d} and hence

A = l(u(A)) = l(u{c ∧ d, c ∧ d}).
ThusA is finitely generated.

Let C be the set of all finitely generated normal ideals; letN be the set of all
normal ideals, the standard form of the MacNeille completion ofP , and letf be
the canonical embedding ofP intoN , i.e.f (a) = [0, a].
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(7)C is a sub-OL ofN generated byf (P ).

AssumeA,B ∈ C. Then there exist finite setsF,G ⊆ P such thatA = l(u(F )),
B = l(u(G)). Clearly

F ∪G ⊆ A ∪ B ⊆ l(u(F ∪G)).
Thus

l(u(A ∪ B)) ⊆ l(u(l(u(F ∪G)))) = l(u(F ∪G))
and

l(u(F ∪G)) ⊆ l(u(A ∪ B)),
and hence

l(u(F ∪G)) = l(u(A ∪ B)).
Since the last set is the join ofA andB in N it follows that this join belongs toC.
The orthocomplementA⊥ of A ∈ N is defined byA⊥ = l(A′) whereA′ = {a′ |
a ∈ A}. AsA ∈ C, by (6),A is of the form

A = [0, a]1 ∪ [0, b]2 with a ∈ L1, b ∈ L2.

It follows that

A′ = [a′,1]1 ∪ [b′,1]2 and A⊥ = l{a′, b′}.
Thus, by (4),

L1 ∩A⊥ = [0, a′ ∧ (b′)]1 and L2 ∩ A⊥ = [0, (a′) ∧ b′]2
andA⊥ ∈ C by (6). ThusC is a subalgebra ofN . If A ∈ C then, by (6), there
existsc ∈ L1, d ∈ L2 such that

L1 ∩A = [0, c ∧ d]1 and L2 ∩ A = [0, c ∧ d]2.
By (4) this implies that

A = l{c, d} = [0, c] ∩ [0, d] = f (c) ∩ f (d).
ThusA is the meet of two elements off (P ) and henceC is generated byf (P ),
proving (7).

(8) If u, v ∈ P and ifu ∨ v exists inP thenu ∨ v = u ∨ v, and dually.

Clearlyu∨ v ≤ u∨ v ∈ B and henceu ∨ v ≤ u∨ v. Alsou, v ≤ u ∨ v ∈ B hence
u, v ≤ u ∨ v andu ∨ v ≤ u ∨ v, proving (8).

(9)C is an OML.
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AssumeA,B ∈ C,A ⊆ B andA⊥ ∩ B = {0}. We have to show thatA = B. By
(6) there exist elementsa, c ∈ L1, b, d ∈ L2 such that

L1 ∩A = [0, a]1 and L2 ∩ A = [0, b]2,
L1 ∩ B = [0, c ∧ d]1 and L2 ∩ B = [0, c ∧ d]2, with

a = (a ∨ b) ∧ (a ∨ b) and b = (a ∨ b) ∧ (a ∨ b).
ClearlyA⊥ = l{a′, b′} and, by (4),

L1 ∩A⊥ = [0, a′ ∧ (b)′]1 and L2 ∩ A⊥ = [0, (a)′ ∧ b′]2.
SinceA ⊆ B we havea ≤ c ∧ d andb ≤ c ∧ d, and hence

a ∨ b ≤ c ∧ (a ∨ b) and a ∨ b ≤ d ∧ (a ∨ b).
SinceA⊥ ∩ B = {0} we have

a′ ∧ (b)′ ∧ c ∧ d = 0 and (a)′ ∧ b′ ∧ c ∧ d = 0.

But a commutes withb, hence

a′ ∧ (b)′ ∧ c ∧ (a ∨ b) = a′ ∧ (b)′ ∧ c ∧ a ≤ a′ ∧ (b)′ ∧ c ∧ d = 0,

(a)′ ∧ b′ ∧ d ∧ (a ∨ b) = (a)′ ∧ b′ ∧ d ∧ b ≤ (a)′ ∧ b′ ∧ c ∧ d = 0.

Thus

a ∨ b = c ∧ (a ∨ b) and a ∨ b = d ∧ (a ∨ b).
Furthermore

(a ∨ b) ∧ (a ∨ b) = (a ∨ b) ∧ d ∧ (a ∨ b)
= (a ∨ b) ∧ d ∧ (a ∨ b) (by (8))

= (a ∨ b) ∧ d
= a ∨ (b ∧ d) (asa, b commute withd)

≤ c ∧ d
and

a′ ∧ ((b)′ ∨ (d)′) ∧ c ∧ d = a′ ∧ (b)′ ∧ c ∧ d (asb commutes withd)

= 0 (asa ∨ b ≤ c).
Thus

a = (a ∨ b) ∧ (a ∨ b) = c ∧ d.
By symmetry we obtain

b = (a ∨ b) ∧ (a ∨ b) = c ∧ d.
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The last two equations proveA = B and hence (9).
Define nowψi = f|Li . Then it is clear that(C,ψ1, ψ2) strongly amalgamates

our V-formation, proving Theorem 5. 2

8. Concluding Remarks

There is an abundance of open problems connected with the questions dealt with
in this paper. Here are some samples.

We have considered only very few varieties of OLs, namely OLs, OMLs, OMLs
generated by members of bounded height and MOLs. What about other varieties
of OLs? are there any which have (strong, Boolean) amalgamation?

In Sections 6 and 7 we proved that OMLs have strong Boolean amalgamation.
In our example showing that OMLs do not have the amalgamation property,B was
MO3. Is there a counter-example in whichB is MO2? Since every variety of OMLs
which does not consist of Boolean algebras only contains MO2, the question seems
natural. We do not know the answer.

Connected with the question of amalgamation in a variety is the question wheth-
er epimorphisms are surjective, see [7]. It is well known and easy to prove that in
every variety with the strong amalgamation property epimorphisms are surjective.
Thus epimorphisms in OLs are surjective. We do not know whether epimorphisms
in OMLs are surjective.
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