Amalgamation of Ortholattices

GUNTER BRUNS

Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.e-mail: bruns@mcmail.cis.mcmaster.ca

JOHN HARDING
Department of Mathematical Sciences, New Mexico State University, Las Cruses, NM 88003, U.S.A. e-mail: jharding@nmsu.edu

(Received: 30 September 1996; accepted: 29 September 1997)

Abstract

We show that the variety of ortholattices has the strong amalgamation property and that the variety of orthomodular lattices has the strong Boolean amalgamation property, i.e. that two orthomodular lattices can be strongly amalgamated over a common Boolean subalgebra. We give examples to show that the variety orthomodular lattices does not have the amalgamation property and that the variety of modular ortholattices does not even have the Boolean amalgamation property. We further show that no non-Boolean variety of orthomodular lattices which is generated by orthomodular lattices of bounded height can have the Boolean amalgamation property.

Mathematics Subject Classifications (1991): 06C15, 03G12, 08B25.
Key words: ortholattice, orthomodular lattice, amalgamation.

1. Introduction

Following the terminology of Grätzer [1, p. 252 ff], a V-formation in a class K of algebras is a quintuplet ($B, L_{1}, L_{2}, \varphi_{1}, \varphi_{2}$) where B, L_{1}, L_{2} are algebras in K and $\varphi_{i}(i=1,2)$ is an algebra-embedding of B into L_{i}. An amalgam of the V -formation in K is a triple $\left(C, \psi_{1}, \psi_{2}\right)$ where $C \in K$, the ψ_{i} are algebra-embeddings of L_{i} into C satisfying $\psi_{1} \circ \varphi_{1}=\psi_{2} \circ \varphi_{2}$.

The amalgam is strong if, in addition, $\psi_{1}\left(L_{1}\right) \cap \psi_{2}\left(L_{2}\right)=\psi_{1}\left(\varphi_{1}(B)\right)(=$ $\psi_{2}\left(\varphi_{2}(B)\right)$) holds. The V-formation can be (strongly) amalgamated if there exists a (strong) amalgam of it. A class K has the (strong) amalgamation property iff every

V-formation in K can be (strongly) amalgamated. We will pay special attention to the case that B is a Boolean algebra. In this case we talk of Boolean amalgamation.

In this paper we study amalgamation in the class of ortholattices, orthomodular lattices and modular ortholattices. Throughout we abbreviate ortholattice as OL, orthomodular lattice as OML, and modular ortholattice as MOL. OLs stands not only for the plural of OL, but also for the class of all OLs, etc.

The question of amalgamation in these classes has so far received little attention. The simplest case was dealt with by MacLaren [8]. Here L_{1}, L_{2} are OMLs and B is the two-element Boolean algebra. A strong amalgamation in OMLs is obtained by "identifying" the bounds in the disjoint union of L_{1} and L_{2}. The construction has become known as the horizontal sum of L_{1} and L_{2}. This is a very special case of Greechie's celebrated paste job [2]. His assumptions are that L_{1} and L_{2} are OMLs and that there exists an element $a \in B$ such that $\varphi_{i}(B)$ is the union of the principal ideal $\left[0, \varphi_{i}(a)\right]$ and the principal filter $\left[\varphi_{i}\left(a^{\prime}\right), 1\right]$ in L_{i}. Strong amalgamation in OMLs is again obtained by "identifying" $\varphi_{1}(B)$ and $\varphi_{2}(B)$ in the disjoint union of L_{1} and L_{2}. A considerably more complicated case was investigated by SchulteMönting [9]. Here it is again assumed that L_{1} and L_{2} are arbitrary OMLs but that for $i=1,2 \varphi_{i}(B)$ is a subalgebra of the centre of L_{i}. It is shown that in this case we also have strong amalgamation in OMLs.

In Section 2 of this paper we show that OLs have the strong amalgamation property. The proof is an easy adaptation of a well-known construction first used by Jónsson [4] to show that lattices have the strong amalgamation property. The bulk of the paper, in which we show that OMLs have the strong Boolean amalgamation property, is contained in Sections 6 and 7. The remaining results we have are negative. In Section 3 we show that OMLs do not have the amalgamation property. In our counter-example L_{1} and L_{2} are finite and B is MO3. (Recall that MOn is the MOL consisting of $2 n$ incomparable elements and the bounds.) In Section 4 we show that MOLs do not have Boolean amalgamation and in Section 5 we show the same for every non-Boolean variety of OMLs which is generated by OMLs of bounded height. In both counter-examples B is an eight element Boolean algebra.

A note on notation. If f is a map then $f_{\mid X}$ is the restriction of f to X, id_{X} is the identity map of $X,|X|$ is the cardinal number of X. In the last two sections we use $A \leq B$ for " A is a subalgebra of B ".

For background information concerning OMLs the reader is referred to [6]. Both authors gratefully acknowledge support by the Natural Sciences and Engineering Research Council of Canada, grant 0002985 (G.B.) and grant OGP0155640 (J.H.).

2. The Partial Amalgam, Amalgamation of OLs

The definition of amalgamation as given in the introduction is often cumbersome to work with. It can, in most cases, be replaced by the following simpler concept. Define a special V-formation to be a triple (B, L_{1}, L_{2}) where $B=L_{1} \cap L_{2}$ is a sub-
algebra of both L_{1} and L_{2}, confusing, as usual, the algebras with their underlying sets. A special V-formation gives rise to the V-formation ($B, L_{1}, L_{2}, \mathrm{id}_{B}, \mathrm{id}_{B}$) and hence the concept of amalgamation as defined in the introduction can be applied to special V-formations. It turns out that under weak assumptions on a class K the existence of amalgams of V-formations and special V-formations are equivalent. We are sure the reader will find it easy to verify the following observation which makes this statement precise.

OBSERVATION. Let K be a class of algebras which is closed under isomorphisms and let ($B, L_{1}, L_{2}, \varphi_{1}, \varphi_{2}$) be a V-formation in K. Then the following two statements are equivalent.

1. ($B, L_{1}, L_{2}, \varphi_{1}, \varphi_{2}$) can be (strongly) amalgamated in K.
2. There exists a special V-formation (B, K_{1}, K_{2}) in K and two isomorphisms $f_{i}: K_{i} \rightarrow L_{i}$ satisfying $f_{i \mid B}=\varphi_{i}$ such that (B, K_{1}, K_{2}) can be (strongly) amalgamated in K.

The following construction of the partial amalgam of a special V-formation is well known and has been used before, see [4].

DEFINITION. Let L_{1}, L_{2} be OLs and assume $B=L_{1} \cap L_{2}$ is a subalgebra of both L_{1} and L_{2}, i.e. that $\left(B, L_{1}, L_{2}\right)$ is a special V-formation. Let \leq_{i} be the partial ordering of L_{i}. Define a relation \leq in $L_{1} \cup L_{2}$ by setting $a \leq b$ if one of the following conditions is satisfied.

1. $a, b \in L_{i}$ and $a \leq_{i} b$.
2. $a \in L_{i}-L_{j}, b \in L_{j}-L_{i}(i \neq j)$ and there exists $m \in B$ such that $a \leq_{i} m \leq_{j} b$.

It is easily seen that \leq is a partial ordering of $L_{1} \cup L_{2}$, and that if $a, b \in L_{i}$ then the join and meet of a and b in L_{i} is the same as in the partially ordered set $L_{1} \cup L_{2}$ and that the union of the orthocomplementations in L_{1} and L_{2} is an orthocomplementation of $L_{1} \cup L_{2}$. Thus $L_{1} \cup L_{2}$ becomes an orthocomplemented poset which we call the partial amalgam of L_{1} and L_{2}.

Simple examples show that the partial amalgam is not in general a lattice. It is, however, well known and easy to prove that the MacNeille completion of an orthocomplemented poset P carries a unique orthocomplementation extending the orthocomplementation of P, hence becomes an OL. Let $f: L_{1} \cup L_{2} \rightarrow C$ be the canonical embedding of this partial amalgam into its MacNeille completion and define $\psi_{i}=f_{\mid L_{i}}$. It is then obvious that $\left(C, \psi_{1}, \psi_{2}\right)$ is a strong amalgam of the special V-formation (B, L_{1}, L_{2}). We thus obtain

THEOREM 1. OLs have the strong amalgamation property.

3. OMLs do not Have the Amalgamation Property

We consider the special V-formation (B, L_{1}, L_{2}) where L_{1} and L_{2} are given by the following Greechie diagrams.

L_{1}

L_{2}

The letters attached to the vertices denote atoms. Thus p is an atom of L_{1} and a co-atom of L_{2}, etc. We assume that L_{1}, L_{2} have the subalgebra generated by $\{p, q, s\}$ in common, but nothing else. Thus $B=L_{1} \cap L_{2}$ is MO3.

Assume now that this special V-formation could be amalgamated in OMLs by $\left(C, \psi_{1}, \psi_{2}\right)$. Identifying the elements of L_{i} with their images under ψ_{i} we would obtain

$$
1=m \vee q \leq m \vee q \vee e=m \vee b^{\prime}=m \vee a \vee e
$$

Since $a \leq e^{\prime}$ and $m \leq s \leq e^{\prime}$ this would give

$$
a \vee m=e^{\prime}
$$

and

$$
r^{\prime}=m \vee p^{\prime}=m \vee a \vee c=e^{\prime} \vee c=1,
$$

a contradiction. We thus have
THEOREM 2. OMLs do not have the amalgamation property.

4. MOLs do not Have Boolean Amalgamation

As we will see later a V-formation ($B, L_{1}, L_{2}, \varphi_{1}, \varphi_{2}$) in OMLs can be strongly amalgamated in OMLs if B is a Boolean algebra. As opposed to this we will show in this section that a V-formation as above in MOLs cannot be amalgamated in MOLs even if B is an eight element Boolean algebra.

Let B be an eight-element Boolean algebra generated by the chain $0<x<$ $y<1$. Let P be (the OL of subspaces of) a non-arguesian orthocomplemented projective plane. For the existence of these see [3,10]. Define $L_{1}=P \times 2$, where 2 is the two-element Boolean algebra and let a be an atom of P. Let L_{2} be an arbitrary orthocomplemented projective plane; let m be a co-atom (line) of L_{2} and
let $e, f, g<m$ be atoms of L_{2}. Clearly there exist OL-embeddings $\varphi_{i}: B \rightarrow L_{i}$ satisfying

$$
\varphi_{1}(x)=(0,1), \quad \varphi_{1}(y)=(a, 1), \quad \varphi_{2}(x)=e, \quad \varphi_{2}(y)=m .
$$

Assume now that the resulting V-formation could be amalgamated in MOLs by $\left(C, \psi_{1}, \psi_{2}\right)$. Note that

$$
\psi_{1}(0,1)=\psi_{1}\left(\varphi_{1}(x)\right)=\psi_{2}\left(\varphi_{2}(x)\right)=\psi_{2}(e)
$$

and

$$
\psi_{1}(a, 1)=\psi_{1}\left(\varphi_{1}(y)\right)=\psi_{2}\left(\varphi_{2}(y)\right)=\psi_{2}(m) .
$$

Note furthermore that the sublattice $E=[(0,1),(1,1)]$ of L_{1} is isomorphic with P and hence simple as a lattice. Also the sublattice $F=\{0, e, f, g, m\}$ of L_{2} is simple. Now let $\varphi: C \rightarrow \prod_{i \in I} M_{i}$ be a subdirect representation of C, where φ is an OL-embedding of C into the product of the subdirectly irreducible MOLs M_{i} and if pr_{i} is the i th projection, the maps $\mathrm{pr}_{i} \circ \varphi$ are onto M_{i}. Since

$$
\psi_{1}(0,1) \neq \psi_{1}(a, 1)
$$

there exists an index $i \in I$ such that

$$
\operatorname{pr}_{i}\left(\varphi\left(\psi_{1}(0,1)\right)\right) \neq \operatorname{pr}_{i}\left(\varphi\left(\psi_{1}(a, 1)\right)\right)
$$

Thus the homomorphism $\operatorname{pr}_{i} \circ \varphi \circ \psi_{1}$ does not collapse the elements $(0,1)$ and $(a, 1)$ of E. Since E is simple it follows that $\mathrm{pr}_{i} \circ \varphi \circ \psi_{1}$ restricted to E is a lattice embedding of E into M_{i}. Since

$$
\operatorname{pr}_{i}\left(\varphi\left(\psi_{2}(e)\right)\right)=\operatorname{pr}_{i}\left(\varphi\left(\psi_{1}(0,1)\right)\right)
$$

and

$$
\operatorname{pr}_{i}\left(\varphi\left(\psi_{2}(m)\right)\right)=\operatorname{pr}_{i}\left(\varphi\left(\psi_{1}(a, 1)\right)\right)
$$

the homomorphism $\mathrm{pr}_{i} \circ \varphi \circ \psi_{2}$ does not collapse the elements e and m of F and it follows that the restriction of $\operatorname{pr}_{i} \circ \varphi \circ \psi_{2}$ to F is a lattice embedding of F into M_{i}. In particular,

$$
\operatorname{pr}_{i}\left(\varphi\left(\psi_{2}(e)\right)\right) \neq 0
$$

Since E is lattice-isomorphic with P it follows that $\operatorname{pr}_{i}\left(\varphi\left(\psi_{1}(E)\right)\right)$ contains a fourelement chain with smallest element

$$
\operatorname{pr}_{i}\left(\varphi\left(\psi_{1}(0,1)\right)\right)=\operatorname{pr}_{i}\left(\varphi\left(\psi_{2}(e)\right)\right) \neq 0
$$

It follows that M_{i} contains a five-element chain and hence, by [5], is arguesian. But P is isomorphic with a sublattice of M_{i} and is not arguesian, which is a contradiction. Thus we have

THEOREM 3. MOLs do not have Boolean amalgamation.

5. Boolean Amalgamation in OMLs of Bounded Height

We show in this section that the fact that OMLs have Boolean amalgamation is no longer true if one replaces the variety of all OMLs by a variety of OMLs generated by OMLs of bounded height. In order to be precise we make the following assumption.

We assume that $n \geq 3$ is a natural number; that \mathcal{V} is a variety of OMLs in which every chain in a subdirectly irreducible member of \mathcal{V} has at most n elements and that there exists a subdirectly irreducible member L of \mathcal{V} which contains an n-element chain. We show that such a variety does not have Boolean amalgamation even if B is the eight-element Boolean algebra.

Let B be an eight-element Boolean algebra generated by the chain $0<x<$ $y<1$. Let L be a subdirectly irreducible member of \mathcal{V} containing an n-element chain and let a be an atom of such a chain. Define $L_{1}=L_{2}=L \times 2$. Then there exist OL-embeddings $\varphi_{i}: B \rightarrow L_{i}$ satisfying

$$
\varphi_{1}(x)=(0,1), \quad \varphi_{1}(y)=(a, 1), \quad \varphi_{2}(x)=\left(a^{\prime}, 0\right), \quad \varphi_{2}(y)=(1,0)
$$

We show that the resulting V -formation cannot be amalgamated in \mathcal{V}.
Assume now that $\left(C, \psi_{1}, \psi_{2}\right)$ was an amalgam of the above V-formation in \mathcal{V}. Define $E=\left[\varphi_{1}(x), 1\right]=[(0,1),(1,1)]$ and $F=\left[0, \varphi_{2}(y)\right]=[(0,0),(1,0)]$. Clearly E and F are lattice isomorphic with L and L is chain-finite and subdirectly irreducible as an OML, hence simple as a lattice. Thus $\psi_{1}(E)$ and $\psi_{2}(F)$ are simple as lattices. Note that

$$
\begin{aligned}
& \psi_{2}\left(\varphi_{2}(x)\right)=\psi_{2}\left(a^{\prime}, 0\right) \in \psi_{2}(F) \\
& \psi_{2}\left(\varphi_{2}(x)\right)=\psi_{1}\left(\varphi_{1}(x)\right)=\psi_{1}(0,1) \in \psi_{1}(E) \\
& \psi_{1}\left(\varphi_{1}(y)\right)=\psi_{1}(a, 1) \in \psi_{1}(E) \\
& \psi_{1}\left(\varphi_{1}(y)\right)=\psi_{2}\left(\varphi_{2}(y)\right)=\psi_{2}(1,0) \in \psi_{2}(F) .
\end{aligned}
$$

Thus

$$
\psi_{2}\left(\varphi_{2}(x)\right), \psi_{1}\left(\varphi_{1}(y)\right) \in \psi_{1}(E), \psi_{2}(F)
$$

Now let $\varphi: C \rightarrow \prod_{i \in I} M_{i}$ be a subdirect product representation of C by subdirectly irreducible OMLs M_{i} and $w_{i}=\operatorname{pr}_{i} \circ \varphi$. Since

$$
\psi_{2}\left(\varphi_{2}(x)\right)<\psi_{2}\left(\varphi_{2}(y)\right)=\psi_{1}\left(\varphi_{1}(y)\right),
$$

there exists an index $i \in I$ such that

$$
w_{i}\left(\psi_{2}\left(\varphi_{2}(x)\right)<w_{i}\left(\psi_{1}\left(\varphi_{1}(y)\right)\right) .\right.
$$

Since $\psi_{2}\left(\varphi_{2}(x)\right)$ and $\psi_{1}\left(\varphi_{1}(y)\right)$ both belong to $\psi_{1}(E)$ and $\psi_{2}(E)$ it follows that the restriction of w_{i} to $\psi_{1}(E)$ and to $\psi_{2}(F)$ are lattice embeddings. But $w_{i}\left(\psi_{1}(E)\right)$ contains an n-element chain with smallest element $w_{i}\left(\psi_{1}\left(\varphi_{1}(x)\right)\right)$. Since $\varphi_{2}(0)<$ $\varphi_{2}(x)$ in F we obtain

$$
w_{i}\left(\psi_{2}\left(\varphi_{2}(0)\right)\right)<w_{i}\left(\psi_{2}\left(\varphi_{2}(x)\right)\right)=w_{i}\left(\psi_{1}\left(\varphi_{1}(x)\right)\right) \neq 0
$$

Thus M_{i} contains an $(n+1)$-element chain contradicting Jónsson's celebrated lemma [1]. Thus our V-formation cannot be amalgamated in \mathcal{V}. We thus have

THEOREM 4. If \mathcal{V} is a non-Boolean variety of OMLs generated by OMLs of bounded height then \mathcal{V} does not have Boolean amalgamation.

6. Boolean Amalgamation, Preliminaries

LEMMA 6.1. Let L_{1}, L_{2} be OMLs, $B=L_{1} \cap L_{2} \leq L_{1}, L_{2}$, B Boolean, $a \in$ $L_{1} \cup L_{2}$. Then for $i=1,2$ there exist OMLs M_{i}, Boolean algebras $B_{i} \leq M_{i}$, OL-embeddings $\alpha_{i}: L_{i} \rightarrow M_{i}$ and an isomorphism $\gamma: B_{1} \rightarrow B_{2}$ such that

1. $\alpha_{i}(B)=\alpha_{i}\left(L_{i}\right) \cap B_{i} \leq B_{i}$,
2. $\alpha_{2 \mid B}=\gamma \circ \alpha_{1 \mid B}$,
3. if L_{i} is infinite then $\left|L_{i}\right|=\left|M_{i}\right|$,
4. if $e \in L_{i}$ and $m=\max \{b \in B \mid b \leq e\}$ then $\alpha_{i}(m)=\max \left\{b \in B_{i} \mid b \leq \alpha_{i}(e)\right\}$,
5. if $a \in L_{i}$ then $\left\{b \in B_{i} \mid b \leq \alpha_{i}(a)\right\}$ has a maximum.

Proof. Define

$$
X=\{x \in B \mid x \leq a\} .
$$

For $c \in L_{i}$ define $\tilde{c} \in L_{i}^{X}$ by

$$
\tilde{c}(x)=c \text { for all } x \in X
$$

Define

$$
\begin{aligned}
& a^{*}=\operatorname{id}_{X}, \\
& B[a] \text { is the subalgebra of } B^{X} \text { generated by }\left\{a^{*}\right\} \cup\{\tilde{c} \mid c \in B\}, \\
& L_{i}[a] \text { is the subalgebra of } L_{i}^{X} \text { generated by }\left\{a^{*}\right\} \cup\left\{\tilde{c} \mid c \in L_{i}\right\} .
\end{aligned}
$$

Define relations θ_{i} in $L_{i}[a]$ by
$f \theta_{i} g \Leftrightarrow$ there exists $k \in X$ such that $[k, \rightarrow] \subseteq\{x \in X \mid f(x)=g(x)\}$.
Here $[k, \rightarrow]=\{x \in X \mid k \leq x\}$. Noting that θ_{i} is a congruence in $L_{i}[a]$ define

$$
\begin{aligned}
& M_{i}=L_{i}[a] / \theta_{i}, \\
& B_{i}=\left\{f / \theta_{i} \mid f \in B[a]\right\} .
\end{aligned}
$$

Clearly $B[a]$ is a subalgebra of $L_{i}[a](i=1,2)$ and hence $B_{i} \leq M_{i}$. But $B[a]$ is a subalgebra of the Boolean algebra B^{X} and hence B_{i} is Boolean. It is easy to see that the map

$$
\alpha_{i}: L_{i} \rightarrow M_{i} \quad \text { defined by } \alpha_{i}(c)=\tilde{c} / \theta_{i}
$$

is an OL-embedding. Clearly $\alpha_{i}(B) \subseteq \alpha_{i}\left(L_{i}\right) \cap B_{i}$. Assume $c \in L_{i}$ and $\alpha_{i}(c) \in B_{i}$. Then $\tilde{c} / \theta_{i}=f / \theta_{i}$ for some $f \in B[a]$ and hence there exists $k \in X$ such that $[k, \rightarrow] \subseteq\{x \in X \mid \tilde{c}(x)=f(x)\}$. In particular, $\tilde{c}(k)=f(k)$ and thus $c=f(k) \in$ B. Then as B_{i} and $\alpha_{i}\left(L_{i}\right)$ are subalgebras of M_{i} so also is their intersection. We have thus proved
(1) $\alpha_{i}(B)=\alpha_{i}\left(L_{i}\right) \cap B_{i} \leq B_{i}$.

Note that the restrictions of θ_{1} and θ_{2} to $B[a]$ agree, thus there is an isomorphism

$$
\gamma: B_{1} \rightarrow B_{2} \text { such that } \gamma\left(f / \theta_{1}\right)=f / \theta_{2} \text { for all } f \in B[a] .
$$

It is easy to see that
(2) $\alpha_{2 \mid B}=\gamma \circ \alpha_{1 \mid B}$.

As M_{i} is generated by $\alpha_{i}\left(L_{i}\right) \cup\left\{a^{*} / \theta_{i}\right\}$ it follows that
(3) if L_{i} is infinite then $\left|L_{i}\right|=\left|M_{i}\right|$.
(4) If $e \in L_{i}$ and $m=\max \{b \in B \mid b \leq e\}$ then $\alpha_{i}(m)=\max \left\{b \in B_{i} \mid b \leq \alpha_{i}(e)\right\}$.

Note that $m \in B$ and hence $\alpha_{i}(m) \in B_{i}$. But

$$
\tilde{m}(x)=m \leq e=\tilde{e}(x) \quad \text { for all } x \in X
$$

Hence $\alpha_{i}(m) \leq \alpha_{i}(e)$. Assume $b \in B_{i}$. Then there exists $f \in B[a]$ with $b=f / \theta_{i}$. As

$$
f(x) \leq e \Leftrightarrow f(x) \leq m
$$

thus

$$
f / \theta_{i} \leq \tilde{e} / \theta_{i} \Leftrightarrow f / \theta_{i} \leq \tilde{m} / \theta_{i}
$$

Hence $b \leq \alpha_{i}(e) \Leftrightarrow b \leq \alpha_{i}(m)$, proving (4).
(5) $a^{*} / \theta_{i}=\max \left\{b \in B_{i} \mid b \leq \alpha_{i}(a)\right\}$.

Note that $a^{*} \in B[a]$ and hence $a^{*} / \theta_{i} \in B_{i}$. Also

$$
a^{*}(x)=x \leq a=\tilde{a}(x) \quad \text { for all } x \in X
$$

and hence

$$
a^{*} / \theta_{i} \leq \tilde{a} / \theta_{i}=\alpha_{i}(a) .
$$

Assume $b \in B_{i}$ and $b \leq \alpha_{i}(a)$. Then there exists $f \in B[a]$ such that $b=f / \theta_{i}$. Since $B[a]$ is a Boolean algebra generated by the subalgebra $\{b \mid b \in B\}$ and the singleton $\left\{a^{*}\right\}$, there exist $c, d \in B$ such that

$$
f=\left(a^{*} \wedge \tilde{c}\right) \vee\left(a^{*^{\prime}} \wedge \tilde{d}\right)
$$

Since $b \leq \alpha_{i}(a)$ there exists $k \in X$ such that

$$
[k, \rightarrow] \subseteq\{x \in X \mid f(x) \leq \tilde{a}(x)\} .
$$

But for $x \in X$,

$$
f(x) \leq \tilde{a}(x) \Leftrightarrow(x \wedge c) \vee\left(x^{\prime} \wedge d\right) \leq a \Leftrightarrow x^{\prime} \wedge d \leq a,
$$

hence $k^{\prime} \wedge d \leq a$ and $d \leq a$. Thus if $d \leq x \in X$ then

$$
f(x)=(x \wedge c) \vee\left(x^{\prime} \wedge d\right) \leq x=a^{*}(x)
$$

hence

$$
[d, \rightarrow] \subseteq\left\{x \in X \mid f(x) \leq a^{*}(x)\right\}
$$

and $b=f / \theta_{i} \leq a^{*} / \theta_{i}$, proving (5) and the lemma.
LEMMA 6.2. Let L_{1}, L_{2} be OMLs, $B=L_{1} \cap L_{2} \leq L_{1}, L_{2}$, B Boolean, $a \in$ $L_{1} \cup L_{2}$. Then there exist OMLs $L_{1}(a), L_{2}(a)$ and a Boolean algebra $B(a)$ such that

1. $B \leq B(a)=L_{1}(a) \cap L_{2}(a) \leq L_{1}(a), L_{2}(a)$,
2. $L_{i} \leq L_{i}(a)$,
3. if L_{i} is infinite then $\left|L_{i}\right|=\left|L_{i}(a)\right|$,
4. if $e \in L_{1} \cup L_{2}$ and $m=\max \{b \in B \mid b \leq e\}$ then $m=\max \{b \in B(a) \mid b \leq e\}$,
5. $\{b \in B(a) \mid b \leq a\}$ has a maximum,
6. $B(a) \cap\left(L_{1} \cup L_{2}\right)=B$.

Proof. Let $M_{i}, B_{i}, \alpha_{i}, \gamma$ be as in the previous lemma. Choose sets A, D_{1}, D_{2} which are pairwise disjoint and disjoint with $L_{1} \cup L_{2}$ such that their cardinal numbers allow the existence of bijections $\varphi_{1}, \delta_{1}, \delta_{2}$ where

$$
\begin{aligned}
& \varphi_{1}: A \rightarrow B_{1}-\alpha_{1}(B), \\
& \delta_{i}: D_{i} \rightarrow M_{i}-\left(\alpha_{i}\left(L_{i}\right) \cup B_{i}\right) .
\end{aligned}
$$

Define $\varphi_{2}=\gamma \circ \varphi_{1}$. As $\gamma: B_{1} \rightarrow B_{2}$ is an isomorphism with $\gamma \circ \alpha_{1 \mid B}=\alpha_{2 \mid B}$ we thus have that φ_{2} is a bijection

$$
\varphi_{2}: A \rightarrow B_{2}-\alpha_{2}(B) .
$$

For $i=1,2$ define $L_{i}(a)=L_{i} \cup A \cup D_{i}$ and define maps $f_{i}: L_{i}(a) \rightarrow M_{i}$ by

$$
\begin{gathered}
f_{i \mid L_{i}}=\alpha_{i}, \\
f_{i \mid A}=\varphi_{i}, \\
f_{i \mid D_{i}}=\delta_{i} .
\end{gathered}
$$

Note that

$$
\begin{aligned}
& f_{i}\left(L_{i}\right)=\alpha_{i}\left(L_{i}\right) \\
& f_{i}(A)=B_{i}-\alpha_{i}(B) \\
& f_{i}\left(D_{i}\right)=M_{i}-\left(\alpha_{i}\left(L_{i}\right) \cup B_{i}\right)
\end{aligned}
$$

By assumption, $\alpha_{i}(B)=\alpha_{i}\left(L_{i}\right) \cap B_{i}$ and thus $f_{i}(A)=B_{i}-\alpha_{i}\left(L_{i}\right)$. It is easy to see that the sets $f_{1}\left(L_{1}\right), f_{1}(A), f_{1}\left(D_{1}\right)$ are pairwise disjoint with union M_{1} and the sets $f_{2}\left(L_{2}\right), f_{2}(A), f_{2}\left(D_{2}\right)$ are pairwise disjoint with union M_{2}. As the restrictions of f_{i} to L_{i}, A, D_{i} are bijections it follows that
(1) $f_{i}: L_{i}(a) \rightarrow M_{i}$ is a bijection.

Define now operations $\vee_{i}, \wedge_{i},{ }^{\prime}, 0_{i}, 1_{i}$ in $L_{i}(a)$ by

$$
\begin{aligned}
& b \vee_{i} c=f_{i}^{-1}\left(f_{i}(b) \vee f_{i}(c)\right), \\
& b \wedge_{i} c=f_{i}^{-1}\left(f_{i}(b) \wedge f_{i}(c)\right), \\
& b^{\prime}=f_{i}^{-1}\left(f_{i}(b)^{\prime}\right), \\
& 0_{i}=f_{i}^{-1}(0), \\
& 1_{i}=f_{i}^{-1}(1),
\end{aligned}
$$

where the operations on the right-hand side of the equations are taken in M_{i}. It is clear that with these definitions $L_{i}(a)$ becomes an OML and f_{i} becomes an OL-isomorphism between $L_{i}(a)$ and M_{i}.
(2) In L_{i} the original operations $\vee, \wedge,{ }^{\prime}, 0,1$ agree with $\vee_{i}, \wedge_{i}{ }^{\prime}{ }^{i}, 0_{i}, 1_{i}$, so $L_{i} \leq$ $L_{i}(a)$.

For $b, c \in L_{i}$,

$$
\begin{array}{rlrl}
b \vee_{i} c & =f_{i}^{-1}\left(f_{i}(b) \vee f_{i}(c)\right) & & \left(\vee \text { in } M_{i}\right) \\
& =f_{i}^{-1}\left(\alpha_{i}(b) \vee \alpha_{i}(c)\right) & & (\text { same }) \\
& =f_{i}^{-1}\left(\alpha_{i}(b \vee c)\right) & & \left(\vee \text { in } L_{i}\right) \\
& =f_{i}^{-1}\left(f_{i}(b \vee c)\right) & & \\
& =b \vee c . & & \\
b^{\prime i} & =f_{i}^{-1}\left(f_{i}(b)^{\prime}\right) \quad\left({ }^{\prime} \text { in } M_{i}\right) & \\
& =f_{i}^{-1}\left(\alpha_{i}(b)^{\prime}\right) \quad(\text { same }) \\
& =f_{i}^{-1}\left(\alpha_{i}\left(b^{\prime}\right)\right) \quad\left({ }^{\prime} \text { in } L_{i}\right) & & \\
& =f_{i}^{-1}\left(f_{i}\left(b^{\prime}\right)\right) & & \\
& =b^{\prime} .
\end{array}
$$

That the remaining operations are the same is a consequence of this.
(3) $f_{i \mid B \cup A}: B \cup A \rightarrow B_{i}$ is a bijection.

This follows as f_{i} is one-one, $f_{i}(A)=B_{i}-\alpha_{i}(B)$ and $f_{i}(B)=\alpha_{i}(B)$. As $\gamma \circ$ $\alpha_{1 \mid B}=\alpha_{2 \mid B}$ and $\gamma \circ \varphi_{1}=\varphi_{2}$ it is easy to see that
(4) $f_{2}(b)=\gamma\left(f_{1}(b)\right)$ for all $b \in B \cup A$,
(5) $f_{2}^{-1}(b)=f_{1}^{-1}\left(\gamma^{-1}(b)\right)$ for all $b \in B_{2}$.

It follows from (4) and (5) that in $B \cup A=L_{1}(a) \cap L_{2}(a)$ the OL-operations of $L_{1}(a)$ and $L_{2}(a)$ coincide and yield elements of $B \cup A$. If we define $B(a)$ to be the subalgebra $B \cup A$ of L_{i} we thus have
(6) $f_{i \mid B \cup A}: B(a) \rightarrow B_{i}$ is an isomorphism, hence
(7) $B \leq B(a)=L_{1}(a) \cap L_{2}(a) \leq L_{1}(a), L_{2}(a)$ and $B(a)$ is Boolean.

Since f_{i} is an isomorphism between $L_{i}(a)$ and M_{i} the cardinal number of $L_{i}(a)$ equals that of M_{i}. By our choice of M_{i}, if L_{i} is infinite then $\left|L_{i}\right|=\left|M_{i}\right|$. Thus
(8) If L_{i} is infinite then $\left|L_{i}\right|=\left|L_{i}(a)\right|$.
(9) If $e \in L_{1} \cup L_{2}$ and $m=\max \{b \in B \mid b \leq e\}$ then $m=\max \{b \in B(a) \mid b \leq e\}$.

Assume $e \in L_{i}, b \in B(a)$ and $b \leq e$. We have to show that $b \leq m$. Clearly $f_{i}(b) \leq$ $f_{i}(e)=\alpha_{i}(e)$. By our choice of α_{i} we have $\alpha_{i}(m)=\max \left\{b \in B_{i} \mid b \leq \alpha_{i}(e)\right\}$ and hence $f_{i}(b) \leq \alpha_{i}(m)=f_{i}(m)$. As $f_{i \mid B \cup A}$ is an isomorphism $b \leq m$, proving (9).
(10) $\{b \in B(a) \mid b \leq a\}$ has a maximum.

Assume $a \in L_{i}$. By our choice of B_{i} the set $\left\{b \in B_{i} \mid b \leq \alpha_{i}(a)\right\}$ has a maximum m. Then $f_{i}^{-1}(m) \in B(a)$ and as α_{i} is an embedding $\bar{f}_{i}^{-1}(m)=\alpha_{i}^{-1}(m) \leq a$. Assume that $b \in B(a)$ and $b \leq a$. Then $f_{i}(b) \in B_{i}$ and $f_{i}(b) \leq f_{i}(a)=\alpha_{i}(a)$ and hence $f_{i}(b) \leq m$. As $f_{i \mid B \cup A}$ is an isomorphism $b \leq f_{i}^{-1}(m)$, proving (10) and hence Lemma 6.2.

The OMLs $L_{1}(a), L_{2}(a)$ in the previous lemma are, of course, not completely determined by L_{1}, L_{2} and a. Using AC we may, however, assume that specific OMLs $L_{1}(a), L_{2}(a)$ are chosen for every L_{1}, L_{2}, a as in the assumption of Lemma 6.2. We will assume this in the proof of the next lemma.

LEMMA 6.3. Let L_{1}, L_{2} be OMLs, $B=L_{1} \cap L_{2} \leq L_{1}, L_{2}, B$ Boolean. Then there exist OMLs $L_{1}^{\prime}, L_{2}^{\prime}$ and a Boolean algebra B^{\prime} such that

1. $B \leq B^{\prime}=L_{1}^{\prime} \cap L_{2}^{\prime} \leq L_{1}^{\prime}, L_{2}^{\prime}$,
2. $L_{i} \leq L_{i}^{\prime}(i=1,2)$,
3. $\left|L_{i}^{\prime}\right| \leq \max \left\{\left|L_{1}\right|,\left|L_{2}\right|\right\}$,
4. if $e \in L_{1} \cup L_{2}$ and $m=\max \{b \in B \mid b \leq e\}$ then $m=\max \left\{b \in B^{\prime} \mid b \leq e\right\}$,
5. for every $a \in L_{1} \cup L_{2}$ the set $\left\{b \in B^{\prime} \mid b \leq a\right\}$ has a maximum,
6. $B^{\prime} \cap\left(L_{1} \cup L_{2}\right)=B$.

Proof. If L_{1} or L_{2} is finite then B is finite and we may choose $L_{i}^{\prime}=L_{i}$ and $B^{\prime}=$ B. We may thus assume that L_{1} and L_{2} are infinite. Define $\lambda=\max \left\{\left|L_{1}\right|,\left|L_{2}\right|\right\}$. Clearly $\lambda=\left|L_{1} \cup L_{2}\right|$. Enumerate the elements by λ (considered as an initial ordinal). Thus $L_{1} \cup L_{2}=\left\{a_{\mu} \mid \mu<\lambda\right\}$. For every $\mu \leq \lambda$ define recursively OMLs $L_{1 \mu}, L_{2 \mu}$ and Boolean algebras B_{μ} by

$$
\begin{aligned}
& B_{0}=B, \quad L_{10}=L_{1}, \quad L_{20}=L_{2}, \\
& B_{v+1}=B_{v}\left(a_{v}\right), \quad L_{1 v+1}=L_{1 v}\left(a_{v}\right), \quad L_{2 v+1}=L_{2 v}\left(a_{v}\right), \\
& B_{\mu}=\bigcup_{v<\mu} B_{v}, \quad L_{1 \mu}=\bigcup_{v<\mu} L_{1 v}, \quad L_{2 \mu}=\bigcup_{v<\mu} L_{2 v} \quad \text { if } \mu \text { is a limit ordinal. }
\end{aligned}
$$

Define

$$
B^{\prime}=B_{\lambda}, \quad L_{1}^{\prime}=L_{1 \lambda} \quad \text { and } \quad L_{2}^{\prime}=l_{2 \lambda} .
$$

It is an easy exercise to show that $B^{\prime}, L_{1}^{\prime}, L_{2}^{\prime}$ have the desired properties.
As before we may again assume that given L_{1}, L_{2}, B as in the previous lemma specific $B^{\prime}, L_{1}^{\prime}, L_{2}^{\prime}$ are chosen satisfying the previous lemma.

LEMMA 6.4. Let L_{1}, L_{2} be OMLs, $B=L_{1} \cap L_{2} \leq L_{1}, L_{2}, B$ Boolean. Then there exist OMLs \bar{L}_{1}, \bar{L}_{2} and a Boolean algebra \bar{B} such that

1. $B \leq \bar{B}=\bar{L}_{1} \cap \bar{L}_{2} \leq \bar{L}_{1}, \bar{L}_{2}$,
2. $L_{i} \leq \bar{L}_{i}(i=1,2)$,
3. for every $a \in \bar{L}_{1} \cup \bar{L}_{2}$ the set $\left\{b \in B^{\prime} \mid b \leq a\right\}$ has a maximum,
4. $\bar{B} \cap\left(L_{1} \cup L_{2}\right)=B$.

Proof. For $n<\omega$ define recursively OMLs $L_{1 n}, L_{2 n}$ and Boolean algebras B_{n} by

$$
\begin{aligned}
& B_{0}=B, \quad L_{10}=L_{1}, \quad L_{20}=L_{2}, \\
& B_{n+1}=B_{n}^{\prime}, \quad L_{1 n+1}=L_{1 n}^{\prime}, \quad L_{2 n+1}=L_{2 n}^{\prime} .
\end{aligned}
$$

Put

$$
\bar{B}=\bigcup_{n<\omega} B_{n}, \quad \bar{L}_{1}=\bigcup_{n<\omega} L_{1 n} \quad \text { and } \quad \bar{L}_{2}=\bigcup_{n<\omega} L_{2 n} .
$$

It is again an easy exercise to see that \bar{B} and the \bar{L}_{i} have the desired properties.

7. Boolean Amalgamation of OMLs

THEOREM 5. Let $\left(B, L_{1}, L_{2}, \varphi_{1}, \varphi_{2}\right)$ be a V-formation in OMLs, where B is a Boolean algebra. Then this V-formation can be strongly amalgamated on OMLs.

Proof. It follows from the observation in Section 2 that we may actually assume that $B=L_{1} \cap L_{2}$ is a subalgebra of both L_{1} and L_{2} and that $\varphi_{1 \mid B}=\varphi_{2 \mid B}=\operatorname{id}_{B}$,
i.e. that $\left(B, L_{1}, L_{2}\right)$ is a special V-formation. Choose $\bar{L}_{1}, \bar{L}_{2}, \bar{B}$ as in Lemma 6.4 and assume that the new special V-formation ($\bar{B}, \bar{L}_{1}, \bar{L}_{2}$) can be strongly amalgamated in OMLs by (C, ψ_{1}, ψ_{2}). Then it is easy to see that ($C, \psi_{1 \mid L_{1}}, \psi_{2 \mid L_{2}}$) strongly amalgamates the original V-formation. We may thus work under the assumptions
(1) $B=L_{1} \cap L_{2} \leq L_{1}, L_{2}$
(2) for every $a \in L_{1} \cup L_{2}, \underline{a}=\max \{b \in B \mid b \leq a\}$ exists.

Let $P=L_{1} \cup L_{2}$ be the partial amalgam as defined in Section 2. It is then easy to see that for every $a \in P$,

$$
\bar{a}=\min \{b \in B \mid a \leq b\} \text { exists } \quad \text { and } \quad \overline{a^{\prime}}=(\underline{a})^{\prime}, \underline{a}^{\prime}=(\bar{a})^{\prime} .
$$

Furthermore, it is an easy consequence of the definition of the partial amalgam that
(3) if $a \in L_{i}, b \in L_{j}(i \neq j)$ then in $P: a \leq b \Leftrightarrow \bar{a} \leq b \Leftrightarrow a \leq \underline{b} \Leftrightarrow \bar{a} \leq \underline{b}$.

For $X \subseteq P$ let $u X$ (or $u(X)$) be the set of all upper bounds of X in P and let $l X$ (or $l(X)$) be the set of all lower bounds of X in P. If $a, b \in P$ we define

$$
[a, b]_{i}=\left\{x \in L_{i} \mid a \leq x \leq b\right\} .
$$

(4) If $a \in L_{1}, b \in L_{2}$ then

$$
\begin{aligned}
& L_{1} \cap u\{a, b\}=[a \vee \bar{b}, 1]_{1}, \quad L_{2} \cap u\{a, b\}=[\bar{a} \vee b, 1]_{2}, \quad \text { in particular } \\
& u\{a, b\}=[a \vee \bar{b}, 1]_{1} \cup[\bar{a} \vee b, 1]_{2}, \\
& L_{1} \cap l\{a, b\}=[0, a \wedge \underline{b}]_{1}, \quad L_{2} \cap l\{a, b\}=[0, \underline{a} \wedge b]_{2}, \quad \text { in particular } \\
& l\{a, b\}=[0, a \wedge \underline{b}]_{1} \cup[0, \underline{a} \wedge b]_{2} .
\end{aligned}
$$

Note that $a, \bar{b} \in L_{1}$ and hence $a \vee \bar{b}$ exists in L_{1} and hence in P and the same for the remaining joins and meets. Clearly

$$
L_{1} \cap u\{a, b\} \supseteq[a \vee \bar{b}, 1]_{1} .
$$

If $a, b \leq x \in L_{1}$ then, by (3), $a \vee \bar{b} \leq x$, proving the first equation. The second equation follows by symmetry and the third is a consequence of the first two. The rest follows by duality.
(5) For $a \in L_{1}, b \in L_{2}$,

$$
\begin{aligned}
& L_{1} \cap l(u\{a, b\})=[0,(a \vee \bar{b}) \wedge(\bar{a} \vee b)]_{1} \quad \text { and } \\
& L_{2} \cap l(u\{a, b\})=[0,(\underline{a \vee \bar{b}}) \wedge(\bar{a} \vee b)]_{2}, \quad \text { in particular } \\
& l(u\{a, b\})=[0,(a \vee \bar{b}) \wedge(\underline{\bar{a} \vee b})]_{1} \cup[0,(\underline{a \vee \bar{b}}) \wedge(\bar{a} \vee b)]_{2} .
\end{aligned}
$$

We show the first equality. By (4) we have

$$
l(u\{a, b\})=l\left([a \vee \bar{b}, 1]_{1} \cup[\bar{a} \vee b, 1]_{2}\right)=l\{a \vee \bar{b}, \bar{a} \vee b\}
$$

hence by (4)

$$
L_{1} \cap l(u\{a, b\})=[0,(a \vee \bar{b}) \wedge(\underline{\bar{a} \vee b})]_{1} .
$$

Recall that a normal ideal in P is a set $A \subseteq P$ satisfying $A=l(u(A))$ or equivalently, for which there exists a set $X \subseteq P$ such that $A=l(X)$. We define a normal ideal A to be finitely generated iff there exists a finite set $F \subseteq P$ such that $A=l(u(F))$.
(6) For $A \subseteq P$ the following are equivalent.

1. A is a finitely generated normal ideal.
2. There exist $a \in L_{1}, b \in L_{2}$ such that
(a) $L_{1} \cap A=[0, a]_{1}, L_{2} \cap A=[0, b]_{2}$,
(b) $a=(a \vee \bar{b}) \wedge(\underline{\bar{a} \vee b})$ and $b=(\underline{a \vee \bar{b}}) \wedge(\bar{a} \vee b)$.
3. There exist $c \in L_{1}, d \in L_{2}$ such that $\overline{L_{1} \cap A}=[0, c \wedge \underline{d}]_{1}, L_{2} \cap A=[0, \underline{c} \wedge d]_{2}$.
$1 \Rightarrow 2$. By assumption there exists a finite set F such that $A=l(u(F))$. Define

$$
x=\bigvee\left(F \cap L_{1}\right), y=\bigvee\left(F \cap L_{2}\right)
$$

Clearly $u(F)=u\{x, y\}$. Thus $A=l(u\{x, y\})$ and, by (5),

$$
\left.L_{1} \cap A=[0,(x \vee \bar{y}) \wedge(\underline{(\bar{x} \vee y})]_{1}, \quad L_{2} \cap A=[0, \underline{(x \vee \bar{y}}) \wedge(\bar{x} \vee y)\right]_{2} .
$$

With

$$
a=(x \vee \bar{y}) \wedge(\underline{\bar{x} \vee y}), \quad b=(\underline{x \vee \bar{y}}) \wedge(\bar{x} \vee y)
$$

we obtain 2(a). But $a \geq x \wedge \underline{(\bar{x})}=x \wedge \bar{x}=x$ and $b \geq y \wedge \bar{y}=y$. Thus

$$
A=l(u\{x, y\}) \subseteq l(u\{a, b\}) \subseteq l(u(A))=A
$$

hence $A=l(u\{a, b\})$ and, by (5),

$$
L_{1} \cap A=[0,(a \vee \bar{b}) \wedge(\underline{(\bar{a} \vee b})]_{1}, \quad L_{2} \cap A=[0,(\underline{a \vee \bar{b}}) \wedge(\bar{a} \vee b)]_{2} .
$$

These equations together with 2(a) clearly imply 2(b).
$2 \Rightarrow 3$. Put $c=a \vee \bar{b}, d=\bar{a} \vee b$.
$3 \Rightarrow 1$. By (4), $A=l\{c, d\}$ and hence A is a normal ideal. Clearly $u(A)=$ $u\{c \wedge \underline{d}, \underline{c} \wedge d\}$ and hence

$$
A=l(u(A))=l(u\{c \wedge \underline{d}, \underline{c} \wedge d\})
$$

Thus A is finitely generated.
Let C be the set of all finitely generated normal ideals; let N be the set of all normal ideals, the standard form of the MacNeille completion of P, and let f be the canonical embedding of P into N, i.e. $f(a)=[0, a]$.
(7) C is a sub-OL of N generated by $f(P)$.

Assume $A, B \in C$. Then there exist finite sets $F, G \subseteq P$ such that $A=l(u(F))$, $B=l(u(G))$. Clearly

$$
F \cup G \subseteq A \cup B \subseteq l(u(F \cup G))
$$

Thus

$$
l(u(A \cup B)) \subseteq l(u(l(u(F \cup G))))=l(u(F \cup G))
$$

and

$$
l(u(F \cup G)) \subseteq l(u(A \cup B)),
$$

and hence

$$
l(u(F \cup G))=l(u(A \cup B)) .
$$

Since the last set is the join of A and B in N it follows that this join belongs to C. The orthocomplement A^{\perp} of $A \in N$ is defined by $A^{\perp}=l\left(A^{\prime}\right)$ where $A^{\prime}=\left\{a^{\prime} \mid\right.$ $a \in A\}$. As $A \in C$, by (6), A is of the form

$$
A=[0, a]_{1} \cup[0, b]_{2} \quad \text { with } a \in L_{1}, b \in L_{2} .
$$

It follows that

$$
A^{\prime}=\left[a^{\prime}, 1\right]_{1} \cup\left[b^{\prime}, 1\right]_{2} \quad \text { and } \quad A^{\perp}=l\left\{a^{\prime}, b^{\prime}\right\} .
$$

Thus, by (4),

$$
L_{1} \cap A^{\perp}=\left[0, a^{\prime} \wedge \underline{\left(b^{\prime}\right)}\right]_{1} \quad \text { and } \quad L_{2} \cap A^{\perp}=\left[0, \underline{\left(a^{\prime}\right)} \wedge b^{\prime}\right]_{2}
$$

and $A^{\perp} \in C$ by (6). Thus C is a subalgebra of N. If $A \in C$ then, by (6), there exists $c \in L_{1}, d \in L_{2}$ such that

$$
L_{1} \cap A=[0, c \wedge \underline{d}]_{1} \quad \text { and } \quad L_{2} \cap A=[0, \underline{c} \wedge d]_{2}
$$

By (4) this implies that

$$
A=l\{c, d\}=[0, c] \cap[0, d]=f(c) \cap f(d) .
$$

Thus A is the meet of two elements of $f(P)$ and hence C is generated by $f(P)$, proving (7).
(8) If $u, v \in P$ and if $u \vee v$ exists in P then $\overline{u \vee v}=\bar{u} \vee \bar{v}$, and dually.

Clearly $u \vee v \leq \bar{u} \vee \bar{v} \in B$ and hence $\overline{u \vee v} \leq \bar{u} \vee \bar{v}$. Also $u, v \leq \overline{u \vee v} \in B$ hence $\bar{u}, \bar{v} \leq \overline{u \vee v}$ and $\bar{u} \vee \bar{v} \leq \overline{u \vee v}$, proving (8).
(9) C is an OML.

Assume $A, B \in C, A \subseteq B$ and $A^{\perp} \cap B=\{0\}$. We have to show that $A=B$. By (6) there exist elements $a, c \in L_{1}, b, d \in L_{2}$ such that

$$
\begin{aligned}
& L_{1} \cap A=[0, a]_{1} \quad \text { and } \quad L_{2} \cap A=[0, b]_{2}, \\
& L_{1} \cap B=[0, c \wedge \underline{d}]_{1} \quad \text { and } \quad L_{2} \cap B=[0, \underline{c} \wedge d]_{2}, \quad \text { with } \\
& a=(a \vee \bar{b}) \wedge \underline{(\bar{a} \vee b}) \quad \text { and } \quad b=(\underline{a \vee \bar{b}}) \wedge(\bar{a} \vee b) .
\end{aligned}
$$

Clearly $A^{\perp}=l\left\{a^{\prime}, b^{\prime}\right\}$ and, by (4),

$$
L_{1} \cap A^{\perp}=\left[0, a^{\prime} \wedge(\bar{b})^{\prime}\right]_{1} \quad \text { and } \quad L_{2} \cap A^{\perp}=\left[0,(\bar{a})^{\prime} \wedge b^{\prime}\right]_{2} .
$$

Since $A \subseteq B$ we have $a \leq c \wedge \underline{d}$ and $b \leq \underline{c} \wedge d$, and hence

$$
a \vee \bar{b} \leq c \wedge(\bar{a} \vee \bar{b}) \quad \text { and } \quad \bar{a} \vee b \leq d \wedge(\bar{a} \vee \bar{b})
$$

Since $A^{\perp} \cap B=\{0\}$ we have

$$
a^{\prime} \wedge(\bar{b})^{\prime} \wedge c \wedge \underline{d}=0 \quad \text { and } \quad(\bar{a})^{\prime} \wedge b^{\prime} \wedge \underline{c} \wedge d=0
$$

But \bar{a} commutes with \bar{b}, hence

$$
\begin{aligned}
& a^{\prime} \wedge(\bar{b})^{\prime} \wedge c \wedge(\bar{a} \vee \bar{b})=a^{\prime} \wedge(\bar{b})^{\prime} \wedge c \wedge \bar{a} \leq a^{\prime} \wedge(\bar{b})^{\prime} \wedge c \wedge \underline{d}=0 \\
& (\bar{a})^{\prime} \wedge b^{\prime} \wedge d \wedge(\bar{a} \vee \bar{b})=(\bar{a})^{\prime} \wedge b^{\prime} \wedge d \wedge \bar{b} \leq(\bar{a})^{\prime} \wedge b^{\prime} \wedge \underline{c} \wedge d=0
\end{aligned}
$$

Thus

$$
a \vee \bar{b}=c \wedge(\bar{a} \vee \bar{b}) \quad \text { and } \quad \bar{a} \vee b=d \wedge(\bar{a} \vee \bar{b}) .
$$

Furthermore

$$
\begin{aligned}
(a \vee \bar{b}) \wedge(\underline{\bar{a} \vee b}) & =(a \vee \bar{b}) \wedge \underline{d \wedge(\bar{a} \vee \bar{b})} \\
& =(a \vee \bar{b}) \wedge \underline{d} \wedge(\bar{a} \vee \bar{b}) \quad(\text { by }(8)) \\
& =(a \vee \bar{b}) \wedge \underline{d} \\
& =a \vee(\bar{b} \wedge \underline{d}) \quad(\text { as } a, \bar{b} \text { commute with } \underline{d}) \\
& \leq c \wedge \underline{d}
\end{aligned}
$$

and

$$
\begin{aligned}
a^{\prime} \wedge\left((\bar{b})^{\prime} \vee(\underline{d})^{\prime}\right) \wedge c \wedge \underline{d} & =a^{\prime} \wedge(\bar{b})^{\prime} \wedge c \wedge \underline{d} \quad(\text { as } \bar{b} \text { commutes with } \underline{d}) \\
& =0 \quad(\text { as } a \vee \bar{b} \leq c) .
\end{aligned}
$$

Thus

$$
a=(a \vee \bar{b}) \wedge(\underline{\bar{a} \vee b})=c \wedge \underline{d} .
$$

By symmetry we obtain

$$
b=(\underline{a \vee \bar{b}}) \wedge(\bar{a} \vee b)=\underline{c} \wedge d
$$

The last two equations prove $A=B$ and hence (9).
Define now $\psi_{i}=f_{\mid L_{i}}$. Then it is clear that $\left(C, \psi_{1}, \psi_{2}\right)$ strongly amalgamates our V-formation, proving Theorem 5.

8. Concluding Remarks

There is an abundance of open problems connected with the questions dealt with in this paper. Here are some samples.

We have considered only very few varieties of OLs, namely OLs, OMLs, OMLs generated by members of bounded height and MOLs. What about other varieties of OLs? are there any which have (strong, Boolean) amalgamation?

In Sections 6 and 7 we proved that OMLs have strong Boolean amalgamation. In our example showing that OMLs do not have the amalgamation property, B was MO3. Is there a counter-example in which B is MO2? Since every variety of OMLs which does not consist of Boolean algebras only contains MO2, the question seems natural. We do not know the answer.

Connected with the question of amalgamation in a variety is the question whether epimorphisms are surjective, see [7]. It is well known and easy to prove that in every variety with the strong amalgamation property epimorphisms are surjective. Thus epimorphisms in OLs are surjective. We do not know whether epimorphisms in OMLs are surjective.

References

1. Grätzer, G. (1978) General Lattice Theory, Academic Press.
2. Greechie, R. J. (1968) On the structure of orthomodular lattices satisfying the chain condition, J. Combin. Theory 4, 210-218.
3. Greechie, R. J. (1974) Some results from the combinatorial approach to quantum logic, Synthese 29, 113-127; reprinted in Suppes, P. (1976), pp. 105-119.
4. Jónsson, B. (1956) Universal relational systems, Math. Scand. 4, 193-208.
5. Jónsson, B. (1960) Representations of complemented modular lattices, Trans. Amer. Math. Soc. 97, 64-94.
6. Kalmbach, G. (1983) Orthomodular Lattices, Academic Press.
7. Kiss, E. W., Marki, L., Pröhle, P. and Tholen, W. (1983) Categorical algebraic properties, Compendium on amalgamation, congruence extension, epimorphisms, residual smallness, and injectivity, Studia Sci. Math. Hungar. 18, 79-141.
8. MacLaren, M. D. (1965) Nearly modular orthocomplemented lattices, Trans. Amer. Math. Soc. 114, 401-416.
9. Schulte-Mönting, J. (1984) Central amalgamation of orthomodular lattices, in Recent Developments in Quantum Logic, Cologne 1984, Grundlagen der exakten Naturwissenschaften 6, Bibliographisches Institut Mannheim, 19, pp. 291-297.
10. Stephenson, P. (1988) Some equations valid in Hilbert space, Masters thesis, McMaster University.
