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ABSTRACT. Every lattice, and ortholattice, can be represented as the closed
elements of some Galois connection on a Boolean algebra. The canonical extension
of this Boolean algebra yields a completion of the lattice, or ortholattice. We give
a purely order theoretic characterization of this completion, and investigate its
properties. While it preserves distributivity, it unfortunately preserves neither
modularity nor orthomodularity.

1. Introduction

Let P and @ be posets, ¢: P — @, and ¥: () — P. Following Birkhoff
[1], the ordered pair (¢,%) is a Galois connection between P and @ if the maps
are order inverting and for all p € P, ¢ € () both p < ep and ¢ < p1pq. Here
we shall be concerned only with the case that the posets P and @ are equal
and Boolean.

Given a Galois connection (p,%) on a Boolean algebra B, an element = € B
is said to be closed if © = pr. It is well known that the closed elements
form a bounded lattice under the partial ordering inherited from B. Further,
if ¢ = ¢ and 2 -pxr = 0 for all + € B, the map ¢ is an orthocomplemen-
tation on this lattice of closed elements. The MacNeille completion [9] shows
that every bounded lattice, and every ortholattice, can be embedded into the
lattice of closed elements of a Galois connection on a Boolean algebra, and with
a minor modification in the construction, this embedding can be chosen to be
an isomorphism.

Having represented a bounded lattice, or ortholattice, L as the closed ele-
ments of some Galois connection (¢,%) on a Boolean algebra B, it is tempting
to consider the canonical extension B? of this Boolean algebra in the sense of
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Jénsson and Tarski [5]. Unfortunately, the operations ¢, are order in-
verting, and will not be well behaved under canonical extensions. Instead, we
consider the maps =, ¥~ defined by setting ¢~ 2 = (¢2)” and "2 = ()~

These maps are order preserving, and are easily seen to be conjugates in the
sense of [5]. Further, their canonical extensions are also conjugates [5], hence
give rise to a Galois connection on B?. The Galois closed elements of B? then

provide a completion of L, which we call the canonical completion.

It is our purpose here to give a purely order theoretic characterization of this
completion, and to investigate its properties. This completion preserves distribu-
tivity, hence reduces to the usual canonical completion in the case of a Boolean
algebra, but unfortunately preserves neither modularity nor orthomodularity.

2. Lattices of closed elements

In this section we show that every bounded lattice, and every ortholattice,
is isomorphic to the closed elements of some Galois connection on a Boolean
algebra. These results are probably not new, but we cannot find them in print.
As they are easy consequences of MacNeille’s [9] original work, we attribute
the credit to him.

We begin by describing the familiar result that every bounded lattice can be
embedded into the lattice of closed elements of some such Galois connection.
Let M be a bounded lattice, and set B to be the power set of M . Define unary
maps @, on B by setting oA to be the collection of all upper bounds in M
of the subset A C M, and A to be the collection of all lower bounds in M
of A. One easily checks that (¢, ) is a Galois connection on B, and the Galois
closed elements are the normal ideals of M . As every principal ideal is normal,
M can be embedded into the lattice of closed elements of B.

ExAMPLE 2.1. Letting w denote the natural numbers with the usual ordering,
and w? denote the dual of w, consider the lattice M defined to be the ordinal
sum of w x w and w?. In other words, M is the product of two copies of the
natural numbers with an inverted copy of the natural numbers placed on top.
With B and ¢, defined as above, the closed elements of B are isomorphic
to the MacNeille completion of M . To find an isomorphic representation of M ,
it is natural to consider the subalgebra B, of (B.+,-,—,¢,%) generated by
the principal ideals of M. Clearly, the restrictions of ¢, will form a Galois
connection on B . Let A be the principal ideal {(0, 0), (1, 0)} . Then as p A is the
set of upper bounds of A, we have (pA)~ = {(0, n):n € w}. So cp((cpA)7> =w.
As 9 gives lower bounds, we have that ;bgo((c,oA)*) = w X w. Thus, the closed

elements of B, again comprise all normal ideals of M .

86



CANONICAL COMPLETIONS OF LATTICES AND ORTHOLATTICES

This example shows that the obvious approach to representing a bounded
lattice as the closed elements of a Galois connection will not work without some
modification. However, only a small amount of repair needs be done.

THEOREM 2.2. Let M be a bounded lattice. Then there is a Boolean algebra
B and a Galois connection (,1) on B such that M is isomorphic to the Galois
closed elements of B.

Proof. Consider the Boolean subalgebra B, of the power set of M gener-
ated by the collection of all principal ideals of M, and the Boolean subalgebra
B of the power set of M generated by all principal filters of M. For a subset
A C M, define UA to be the collection of all upper bounds of A in M, and LA
to be the collection of all lower bounds of A in M.

First, we show that if A € B,, then UA is a principal filter of M. Let
T denote the collection of all elements of B, which are finite intersections of
principal ideals, or their set complements. We need at most one principal ideal in
this representation as a finite intersection of principal ideals is principal, and as
our lattice has a greatest element, we may assume there is at least one principal
ideal in the representation. Using a | for the principal ideal generated by a
and a |~ for its set complement, every element of T is of the form (a, J) N
(e, )" N---N(a, })~ for some 0 < n. Note that if such an element is non-
empty, it has a largest element, namely a,, and therefore the collection of upper
bounds form a principal filter of M . But every element of B, is a finite union of
elements of T', and as the upper bounds of a union of sets equals the intersection
of upper bounds of the individual sets, our claim follows.

Now set B = B; x B, and define maps ¢,% on B by setting

p((X.Y)) = (M, UX),
P((X,Y)) = (LY, M).

Clearly both maps are order inverting, and as X C LUX and S CULY for all
subsets X,V of M, it follows that the composites ¢ and @i are increasing
maps. So (¢,?) is a Galois connection on B. The Galois closed elements of B
are exactly the ones of the form (LUX, M), where X € B, . But we have shown
that X € B, implies UX is a principal filter of M, and hence that LUX is
a principal ideal of M. Clearly every principal ideal arises in this fashion, so
the map a ~ (al, M) is an isomorphism from M to the lattice of Galois closed
elements of B. O

We should note that the assumption of boundedness cannot be removed
from the above result as the Galois closed elements of a Galois connection on a
Boolean algebra necessarily form a bounded lattice. The least element is 10
and the greatest element is @1 = 1. The following result is due to Birk hoff
[1, p. 123].
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THEOREM 2.3. If (¢,p) is a Galois connection on a Boolean algebra B which
satisfies px - poxr = @0 for all * € B, then ¢ 1s an orthocomplementation on
the lattice of closed elements of B.

Proof. Note first that for any = we have ¢z is closed. So ¢ is certainly
a map from the closed elements to themselves. As ¢ is order inverting on all
of B, it is also order inverting for closed elements. If # is closed, then = = @,
so on the closed elements ¢ is period two. If = is closed, then = = ppz, so
wr -1 = 0. But meets in the lattice of closed elements agree with meets in B,
so if x is closed, then the meet of # and pa in the lattice of closed elements is
the smallest element in this lattice pp0. By [7, p. 17], this is sufficient to show
that ¢ is an orthocomplementation on the lattice of closed elements. O

COROLLARY 2.4. If (p,¢) is a Galois connection on a Boolean algebra B
which satisfies x - px = 0 for all ©+ € B, then ¢ is an orthocomplementation on
the lattice of closed elements of B.

THEOREM 2.5. Let M be an ortholattice. Then there is a Boolean algebra B
and a Galois connection (¢,) on B which satisfies = - oz = 0 for all © € B,
such that M is isomorphic to the ortholattice of closed elements of B.

Proof. Let C be the subalgebra of the power set of M generated by the
collection of all principal ideals of M. In the proof of Theorem 2.2 we showed
that for any A € C' the upper bounds of A form a principal filter of M, and
hence {z': x € UA} is a principal ideal of M. Therefore we can define a map
¢ on C by setting oA = {z': x € UA}. Clearly ¢ is order inverting, and it is
easily checked that ¢y is increasing, so (¢, ) is a Galois connection on C'.

It is easy to show that 0 € pA for every A € C, and therefore A-pA C {0},
with equality if and only if 0 € A. Consider the principal filter B consisting of
all elements of C' which contain 0, and note that B forms a Boolean algebra
under the partial ordering inherited from C'. As remarked above, ¢ is a map
from C into B, and therefore the restriction of ¢ is a map from B to itself.
As ¢ is order inverting on C', it is also order inverting on B. And as A < ppA
for all A € C, this holds as well for all elements of B. Thus (p,¢) is a Galois
connection on the Boolean algebra B, and now A - pA is equal to the zero of
the Boolean algebra B for all A € B. But the Galois closed elements of B are
principal ideals of M, and it is clear that every principal ideal arises this way.
It then follows easily that a ~» a | is an ortholattice isomorphism from M to
the ortholattice of closed elements of B. O

3. Canonical extensions

In[5] Jénsson and Tarski introduced the notion of a canonical extension
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of a Boolean algebra with operators. We briefly describe that fragment of the
theory needed for our purposes. The canonical extension of a Boolean algebra B
is the embedding of B into the power set of its Stone space, which we denote as
B7. We identify B with its image in B7, and freely speak of the open and closed
elements of B? with the obvious meaning. Given a monotone unary operation
f on B we define a unary operation f7 on B? by setting

fre=J ) fa.

2>yER y<a€B
where K denotes the collection of all closed elements of B, and J, () denote
join and meet in the B7.

Given a unary operation f on a Boolean algebra B, we say that f is additive
if it preserves binary joins, i.e., f(x +y) = fr + fy, completely additive if
it preserves all existing joins, and an operator if it preserves binary joins and
satisfies fO = 0. For a unary map f, the unary operation f— is defined by setting

fx = (fr)", and the dual f? of f is defined by setting flz = (f("rf)>7
Two unary maps f,g on B are called conjugates if fz -y = 0 if and only if
x- gy = 0. The key point is that f,g are conjugates if and only if (f~,¢7) is a
Galois connection on B.

PROPOSITION 3.1. Let f,g be monotone unary operations on a Boolean al-
gebra B.

(1) If a € B, then f"a = fa.
2) If y is closed, then f7y =({{fa:y <a € B}.
3) If U is an up-directed subset of B, then f”(U U) = H{fu:uelU}.
4) If U is a down-directed subset of B, then f”(ﬂ U) =(Hfu:uelU}.
5) If f is an operator, then {7 is completely additive.
6
7

(8

If f,g are conjugates, then both are operators.

If f,g are conjugates, then so are 7, q7.

If f is an operator, then (f’i>” = (f”)d

)
(2)
(3)
(4)
()
(6)
(7)
)

Proof. With the exception of the third and fourth, the first seven state-
ments appear in [5]. The third and fourth are well known and easy to verify. The
final statement appears in [4, Lemma 5.6]. O

We say that (B, f,g) is a conjugated algebra if B is a Boolean algebra,
and f,g are unary maps on B which are conjugates. For any such conjugated
algebra, (f~,¢7 ) is a Galois connection on B, and therefore we may speak of
the Galois closed elements of a conjugated algebra. Note that by part (7) of
the above proposition, the canonical extension (B7, f7,¢7) is also a conjugated
algebra, and so we may consider its lattice of closed elements as well.
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THEOREM 3.2. Let L be the lattice of closed elements of a conjugated algebra
B and L7 be the lattice of closed elements of the canonical extension B? .

C1) L7 is a completion of L.
C2

(

(C2) Each element of L7 is a meet of joins of elements of L.
(C3) Each element of L7 is a join of meets of elements of L.
(C4)

C4) If SSTCL and [[S <>.T, then [[S" <> T’ for some finite S’ C
ST CT.

(C5) T1>"a,; = X1l a0y if each {a,;: j € Ji} is an up-directed subset
I J; | a T
of L.

(C6) > ITa;; = T2 a0 if each {a,;: j € J;} is a down-directed subset
T g a T
of L.

Proof. Weuse Y, [] for joins and meets in L7 and |, () for joins and
meets in B7 .

(1) The underlying Boolean algebra of B? is complete, so the Galois closed
elements form a complete lattice. The meet of =,y in L is given by their meet

in the Boolean algebra underlying B, and the join of x,y in L is given by
¢ f(z Uy). But B is a subalgebra of B”, and hence L is a sublattice of L7.

CLAIM. If T is an up-directed subset of L, then > T =|]JT.

By definition, > T = (g”)df”(U T). From the above proposition, f is an

operator, hence f7 is completely additive, and (g”)d = (g’i>”. So YT =

(g’i>”<U{ft: t e T}) As T is up-directed, so also is {ft:t € T}. By part
(3) of the above proposition S.T = |J{g?ft: t € T}. But T C L, so g°ft =+,

and our claim follows.

(2) Each element of L7 is Galois closed, hence of the form (¢7x)~ for some

r € B7. But
e = N U o

r>yeK y<a€B
Each (ga)~ is Galois closed in B, hence in L. But {(ga,)f: y < ac B} is

up-directed, and the result follows from the claim.

(3) Each element of L7 equals (g”)d.?/: for some x € B?. But (g”)d = (g’i>”

and
@">= 1J ) g

r>yeK y<a€B

Each ¢%a is Galois closed in B and hence in L, and meets in B? agree with
meets in L7 . So (gd>”.7: is a join (in B7) of meets of elements of L. As (gd>”.7:
isin L7, it must also be the join of this family in L7.
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(4) We may assume that T is up-directed. Then [[ S =) S and by our claim
YT = JT. Our result then follows directly from the corresponding result for
the canonical extension B of the Boolean algebra B.

(5) By the above claim [[> a,; = (1Ja,;. Using the fact that B is com-
I J; | I .J;

pletely distributive, we may write this as U ﬂam(i). This is a join (in B7) of
a T

elements of L7. But it lies in L, and therefore is the join in L7 as well.

b

(6) By the manner in which joins in L7 are formed,
T d T
5> T = 67" [U N
I .h I -h
Parts (4) and (5) of the above proposition yield

M= 0 [ Q]

. . . . . d .
Using the fact that B” is completely distributive and that (g”) is completely
multiplicative (as ¢7 is completely additive), we have

5> Tl = N6 | U o
7 Ji o} 7
Using again that 7 is completely additive gives
5> TTews =TI Ui
7 J; o

T

which yields our result. O

THEOREM 3.3. Assume L is a sublattice of L7, M is a sublattice of M7,
and both couples satisfy (C1) through (C6) of the previous theorem. If L is
isomorphic to M, then there is a unique isomorphism between L% and M
extending the one between L and M .

Proof. Let h: L - M and m: M — L be mutually inverse isomorphisms.

Set
hx = Z H ha,

r>yeK y<a€l

where K is the collection of all elements of L7 which are meets of elements of L.
We call K the closed elements of L7. Similarly, we define a map m” using the
closed elements K’ of M7. Clearly h?, m? are monotone and extend h,m.
Next, we show that h?, m? restrict to mutually inverse isomorphisms between
K and K’. This will follow from symmetry and the definition of closed elements
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if we show for y € K and a € L that y < a iff h7y < ha. One direction is clear
as h” is monotone. Conversely, if h7y < ha, then [[{hb: y <b e L} < ha. By
the compactness property (C4) we have hb < ha for some y < b € L, and hence
y<b<a.

Finally, we show that h% m?7 are mutually inverse isomorphisms between L7,
M?. By property (C3), elements of L7 and M7 are all joins of closed elements.
Using symmetry, it is enough to show that for + € L and y € K that y < =
iff h%y < h%x. One direction follows from monotonicity. For the other, assume
h?y < h7x. Enumerating {y € K:y < z} as (y,); and enumerating each
{a € L:y, <a} as (a;;); the definition of 17z gives

Wy <y [ ha;-
I J;

Then by property (C6)

h7y < H Z: h”’m(i) )

So for each o, the compactness property (C4) provides a finite subset I C T

with
R DUIINEE
rr)/

But m? is monotone, restricts to a lattice homomorphism on M, and is an
inverse of h” on K’. So for each «

YD ingiy-
P

Therefore y <[> Uiy - APPlying (C6) y <> [la,;, which by property (C3)
a T r g

2

is equal to x. O

Thus every bounded lattice L has a completion which satisfies (C1) through
(C6), and this completion is determined up to isomorphism by these properties.
We call such a completion a canonical completion of L, and use L7 to denote
one such canonical completion. It follows from theorem 2.5 that every ortholat-
tice can be represented as the Galois closed elements of some conjugated algebra
(B, f,f) which satisfies * < fa. As the canonical completion (B?,f7,f7) is
also a conjugated algebra which satisfies # < f7x, its closed elements form an
ortholattice as well. So each ortholattice has an ortholattice completion satis-
fying (C1) through (C6), and this completion is determined up to isomorphism
by these properties. So we may speak of the canonical completion L7 of an
ortholattice L as well.

92



CANONICAL COMPLETIONS OF LATTICES AND ORTHOLATTICES

PROPOSITION 3.4.
(1) L7 is atomic, but need not be atomistic.

(2) L7 need not be meet continuous or algebraic.

(3) If L is distributive, then L7 is completely distributive and doubly alge-
braic.

(4) L% need not be modular, even if L is a modular lattice, or modular
ortholattice.

(5) L% need not be orthomodular, even if L is orthomodular.

Proof. (1) To show atomicity, it is enough to show each non-zero closed
element of L7 has an atom beneath it. Suppose y € L7 is closed. Then {a €
L: y <a} is a proper filter of L. Extend this to a maximal proper filter F' of L.
Then [] F is non-zero by the compactness property, lies beneath y, and is an
atom by the maximality of F'. That elements of L need not be joins of atoms
is easily provided by the fact that the canonical extension of a finite lattice is
itself.

(2) Construct a lattice L as follows. The underlying set of L consists of
the elements 0,1, a and the set of all ordered pairs of integers (m,n) such that
m+n < 0. We define a partial ordering on L such that 0,1 are the bounds of L,
a is incomparable to all but the bounds, and (m,n) < (m/,n') iff m <m’ and
n < n'. Tt is easy to verify that L is a lattice. Set I to be the collection of all
integers, and for each 7 € I, set J, = {j: j < —i}. Choose a map « such that
a(1) € J. for each integer 1. Setting n = «(0) we have that the join of (0,n)
and (1 —n,a(l — 77)) in L is equal to 1. It follows from condition (C6) that

110G, 7) =1.But a-[] =0 for each 7 € I. So L” is not meet continuous,
I J,j Ji
and hence not algebraic.

(3) Tt is enough to provide a completion of a distributive lattice which is
completely distributive, doubly algebraic, and satisfies (C1) through (C6). Such
is provided by the collection of all order ideals of the Priestly space. See [2] for
a complete account.

(4) Let L be the modular ortholattice of all finite or cofinite dimensional sub-
spaces of a Hilbert space. From Kaplansky’s result that a complete modular
ortholattice is a continuous geometry, L cannot be embedded into a complete
modular ortholattice [7, p. 182]. Thus L7 is not modular, and as the lattice
reduct of L7 must be the canonical completion of the lattice reduct of L, this
establishes the claim for modular lattices as well.

(5) Let L be an orthomodular lattice containing two increasing sequences
<Tn>w and (yn>w such that for all natural numbers n we have (i) = <y, , (ii)
rr 1y, = 0, and (iii) y, £ =, . Such an L is provided by applying Kalmbach’s
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construction [3, 6] to the lattice (w + 1) x 2. Define elements x,y of L7 by
x = a and y =Y y, . Obviously = <y, with the inequality strict by (iii)

and the compactness property (C4). Then z’ -y is equal to [[ 2! - >y , which

is a meet of joins of up-directed subsets of L (all but one such subset being a
singleton). Applying (C5) yields 2/ -y equal to > [[ «/ -y, , which by (ii) is

equal to 0. So L? is not orthomodular. " O

4. Miscellaneous

The hope of finding an orthomodular completion for orthomodular lattices
was the author’s original motivation for this study. The results of the previous
section show that the canonical completion is not a candidate. However, the
following digression shows that any hope of finding an orthomodular completion
must necessarily abandon regularity. (Recall that an embedding is regular if it
preserves all existing joins and meets.) The origins of this result lie in a paper

by Palko [10].

PROPOSITION 4.1. Any regular embedding of an orthomodular lattice into a
complete orthomodular lattice factors, as a pair of regular embeddings, through
the MacNeille completion.

Proof. Suppose ¢ is a regular embedding of L into a complete orthomod-
ular lattice C. For each normal ideal N of L define N = >  ¢[N]. Clearly
@ = [Bo1, where 1 is the regular embedding of L into its MacNeille completion.
We need only show 3 is a regular embedding.

For a normal ideal N, the orthocomplement N’ = {u’: u € UN}. Tt follows
that B(N') < (BN)'. Equality will follow from the orthomodularity of C' if we
can show B(N’)4+ SN = 1. But this term is equal to [N’ U N], and as the join
of NNUN in L equals 1, and ¢ is regular, equality in the above follows.

For a family of normal ideals N, (7 € I') the obvious monotonicity of 5 shows
[3((] Ni) < [IBN,. Again, equality will follow from orthomodularity if we can

I I

show [3((] Ni) + (H ﬁNi>l = 1. As [ is compatible with orthocomplementation,
7 7
this term is equal to [3((] Ni) + > B(N!), which in turn is equal to ) ¢ [ﬂ N. U
7 7 7

UN;] . From the regularity of ¢ this join equals 1, so (3 preserves arbitrary
7

meets, and hence is regular.

Finally, to see that (3 is an embedding, suppose that M, N are normal ideals.
If M = BN, then for every u € UM and n € N, we have tu > M and N > in.
As (8 is monotone, fiu > M = BN > Bin. Then as o1 equals the embedding
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@, we have u > n. As this holds for each n € N, it follows that v € UN . By
symmetry, UM = UN , and as these are normal ideals, M = N . O

COROLLARY 4.2. A variety of orthomodular lattices admits a regular com-
pletion iff it is closed under MacNeille completions.

As a final comment, we note the following.

THEOREM 4.3. There is a modal algebra which has no completion in the
variety it generates.

Proof. Let L be a modular ortholattice which cannot be embedded into a
complete modular ortholattice (see the proof of Proposition 3.4 part 4). We have
seen that there is a conjugated algebra (B, f, f), which satisfies # < fz, such
that L is isomorphic to the ortholattice of Galois closed elements of (B, f, f).
Clearly such a conjugated algebra may be considered as a reflexive modal alge-
bra. As the operations in the ortholattice of Galois closed elements of (B, f, f)
are defined in terms of the operations of (B, f, f), we may express the modular-
ity of the ortholattice of Galois closed elements as an identity in the language
of (B, f,f). Any other algebra in the variety generated by (B, f, f) will have
its Galois closed elements form a modular ortholattice. As the Galois closed
elements of a complete conjugated algebra form a complete lattice, our result
follows. O

An example of Kramer and Maddux [8] is of a similar nature, but they
only consider completions in which the operations are completely additive.
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