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Regularity in Quantum Logic
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In 1996, Harding showed that the binary decompositions of any algebraic,
relational, or topological structure X form an orthomodular poset Fact X. Here,
we begin an investigation of the structural properties of such orthomodular posets
of decompositions. We show that a finite set S of binary decompositions in Fact
X is compatible if and only if all the binary decompositions in S can be built
from a common n-ary decomposition of X. This characterization of compatibility
is used to show that for any algebraic, relational, or topological structure X, the
orthomodular poset Fact X is regular. Special cases of this result include the
known facts that the orthomodular posets of splitting subspaces of an inner
product space are regular, and that the orthomodular posets constructed from the
idempotents of a ring are regular. This result also establishes the regularity of
the orthomodular posets that Mushtari constructs from bounded modular lattices,
the orthomodular posets one constructs from the subgroups of a group, and the
orthomodular posets one constructs from a normed group with operators.
Moreover, all these orthomodular posets are regular for the same reason. The
characterization of compatibility is also used to show that for any structure X,
the finite Boolean subalgebras of Fact X correspond to finitary direct product
decompositions of the structure X. For algebraic and relational structures X, this
result is extended to show that the Boolean subalgebras of Fact X correspond to
representations of the structure X as the global sections of a sheaf of structures
over a Boolean space. The above results can be given a physical interpretation
as well. Assume that the true or false questions 4 of a quantum mechanical
system correspond to binary direct product decompositions of the state space of
the system, as is the case with the usual von Neumann interpretation of quantum
mechanics. Suppose S is a subset of 4. Then a necessary and sufficient condition
that all questions in S can be answered simultaneously is that any two questions
in S can be answered simultaneously. Thus, regularity in quantum mechanics
follows from the assumption that questions correspond to decompositions.

1. INTRODUCTION

One of the great departures of quantum theory from the classical is

the existence of incompatible observables. Classically, one can conduct an
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experiment which will answer questions about both the position and the

momentum of an object. This is not the case with quantum mechanical

systems. Quantum theory states that any measurement of position interferes
in an essential way with momentum, and conversely.

Two questions of a physical system are said to be compatible if they

can be answered simultaneously by a single experiment. More generally, a

set S of questions is said to be compatible if there is a single experiment

which will simultaneously answer all questions in X. Clearly if S is compatible,

then any pair of questions in S is compatible. However, the question arises
as to whether every pairwise compatible set is compatible, a condition referred

to as regularity. In this paper we show that the regularity of a quantum

mechanical system is a consequence of associating questions of the system

with direct product decompositions of the state space.

It is a common practice to impose some structure on the collection 4
of true or false questions of a physical system. 4 is partially ordered by
logical implication, and is given a complementation which corresponds to

negating a question. This structure is usually assumed to at least be an

orthomodular poset (Birkhoff and von Neumann, 1936; Mackey, 1963; Piron,

1976; Varadarajan, 1985). One can then use the structure on 4 to determine

when a set S of questions is compatibleÐ S is compatible if and only if S is
contained in a Boolean subalgebra of 4 (Varadarajan, 1985, p. 55). Classically,

every set of questions is compatible, which corresponds to the fact that the

questions 4 of a classical system form a Boolean algebra.

As the compatibility of questions is reflected in the structure 4, the

regularity of our system, or lack of it, is also reflected in the structure 4.

This naturally leads to the definition of compatibility and regularity for
arbitrary orthomodular posets. A subset S of an orthomodular poset P is

compatible if S is contained in a Boolean subalgebra of P, and P is regular

if every pairwise compatible subset of P is compatible.

In Harding (1996) it was shown that the collection of all binary decompo-

sitions of any algebraic, relational, or topological structure X form an ortho-

modular poset Fact X. So it is not unreasonable to assume that the true or
false questions of a quantum mechanical system correspond to the binary

direct product decompositions of the state space of the system. Indeed, this

assumption is entirely in keeping with the standard approach to quantum

mechanics, formulated by von Neumann (1932), where the state space is

taken to be some Hilbert space * and the true or false questions correspond

to closed subspaces of *.
Here we will determine the meaning of compatibility in an orthomodular

poset Fact X. Let S be a finite subset of Fact X. We show that S is compatible

if and only if the binary decompositions of X which comprise the elements

of S can all be built from a common n-ary decomposition of X. With this
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description of compatibility, we can characterize the finite Boolean subalge-

bras of Fact X for any algebraic, relational, or topological structure X. We show

there is a bijection between the collection of all finite Boolean subalgebras of
Fact X and the collection of equivalence classes of finitary direct product

decompositions of X. Here, two such decompositions are equivalent if one

can be obtained from the other by permuting the factors, then relabeling the

elements of the factors. For algebraic and relational structures we go farther.

We show there is a bijection between the collection of all Boolean subalgebras

of Fact X, finite or otherwise, and the equivalence classes of representations
of X as the global sections of a sheaf over a Boolean space.

This description of compatibility can also be used to study the regularity

of Fact X. We show that for any algebraic, relational, or topological structure

X, the orthomodular poset Fact X is regular. In fact, we show a good deal

more than this. We show that for any relation algebra R, the orthomodular

poset R(2) (Harding, 1996) is regular. As many familiar orthomodular posets
arise from decompositions, we have several corollaries to this result. In

particular, the orthomodular posets which arise from the splitting subspaces

of an inner product space are regular, the orthomodular posets constructed

from the idempotents of a ring are regular, the orthomodular posets that

Mushtari constructs from bounded modular lattices are regular, the orthomod-
ular posets one constructs from the subgroups of a group are regular, and

the orthomodular posets one constructs from the projections of a normed

group with operators are regular. In many of these cases it is not difficult to

establish regularity directly, and this has been done for orthomodular posets

of splitting subspaces and orthomodula r posets of idempotents of a ring. The

point here is that these orthomodular posets are all regular for the same
reasonÐ they arise from decompositions.

This paper is organized in the following fashion. The second section

contains the necessary background information to make the paper reasonably

self-contained. Section 2.1 is devoted to orthomodular posets and regularity.

The important notion of regularity for orthomodular posets was introduced

by Brabec (1979), Brabec and PtaÂk (1982), Neubrunn and PulmannovaÂ(1983),
and PulmannovaÂ(1981). All of the results on regularity in this section can

be found in the book of PtaÂk and PulmannovaÂ(1991). Section 2.2 contains

a few brief facts about relation algebras. As this paper is about the algebra

of decompositions, one should not be surprised that the algebra of equivalence

relations plays a fundamental role, and relation algebras are direct generaliza-

tions of the algebra of all binary relations on a set X. Our results are established
in the generality of relation algebras so as to include some important special

cases. Section 2.3 is a brief review of results established in Harding (1996).

Here we outline how one constructs an orthomodular poset R(2) from a relation

algebra R.
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In Section 3 we begin our investigation of compatibility in Fact X, for

X a set. We develop a characterization of Boolean subalgebras of Fact X in

terms of certain families of equivalence relations on X which we call Boolean
subsystems. A Boolean subsystem is a family of pairwise permuting equiva-

lence relations which form a Boolean sublattice of the lattice of all equivalence

relations on X. This result then has two immediate consequences. It allows

us to characterize compatible subsets of Fact X as ones which correspond to

subsets of Boolean subsystems. And as finite Boolean subsystems correspond

to equivalence classes of finitary direct decompositions of X, the finite Bool-
ean subalgebras of Fact X also correspond to equivalence classes of finitary

direct product decompositions of X. While we have described these results

as they pertain to decompositions of a set, they are proved in the generality

of arbitrary relation algebras.

In Section 4 we show that for any set X, the orthomodula r poset Fact

X is regular. Again, this result is established in the much more general setting
of relation algebras.

In Section 5 we extend the results of Sections 3 and 4 to apply to the

decompositions Fact X of any algebraic, relational, or topological structure

X, as well as to many of the other orthomodular posets which arise from

decompositions. Finally, in Section 6 we extend the above-mentioned corre-
spondence between equivalence classes of finitary direct decompositions of

a set X and finite Boolean subalgebras of Fact X. We show that there is a

correspondence between the collection of all Boolean subalgebras of Fact X
and equivalence classes of representations of X as the global sections of a

sheaf over a Boolean space. This result is then extended to algebraic and

relational structures, but not to topological structures.

2. PRELIMINARIES

If a, b are elements of a partially ordered set, we shall write a 1 b to

denote the supremum of {a, b}, if such exists, and a ? b to denote the infimum

of {a, b}, if such exists. While we will never have cause to consider suprema
and infima of infinite sets, we will find it convenient to write S F and P F
for the supremum and infimum of a finite set, provided these exist. Finally,

the set complement of a set A will be denoted by Ø A. The universal set

in which this complementation is to be taken will always be clear from

the context.

2.1. Orthomodular Posets

Definition 2.1.1. An orthomodular poset is a structure (P, # , 0, 1, ’ )

such that:
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(i) (P, # , 0, 1) is a bounded partially ordered set.

(ii) ’ ; P ® P is an order-invert ing complementation of period two.

(iii) If a, b P P and a # b ’ , then a 1 b exists in P.
(iv) if a, b P P and a # b ’ , then b ’ 5 a 1 (a 1 b) ’ .

Several important consequences of this definition are worthy of note.

These are well-known results, and complete proofs are given in Beran (1984)
and PtaÂk and PulmannovaÂ(1991).

Lemma 2.1.2. Let P be an orthomodular poset.

(i) If a, b P P and a 1 b exists, then a ’ ? b ’ exists and is equal to

(a 1 b) ’ .

(ii) If a, b P P and a ? b exists, then a ’ 1 b ’ exists and is equal
to (a ? b) ’ .

(iii) If {a1, . . . , an} # P and ai # a ’
j for i Þ j, then S {a1, . . . ,

an} exists.

(iv) If a, b P P are such that a # b ’ and a 1 b 5 1, then a 5 b ’ .

We shall often refer to the relationship a # b ’ by saying that a is

orthogonal to b. The final condition in Definition 2.1.1, and its equivalent

formulation given as the final statement in Lemma 2.1.2, are known as the

orthomodular law.

Definition 2.1.3. If P is an orthomodular poset and S # P, we say that

S is a subalgebra of P if S is closed under orthocomplementation and finite

orthogonal joins. Any subalgebra of P is naturally an orthomodular poset in
its own right. If a subalgebra of P happens to be a Boolean algebra, we say

it is a Boolean subalgebra of P.

Lemma 2.1.4. If B is a Boolean subalgebra of P, then any two elements
of B have a join in P, and joins taken in B agree with joins taken in P. As

B is closed under orthocomplementation, similar remarks are valid for meets.

Proof. Let a, b be elements in B. As B is Boolean, there are elements

p, q, r in B such that (i) p, q, r are pairwise orthogonal in B, (ii) the join of

{p, r} in B equals a, and (iii) the join of {q, r} in B equals b. Then as B is

a subalgebra of P, we have that (i) p, q, r are pairwise orthogonal in P, (ii)

the join of {p, r} in P equals a, and (iii) the join of {q, r} in P equals b. It

follows that the join of {p, q, r} exists in P and is the join of {a, b} in P.
But this element is in B, and hence is the join of {a, b} in B as well. n

Definition 2.1.5. A subset A # P is said to be compatible2 if there is a

Boolean subalgebra of P which contains A. A subset A # P is said to be

2 Many authors, including PtaÂk and PulmannovaÂ(1991), give a technical definition of compatibil-
ity which they prove to be equivalent to the definition given above. Some authors also
refer to this property as full compatibility or f-compatibili ty, leaving compatible to mean
pairwise compatible.



1178 Harding

pairwise compatible if any two elements of A are compatible. Clearly any

compatible set is pairwise compatible. An orthomodular poset is called regular

if every pairwise compatible set is compatible.

The important notion of regularity was introduced by Brabec (1979),

Brabek and PtaÂk (1982), Neubrunn and PulmannovaÂ(1983), and PulmannovaÂ

(1981). The treatment of regularity given here closely follows the book of

PtaÂk and PulmannovaÂ(1991), where proofs of Propositions 2.1.6 and 2.1.7

as well as Example 2.1.9 can be found. Some slight reformulation of the
results has been made to make them easier to apply in the sequel. Before

proceeding to the following proposition, it is necessary to introduce some

notation. If {a0, . . . , an 2 1} is a subset of an orthomodular poset P, we let

a 0
i be ai and a 1

i be a ’
i . As is customary in set theory, we consider n to be

the set {0, 1, . . . , n 2 1} and 2 to be the set {0, 1}. So for each a P 2n,

the set {a a (i)
i : i 5 1, 2, . . . , n 2 1} contains each element ai or its

orthocomplement.

Proposition 2.1.6. Let P be an orthomodular poset and A 5 {a0, a1,

. . . , an 2 1} be a finite subset of P. Then A is compatible if and only if for

each a P 2n the family {a a (i)
i : i 5 1, 2, . . . , n 2 1} has a meet in P and

o
a P 2n

&
n 2 1

i 5 0
a a (i)

i 5 1

Note that if the meets involved exist, then the join is guaranteed to exist, as
it is an orthogonal join.

Proposition 2.1.7. For an orthomodular poset P, the following are

equivalent:

(i) P is regular.
(ii) If {a, b, c} is a pairwise compatible set, then {a, b ? c} is compatible.

Note that the existence of b ? c in condition (ii) is ensured, as b, c are

compatible.

Corollary 2.1.8. An orthomodular poset P is regular iff every pairwise
compatible subset of P with three elements is compatible.

Proof. The condition is surely necessary. To see that it is sufficient, we

will verify the second condition of Proposition 2.1.7. Indeed, if {a, b, c} is

pairwise compatible, then by assumption it is compatible. So {a, b, c} is
contained in some Boolean subalgebra B of P. Then {a, b ? c} is also contained

in B and hence is compatible. n

Example 2.1.9. The following is an example of an orthomodular poset

which is not regular. Let P be the set of all subsets of {1, 2, 3, 4, 5, 6, 7,



Regularity in Quantum Logic 1179

8} which have even cardinality. Partially order P by set inclusion, and let

orthocomplementation be set complementation. Then P is an orthomodular

poset. In fact, it is a subalgebra of the orthomodular poset of all subsets of
{1, 2, 3, 4, 5, 6, 7, 8} in the sense of Definition 2.1.3. One can verify that

{{1, 2, 3, 4}, {1, 2, 5, 6}, {1, 3, 5, 7}} is a pairwise compatible set which

is not compatible.

The above example also shows that a subalgebra of a regular orthomodu-

lar poset need not be regular. It will be of importance to us to have conditions

sufficient to guarantee that a subalgebra of a regular orthomodular poset is

regular. This task will comprise the remainder of the section.

Lemma 2.1.10. Let P be an orthomodular poset and S be a subalgebra

of P. If x, y are elements of S which are compatible in S, then x, y are

compatible in P. Further, the meet of x, y in S exists and is equal to the meet

of x, y in P.

Proof. If x, y are compatible in S, they are in some Boolean subalgebra

B of S. But B is also a Boolean subalgebra of P. Thus x, y are compatible
in P. To see our further remark, note that the meet of x, y in B exists, and

as B is a Boolean subalgebra of both S and P, it follows by Lemma 2.1.4

that the meet of x, y in S equals the meet of x, y in B equals the meet of x, y

in P. n

Definition 2.1.11. Let P be an orthomodular poset and S be a subalgebra
of P. We say that S is a compatible subalgebra of P if whenever elements

x, y of S are compatible in P, they are compatible in S.

Example 2.1.9 shows that not all subalgebras are compatible subalgebras.

Lemma 2.1.12. Let P be an orthomodular poset and S be a subalgebra

of P. If P is regular and S is compatible, then S is regular.

Proof. Let {a, b, c} be a set of elements which are pairwise compatible

in S, and let b ? c be the meet of b, c in S. By Proposition 2.1.7, it is enough

to show that a and b ? c are compatible in S. Note first that by Lemma 2.1.10
the elements of {a, b, c} are pairwise compatible in P, and that the meet of

b, c in P agrees with the meet of b, c in S. Then, as P is regular, it follows

that a is compatible with b ? c in P. Then, as S is a compatible subalgebra of

P, it follows that a is compatible with b ? c in S. n

Lemma 2.1.13. Let P be an orthomodular poset and S be a subalgebra
of P. Then the following are equivalent:

(i) For all x, y in S with x, y compatible in P, the meet of x, y in P
belongs to S.
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(ii) S is a compatible subalgebra of P.

Proof. (i) Þ (ii) Let x, y be elements of S which are compatible in P.

We must show that x, y are compatible in S. As x, y are compatible, they are

contained in some Boolean subalgebra B of P. This implies that the meets

x ? y, x ? y8, x8 ? y, and x8 ? y8 all exist in P and that their join in P equals 1. As

x, y are compatible in P, we trivially have that x8, y as well as x, y8 and x8,
y8 are compatible in P. It follows from our assumption that x ? y, x ? y8, x8 ? y,
and x8 ? y8 all belong to S, and they are clearly orthogonal as well. As S is

closed under orthogonal joins, it follows that their join in S equals 1. Therefore

by Proposition 2.1.6, x, y are compatible in S.
(ii) Þ (i). Let x, y be elements of S which are compatible in P. By

assumption, x, y are compatible in S as well. Our result then follows from

Lemma 2.1.10. n

Corollary 2.1.14. Let P be a regular orthomodular poset and S be a
subset of P which is closed under orthocomplementation. Assume further

that for all x, y P S which are compatible in P we have that x ? y is in S. Then

S is a compatible subalgebra of P, and S itself is a regular orthomodular poset.

Proof. We first show S is a subalgebra of P. As S is closed under

orthocomplementation, we must only show that S is closed under finite

orthogonal joins. But if x, y are orthogonal elements in S, then x8 and y8 are

compatible in P. By our assumption, x8 ? y8 is in S, and as S is closed under

complementation, we have that x 1 y is in S. Having shown that S is a
subalgebra of P, it follows directly from our assumption and Lemma 2.1.13

that S is a compatible subalgebra of P. That S itself is regular follows from

Lemma 2.1.12. n

2.2. Relation Algebras

A binary relation on a set X is a collection of ordered pairs of elements

of X. Thus the collection of all binary relations on X, denoted RX, is simply

the power set of X 3 X. Partially ordered by set inclusion, (RX, 1 ? , 2 , 0,

1) is a complete Boolean algebra where joins are given by unions, meets by
intersections, and complementation is set complementation. Apart from these

Boolean operations, there are several additional operations one frequently

uses when working with relations. Relational multiplication ; is a binary

operation, relational conversion

)

is a unary operation, and the identity

relation 18 is a constant, where

R ; S 5 {(r, s) ; exists t with (r, t) P R and (t, s) P S}

R

)

5 {(s, r): (r, s) P R}
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18 5 {(x, x): x P X }

Relation algebras are a generalization of the algebra RX. They were introduced

by Tarski (1941). For general background on relation algebras, consult JoÂns-
son (1982).

Definition 2.2.1. A relation algebra is a Boolean algebra (B, 1 , ? , 2 ,

0, 1) with an additional binary operation ; an additional unary operation

)

, and a constant 18, which satisfies the following identities:

(i) (a ; b) ; c 5 a ; (b ; c).

(ii) a ; 18 5 a.

(iii) a ; (b 1 c) 5 a ; b 1 a ; c.

(iv) (a 1 b) ; c 5 a ; c 1 b ; c.

(v) a

) )

5 a.

(vi) (a 1 b)

)

5 a

)

1 b
)

.

(vii) (a ? b)

)

5 a

)

? b
)

.

(viii) (a ; b)

)

5 b
)

; a

)

.

(ix) a

)

; (a ; b) 2 1 b 2 5 b 2 .

There are redundancies in the axiom system provided above. For instance,

the fourth axiom easily follows from the others. Note also that the third and

fourth axioms ensure that relational product ; is monotone in each argument.

This axiom system was chosen to be satisfied by any algebra RX.
However, there are identities which hold in each algebra RX which are not

implied by this axiom system (JoÂnsson, 1982). Therefore, relation algebras

are a true generalization of the algebra of relations over a set. The following

lemma, due to Chin and Tarski (1951), states that a fragment of modularity

holds in any relation algebra. This is the starting point of the study of

decompositions.

Lemma 2.2.2. Let a, b, c be elements of a relation algebra R.

(i) If a ; c # a and a ; c

)

# a, then a ? (b ; c) 5 (a ? b) ; c.

(ii) If c ; a # a and c

)

; a # a, then a ? (c ; b) 5 c ; (a ? b).

Proof. The first statement can be found in Chin and Tarski (1951),

Corollary 2.19. The second statement follows from the first using (v), (vii),

and (viii) of Definition 2.2.1. n

2.3. Relational Orthomodular Posets

In Harding (1996) it was shown that the collection of all decompositions

of a set naturally carries the structure of an orthomodular poset. The key

notion is that two decompositions are orthogonal precisely when they admit
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a common refinement. This construction was remarkably resilient to adapta-

tions. It was shown that the decompositions of any algebraic, relational, or

topological structure form an orthomodular poset in a natural manner. From
this, one realizes that many of the methods used to construct orthomodular

posets are special instances of this result. The most important such example

is that the closed subspaces of a Hilbert space are in direct correspondence

with decompositions of the Hilbert space.

Working with direct decompositions naturally leads one to consider

certain equivalence relations. Therefore, it should not be surprising that the
technique of building an orthomodular poset from the decompositions of a

structure can be extended to constructing an orthomodular poset from an

arbitrary relation algebra. Indeed, that was the approach taken in Harding

(1996). This extra generality pays dividends in more powerful results; how-

ever, the applications of our results in the special case of the relation algebra

RX are the most important. There will be little loss in understanding if one
considers the remainder of the paper in this context.

Definition 2.3.1. For a relation algebra R, define

R(1) 5 {x P R ; x 5 x

)

5 x ; x and 18 # x}.

We will call members of R(1) proper equivalence elements. The term equiva-
lence element has historically been used without the requirement that 18 # x.

Lemma 2.3.2. Let x, y P R(1).

(i) x ? y P R(1).

(ii) If x ; y P R(1), then x ; y 5 y ; x.

(iii) If x ; y 5 y ; x, then x ; y P R (1) and is the least upper bound of
x, y in R(1).

Proof. (i) Surely 18 # x ? y. Also (x ? y)

)

5 x

)

? y

)

5 x ? y. As ; is

monotone in each argument, we have (x ? y) ; (x ? y) # x ; x 5 x and (x ? y) ;

(x ? y) # y ; y 5 y. So (x ? y) ; (x ? y) # x ? y. But 18 # x ? y, and hence x ? y #
(x ? y) ; (x ? y), giving the desired equality.

(ii) Suppose that x ; y P R (1). Then x ; y 5 (x ; y)

)

5 y

)

; x

)

5 y ; x.

(iii) Note first that (x ; y)

)

5 y

)

; x

)

5 y ; x 5 x ; y. Then as ; is

associative, we have (x ; y) ; (x ; y) 5 x ; x ; y ; y 5 x ; y. Clearly 18 # x

; y, and therefore x ; y is in R (1). Suppose z P R (1) is an upper bound of x,

y. As ; is monotone in each argument, we have that x ; y # z ; z 5 z.
Therefore x ; y is the least upper bound of x, y in R (1). n

Definition 2.3.3. For a relation algebra R, we say that B # R (1) is a

Boolean subsystem of R if the following conditions are satisfied:

(i) With the partial ordering inherited from R, B is a Boolean lattice.
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(ii) 18 and 1 are the smallest and largest elements in B, respectively.

(iii) Finite meets in B agree with those in R.

(iv) Finite joins in B are given by relational product ;.

In view of Lemma 2.3.2, the fourth condition implies that x ; y 5 y ;
x for all x, y in B.

These definitions have special significance when interpreted in the rela-

tion algebra RX of all binary relations on a set X. RX(1) is the set of all

equivalence relations on X. The importance of Boolean subsystems of RX is

due to their close connection to direct decompositions of the set X, as explained

in the following proposition.

Proposition 2.3.4. Given a sequence a 1, . . . , a n of equivalence relations
on a set X, let the map w : X ª X / a 1 3 ? ? ? 3 X / a n be defined by w (x) 5
(x/ a 1, . . . , x / a n). Then the following are equivalent:

(i) w : X ª X / a 1 3 ? ? ? 3 X / a n is an isomorphism.

(ii) The members of the sequence a 1, . . . , a n which are not equal to

1 are distinct and comprise the coatoms of a finite Boolean subsys-

tem of RX.

Note that if a i 5 1, then X / a i is a singleton, and has no essential effect

on the product.

Proof. (i) Þ (ii). We may assume that the sequence a 1, . . . , a n is

arranged so that the members which differ from 1 are at the beginning. Let

k # n be such that a 1, . . . , a k differ from 1 and a k 1 1, . . . , a n all equal 1.

For A # {1, 2, . . . , k} let a A be the meet of the a i , where i P A. Specifically,

a A 5 {(x, y): x / a i 5 y / a i for all i P A}

Note a A ø B 5 a A ? a B , and therefore A # B implies a B # a A.

Next we show that a A ù B 5 a A ; a B. Clearly a A , a B are contained in

a A ù B, and as these are equivalence relations, a A ; a B # a A ù B. Suppose (x,
y) is in a A ù B. As w is an isomorphism, there is z in X with z/ a i equal to x/

a i for all i in A and z/ a i equal to y/ a i for all i which are not in A. Clearly

(x, z) is in a A. And as x / a i equals y / a i for all i in A ù B, it follows that (z,
y) is in a B. Thus (x, y) is in a A ; a B.

Finally, we show that a B # a A implies A # B. Suppose that i is in A,

but not in B. Then as i is in A and the complement Ø B of B, we have that
a A and a Ø B are contained in a i . If a B is contained in a A , then we have that

both a B and a Ø B are contained in a i . As these are equivalence relations, it

follows that a B ; a Ø B is contained in a i. But we have just shown that a B ;

a Ø B equals a 0¤, which is 1, contradicting our assumption a i Þ 1.
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We have shown that the map c from the power set of {1, 2, . . . , k} to

RX defined by c (A ) 5 a A is a dual order-isomorphism. Thus the image of

c is a Boolean lattice under the partial ordering inherited from RX. As a A ø B

5 a A ? a B , meets in this lattice agree with meets in RX. And as a A ù B 5 a A ;

a B , joins in this lattice are given by the relational product. Clearly a 0¤ 5 1,

and as w is an embedding, a {1,2,...,k} 5 18. So the image of c is a finite

Boolean subsystem of RX. Finally, as {1}, . . . , {k} are the atoms of the

power set of {1, 2, . . . , k}, we have a 1, . . . , a k are the coatoms of the image

of c .
(ii) Þ (i). As a 1 . . . a n at least comprise the coatoms of a finite Boolean

subsystem of RX, they meet to 18. It follows that w is an embedding. Let x1,

. . . , xn be elements of X and m , n. Suppose y is in X and y / a i equals xi /

a i for all i # m. Using the fact that ( a 1 ? a 2 ? ? ? a m) ; a m 1 1 5 1, we can find

y8 in X with y8/ a i equal to xi / a i for all i # m 1 1. By an obvious induction,

there is an element x in X with x / a i equal to xi / a i for all i # n. Thus w
is onto. n

Corollary 2.3.5. Let a 1, . . . , a n be a sequence of equivalence relations

on a set X such that the natural map w : X ª X / a 1 3 ? ? ? 3 X / a n is an
isomorphism. Let A # {1, . . . , n} and let a A denote ù { a i: i P A}. Then

the natural map from X / a A to P {X / a i: i P A} is an isomorphism.

Proof. By the familiar isomorphism theorem, the interval [ a A , 1] of the
lattice of equivalence relations on X is isomorphic to the lattice of equivalence

relations on X / a A via the map a V a Ã, where a Ã5 {(x / a A , y / a A): (x, y) P
a }. Further, if a permutes with b , then a Ãpermutes with b Ã. It follows that

the members of { a Ãi: i P A} which differ from 1 comprise the coatoms of a

finite Boolean subsystem of the algebra of all relations on X / a A. Hence
X / a A is canonically isomorphic to P {X / a i: i P A}. As X / a Ãi is canonically

isomorphic to X / a i , our result follows. n

One might expect there to be some significance attached to infinite
Boolean subsystems of RX, and that is indeed the case. We shall return to

this point in Section 6.

Definition 2.3.6. For a relation algebra R, define

R (2) 5 {(x, x8) P R (1) 3 R (1): x ? x8 5 18 and x ; x8 5 1}

We call members of R (2) factor pairs of R. It is important to note that members

of R (2) are ordered pairs and therefore (x, x8) Þ (x8, x). We should also note

that the condition x ; x8 5 1 implies that x ; x8 5 x8 ; x, since 1 is a proper

equivalence element.
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Remark 2.3.7. It is easy to see that (x, x8) P R (2) iff {18, x, x8, 1} is a

Boolean subsystem of R. So an ordered pair of equivalence relations ( a , a 8)
on a set X is in RX (2) iff X is canonically isomorphic to X/ a 3 X / a 8.

Definition 2.3.8. For a relation algebra R, define a binary relation # on

R (2) by

(x, x8) # ( y, y8) if x # y, y8 # x8, and x ; y8 5 y8 ; x

Then define a unary operation ’ : R (2) ª R (2) by setting (x, x8) ’ 5 (x8, x),

and define constants 0 5 (18, 1) and 1 5 (1, 18).

The proofs of the following lemma and of the theorem which concludes

this section are given in Harding (1996).

Lemma 2.3.9. Let R be a relation algebra and let (x, x8), ( y, y8) be in

R (2). Then the following are equivalent:

(i) (x, x8) # ( y, y8).
(ii) x # y and {18, 1, x, x8, y, y8, (x8 ? y), (x ; y8)} is a Boolean subsystem

of R.

Remark 2.3.10. In terms of the relation algebra RX, the above lemma

shows that (x, x8) # ( y, y8) if and only if X is canonically isomorphic to X/

y 3 X/(x ; y8) 3 X/x8. This means that (x, x8) # ( y, y8) if the decompositions

X > X/x 3 X/x8 and X > X/y 3 X/y8 can be built in an obvious manner from

a common ternary decomposition.

Fig. 1.
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Theorem 2.3.11. For a relation algebra R, the system (R (2), # , 0, 1, ’ )

ù an orthomodular poset. Further, if (x, x8) # ( y, y8) ’ , then (x, x8) 1 ( y, y8)
5 ((x ; y), (x8 ? y8)).

3. COMPATIBILITY IN RELATIONAL OMPs

In this section we give a simple description of when a subset of a
relational orthomodular poset R (2) is compatible.

Lemma 3.1. Let R be a relation algebra and (x1, x 81) and (x2, x 82) be
elements of the orthomodular poset R (2). If (x1, x 81) and (x2, x 82) are compati-

ble, then

(x1, x 81) 1 (x2, x 82) 5 (x1 ; x2, x 81 ? x 82)

Note that the join of these elements exists, as they are compatible.

Proof. If (x1, x 81) and (x2, x 82) are compatible, then there is a Boolean

subalgebra B of R (2) which contains (x1, x 81) and (x2, x 82). Let

(z1, z 81) 5 (x1, x 81) ? (x2, x 82)
’ ,

(z2, z 82) 5 (x1, x 81) ? (x2, x 82)

and

(z3, z 83) 5 (x2, x 81)
’ ? (x2, x 82).

Note that by Lemma 2.1.4, there is no need to specify whether these meets

are taken in B or in R (2), as the two notions coincide. As our discussion can

be considered to take place within a Boolean algebra, we have

(x1, x 81) 5 (z1, z 81) 1 (z2, z 82) (3.1)

and

(x2, x 82) 5 (z2, z 82) 1 (z3, z 83) (3.2)

Therefore

(x1, x 81) 1 (x2, x 82) 5 [(z1, z 81) 1 (z2, z 82)] 1 (z3, z 83)

As (zi , z 8i ), i 5 1, 2, 3, are pairwise orthogonal, and therefore (z1, z 81) 1
(z2, z82) is orthogonal to (z3, z 83), we may apply Theorem 2.3.11 to obtain

(x1, x 81) 1 (x2, x 82) 5 (z1 ; z2 ; z3, z 81 ? z 82 ? z 83). (3.3)

Using Theorem 2.3.11, we find that equation (3.1) gives x1 5 z1 ; z2 and

(3.2) gives x2 5 z2 ; z3. Therefore x1 ; x2 equals z1 ; z2 ; z2 ; z3, which in turn
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equals z1 ; z2 ; z3. A similar argument shows that x 81 ? x 82 equals z 81 ? z 82 ? z 83.
Substituting into (3.3) yields our result. n

Lemma 3.2. Let R be a relation algebra and (x1, x 81) and (x2, x 82) be
elements of the orthomodular poset R(2). If (x1, x 81) and (x2, x 82) are compati-

ble, then

(x1, x 81) ? (x2, x 82) 5 (x1 ? x2, x 81 ; x 82).

Note that the meet of these elements exists, as they are compatible.

Proof. If (x1, x 81) and (x2, x 82) are compatible, then so are their

orthocomplements (x 81, x1) and (x 82, x2). Using the previous lemma, we have

(x1, x 81)
’ 1 (x2, x 82)

’ 5 (x 81 ; x 82, x1 ? x2)

Taking the orthocomplement of both sides of this equation yields our

result. n

Lemma 3.3. Let R be a relation algebra and (x1, x 81) and (x2, x 82) be

compatible elements of the orthomodular poset R (2). Then (x1, x 81) #
(x2, x 82) iff x1 # x2.

Proof. If (x1, x 81) # (x2, x 82), then by definition x1 # x2. Conversely, if

x1 # x2, then by the previous lemma

(x1, x 81)
’ 1 (x2, x 82) 5 (x 81 ; x2, x1 ? x 82)

But x1 # x2 implies that 1 5 x 81 ; x1 # x 81 ; x2. The only factor pair having
1 in its first coordinate is the pair (1, 18) 5 1. As (x1, x 81) is compatible with

(x2, x 82), they are elements of some Boolean subalgebra of R (2). Since (x1,

x 81)
’ 1 (x2, x 82) 5 1, it follows that (x1, x 81) # (x2, x 82). n

Proposition 3.4. Let R be a relation algebra and B be a Boolean subalgebra

of the orthomodular poset R (2). Then the image of the w : B ª R (1), defined

by w (x, x8) 5 x, is a Boolean subsystem of R. Further, considered as a map
between Boolean algebras, w is an isomorphism.

Proof. Lemma 3.3 shows that w is an order embedding from the partially

ordered set B to the partially ordered set R. Thus the image of w is a Boolean

lattice under the partial ordering inherited from R. Let x1 and x2 be elements

in the image of w . Then there must be elements x 81 and x 82 so that (x1, x 81)
and (x2, x 82) are in B. As w is an order embedding, it follows that the join of
x1 and x2 in the image must be equal to the image of the join of (x1, x 81) and

(x2, x 82). By Lemma 3.1 we have that w ((x1, x 81) 1 (x2, x 82)) 5 x1 ; x2. Thus

joins in the image of B are given by relational product. It follows by a similar

argument using Lemma 3.2 that meets in the image of B agree with meets



1188 Harding

in R. Finally, as (18, 1) and (1, 18) are the bounds of B, it follows that 18
and 1 are the smallest and largest elements in the image of B. Thus the image

of B is a Boolean subsystem of R. The further remark follows directly from
what we have shown. n

Proposition 3.5. Let R be a relation algebra and B be a Boolean subsystem

of R. For each element y P B, let y8 denote the complement of y in the

Boolean algebra B. Then the image of the map c : B ® R (2), defined by c ( y)

5 ( y, y8), is a Boolean subalgebra of the orthomodular poset R (2). Further,
considered as a map between Boolean algebras, c is an isomorphism.

Proof. Note that as joins in B are given by relational product, the fact

that y8 is a complement of y in B ensures that ( y, y8) is a factor pair. Thus

the map c is well defined. Also, as B is a Boolean algebra under the partial

ordering inherited from R, we have that x # y iff y8 # x8. As all elements
in B permute, it follows at once that (x, x8) # ( y, y8) iff x # y. Thus c is an

order embedding from B into R (2). Clearly the image of c is closed-under

orthocomplementation in R (2). We next show that the image of c is closed

under finite orthogonal joins. Suppose that (x, x8) and ( y, y8) are orthogonal

elements in the image of c . Then (x, x8) 1 ( y, y8) 5 (x ; y, x8 ? y8). But this

last term is equal to c (x ; y). So the image of c is closed under orthogonal
joins, and hence is a subalgebra of the orthomodular poset R (2) in the sense

of Definition 2.1.3. As c is an order isomorphism between B and its image,

it follows that the image of c is Boolean. The further remark follows directly

from what we have shown. n

Corollary 3.6. Let R be a relation algebra and A be a subset of R (2).
Then A is compatible iff {a, a8: (a, a8) P A} is contained in a Boolean

subsystem of R.

Proof. If A is compatible, then by Definition 2.1.5, A is contained in

some Boolean subalgebra B of R(2). Let w : B ª R (1) be the map given in

Proposition 3.4. Then {a, a8: (a, a8) P A} is contained in the image of w .
But by Proposition 3.4, this image is a Boolean subsystem of R. Conversely,

if {a, a8: (a, a8) P A} is contained in a Boolean subsystem B of R, then the

image of the map c : B ª R (2) given in Proposition 3.5 is a Boolean subalgebra

of R (2) which contains A. Hence A is compatible. n

Definition 3.7. For a set X, let BooFin (RX (2)) denote the collection of

all finite Boolean subalgebras of RX(2). We define a decomposition of X to
be an n 1 1-tuple ( w ; X1, . . . , Xn) where w is an isomorphism from X to

X1 3 . . . 3 Xn , and none of the Xi are one-element sets. Two decompositions

( w ; X1, . . . , Xn) and ( w 8 ; X 81, . . . , X 8n) are said to be equivalent if there is

a permutation s of {1, . . . , n} and isomorphisms f i: Xi ª X 1
s i such that f i
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C p i C w 5 p s i C w 8 for i 5 1, . . . , n. We then define DecompFin(X ) to

be the collection of all equivalence classes of decompositions of X.

Proposition 3.8. Let X be a set. Then there are mutually inverse isomor-

phisms F and C between BooFin(RX(2)) and DecompFin(X ) defined as

follows:

(i) If the coatoms of B are enumerated ( a i , a 8i ), i 5 1, . . . , n, then

F (B) is the equivalence class of w : X ® X / a 1 3 ? ? ? 3 X / a n.

(ii) C ([ w : X ® X1 3 ? ? ? 3 Xn]) is the finite Boolean subalgebra whose
coatoms are (ker( p i C w ), ker( p 8i C w )), for i 5 1, . . . , n.

Here p i is the projection onto Xi , and p 8i is the projection onto P {Xj: j
Þ i}.

Proof. Assume that ( a i, a 8i ), i 5 1, . . . , n, are the coatoms of a finite

Boolean subalgebra. Then by Proposition 3.4, a 1, . . . , a n are the coatoms

of a finite Boolean subsystem of RX. Then Proposition 2.3.4 shows that w :
X ® X / a 1 3 ? ? ? 3 X / a n is a decomposition. Different enumerations of

the coatoms would yield different, but equivalent, decompositions. So F is

well defined.

If w : X ® X1 3 ? ? ? 3 Xn is a decomposition, then the natural map from

X to P {X /ker ( p i C w ): i 5 1, . . . , n} is an isomorphism. As the definition
of a decomposition requires that each of the sets X i have more than one

element, each of the relations ker( p i C w ) is distinct from 1. So by Proposition

2.3.4 the relations ker( p i C w ), i 5 1, . . . , n, comprise the coatoms of a

finite Boolean subsystem B of RX. But meets in B are given by set intersection,

and ker( p 8i C w ) 5 ù {ker( p j C w ): j Þ i}. Therefore ker( p 8i C w ) is the com-

plement of ker( p i C w ) in B. It follows from Proposition 3.5 that there is a
finite Boolean subalgebra of RX(2) whose coatoms are (ker( p i C w ), ker(

p 8i C w )) i 5 1, . . . , n. Finally, the definition of equivalence ensures that

any other member of this equivalence class will yield the same coatoms. So

C is well defined.

Given a subalgebra B of RX(2) whose coatoms are ( a i , a 8i ), i 5 1, . . . ,

n, let w : X ® X / a 1 3 ? ? ? 3 X / a n be the natural isomorphism. Surely a i 5
ker( p i C w ). But a 8i 5 ù { a j: j Þ i} and ker( p 8i ) 5 ù {ker( p j C w ): j Þ i.
Therefore ( a i , a 8i ) is equal to (ker( a i C w ), ker( p 8i C w )), showing that C C
F is the identity. Conversely, if w : X ® X1 3 ? ? ? 3 Xn is a decomposition,

then there is a canonical isomorphism f i: Xi ® X / ker( p i C w ). It follows

that F C C is the identity map as well. n

4. REGULARITY IN RELATIONAL OMPs

In this section we show that any relational orthomodular poset R (2) is

regular. Throughout, we will assume that R is a relation algebra and

(xi , X 8i ), i 5 0, 1, 2, are pairwise compatible elements in R (2).
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Lemma 4.1. x2 ? (x 80 ; x 81) 5 (x 80 ? x2) ; (x 81 ? x2).

Proof. As (x0, x 80) is compatible with (x2, x 82), we have by Corollary 3.6

that x 80 equals (x 80 ? x2) ; (x 80 ? x 82). And as (x1, x 81) is compatible with (x2, x 82),
we have that x 81 is equal to (x 81 ? x 82) ; (x 81 ? x2). Therefore

x2 ? (x 80 ; x 81) 5 x2 ? [(x 80 ? x2) ; (x 80 ? x 82) ; (x 81 ? x 82) ; (x 81 ? x2)]

Applying part (ii) of Lemma 2.2.2 to the right side of this equation with a
equal to x2, c equal to x 80 ? x2, and b equal to (x 80 ? x 82) ; (x 81 ? x 82) ; (x 81 ? x2) gives

x28(x 80 ; x 81) 5 (x 80 ? x2) ; [x2 ? ((x 80 ? x 82) ; (x 81 ? x 82) ; (x 81 ? x2))]

Applying part (i) of Lemma 2.2.2 to the term in square brackets with a equal
to x2, c equal to x 81 ? x2, and b equal to (x 80 ? x 82) ; (x 81 ? x 82) gives

x2 ? (x 80 ? x 81) 5 (x 80 ? x2) ; [x2 ? ((x 80 ? x 82) ; (x 81 ? x 82))] ; (x 81 ? x 82)

But (x 80 ? x 82) ; (x 81 ? x 82) # x 82 and x2 ? x 82 5 18. Our result follows easily. n

Lemma 4.2. x2 ? (x 80 ; x 81 ; x 82) 5 x2 ? (x 80 ; x 81)

Proof. As (x1, x 81) is compatible with (x2, x 82), we have that

x2 ? (x 80 ; x 81 ; x 82) 5 x2 ? (x 80 ; x 82 ; x 81).

As (x0, x 80) is compatible with (x2, x 82), we have by Corollary 3.6 that

x 80 ; x 82 equals (x 80 ? x2) ; x 82. And as (x1, x 81) is compatible with (x2, x 82), we

have that x 82 ; x 81 is equal to x 82 ; (x 81 ? x2). Thus

x2 ? (x 80 ; x 81 ; x 82) 5 x2 ? [(x 82 ? x2) ; x 82 ; (x 81 ? x2)]

As (x1, x 81) commutes with (x2, x 82) we have by Corollary 3.6 that x 82 permutes

with (x 81 ? x2). This gives

x2 ? (x 80 ; x 81 ; x 82) 5 x2 ? [(x 80 ? x2) ; (x 81 ? x2) ; x 82].

Using part (ii) of Lemma 2.2.2 with a equal to x2, c equal to (x 80 ? x2); (x 81 ?
x2), and b equal to x 82 gives

x2 ? (x 80 ; x 81 ; x 82) 5 (x 80 ? x2) ; (x 81 ? x2)

Our result then follows from Lemma 4.1. n

Lemma 4.3. x0 ? x1 ? x2 ? (x 80 ; x 81 ; x 82) 5 1.

Proof. By Lemma 4.2 we have

x0 ? x1 ? x2 ? (x 80 ; x 81 ; x 82) 5 x0 ? x1 ? x2 ? (x 80 ; x 81)

But (x0, x 80) is compatible with (x1, x 81), and so by Corollary 3.6, x0 ? x1 ?
(x 80 ; x 81) equals 18. Our result follows trivially. n
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Lemma 4.4. x 82 ; (x0 ? x1) 5 (x0 ; x 82) ? (x1 ; x 82).

Proof. As (x0, x 80) is compatible with (x2, x 82), we have by Corollary 3.6

that x0 equals (x0 ; x2) ? (x0 ? x 82), and similarly x1 equals (x1 ; x2) ? (x1; x 82). As

meets are commutative,

x 82 ; (x0 ? x1) 5 x 82 ; [(x0 ; x 82) ? (x1 ; x 82) ? (x0 ; x2) ? (x1 ; x2)]

Using part (ii) of Lemma 2.2.2 with a equal to (x0 ; x 82) ? (x1 ; x 82), c equal

to x 82, and b equal to (x0; x2) ? (x1; x2) yields

x82 ; (x0 ? x1) 5 [x82 ; ((x0 ; x2) ? (x1 ; x2))] ? (x0 ; x82) ? (x1 ; x82).

But (x0 ; x2) ? (x1 ; x2) $ x2 and x 82, x2 5 1. Our result follows easily. n

Lemma 4.5. x 82 ; (x0 ? x1 ? x2) 5 (x0 ; x 82) ? (x1 ; x 82) and therefore x 82 per-

mutes with x0 ? x1 ? x2.

Proof. As (x0, x 80) is compatible with (x2, x 82), it follows from Corollary
3.6 that x0 ? x2 equals (x0 ; x 82) ? x2. Similarly as (x1, x 81) is compatible with

(x2, x 82), we have that x1 ? x2 equals (x1 ; x 82) ? x2. Therefore

x 82 ; (x0 ? x1 ? x2) 5 x 82 ; [(x0 ; x 82) ? (x1 ; x 82) ? x2]

Using part (ii) of Lemma 2.2.2 with a equal to (x0 ; x 82) ? (x1 ; x 82), c equal

to x 82, and b equal to x2 gives that x 82 ; (x0 ? x1 ? x2) 5 (x0 ; x 82) ? (x1 ; x 82). As

the term on the right side of this last equality is a proper equivalence element,

it follows that x2 permutes with x0 ? x1 ? x2. n

Lemma 4.6. x 80 ; x 81 ; x 82 ; (x0 ? x1 ? x2) 5 1.

Proof. Combining Lemma 4.5 and Lemma 4.4, we have

x 80 ; x 81 ; x 82 ; (x0 ? x1 ? x2) 5 x 80 ; x 81 ; x 82 ; (x0 ? x1)

But (x2, x 82) is compatible with (x1, x 81) as well as with (x0, x 80). Therefore

x 82 permutes with x 81 and x 80. So

x 80 ; x 81 ; x 82 ; (x0 ? x1 ? x2) 5 x 82 ; x 80 ; x 81 ; (x0 ? x1)

But (x0, x 80) is compatible with (x1, x 81), so x 80 ; x 81 ; (x0 ? x1) equals 1. Our

result then follows trivially. n

Lemma 4.7. (x0 ? x1 ? x2, x 80 ; x 81 ; x 82) is a factor pair and is the meet in
R (2) of the set {(xi , x 8i ): i 5 0, 1, 2}.

Proof. Clearly x0 ? x1 ? x2 is a proper equivalence element. But the elements

(xi , x 8i ), i 5 0, 1, 2, being pairwise compatible implies that x 8i , i 5 0, 1, 2,

are pairwise permuting. So by Lemma 2.3.2(iii), we have that x 80 ; x 81 ; x 82 is
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also a proper equivalence element. It then follows by Lemma 4.3 and Lemma

4.6 that (x0 ? x1 ? x2, x 80 ; x 81 ; x 82) is in R (2). For each i 5 0, 1, 2 we clearly

have that x0 ? x1 ? x2 # xi and x 80 ; x 81 ; x 82 $ x 8i . But by Lemma 4.5 we have
that x0 ? x1 ? x2 permutes with x 82. Clearly the proofs of all the above lemmas

are valid under permutation of the indices, and therefore x0 ? x1 ? x2 permutes

with each x 8i , i 5 0, 1, 2. By Definition 2.3.8, (x0 ? x1 ? x2, x 80 ; x 81 ; x 82) is a

lower bound of {(xi , x 8i ): i 5 0, 1, 2}. We need only show that this is the

greatest lower bound of this set. Suppose ( y, y8) is a lower bound of {(

xi , x 8i ): i 5 0, 1 2}. Then as y # xi , i 5 0, 1, 2, it follows that y # x0 ? x1 ? x2.
And as y8 $ x 8i , i 5 0, 1, 2, it follows that y8 $ x 80 ; x81 ; x 82. But as ( y, y8)
# (xi , x 8i ), i 5 0, 1, 2, we have that y permutes with x 8i , i 5 0, 1, 2. Therefore

y permutes with x 80 ; x 81 ; x 82. This shows that ( y, y8) is below the element (

x0 ? x1 ? x2, x 80 ; x 81 ; x 82). n

Lemma 4.8. (x0 ? x1 ? x2) ; (x0 ? x1 ? x82) 5 x0 ? x1.

Proof. Applying part (ii) of Lemma 2.2.2 with a equal to x0 ? x1, c equal

to x0 ? x1 ? x2, and b equal to x 82, we have

(x0 ? x1 ? x2) ; (x0 ? x1 ? x 82) 5 [(x0 ? x1 ? x82) ; x 82] ? x0 ? x1

Applying Lemma 4.5, we have that

(x0 ? x1 ? x2) ; (x0 ? x1 ? x 82) 5 (x1 ; x 83) ? (x2 ; x 83) ? x1 ? x2

Then as x1 ; x 83 $ x1 and x2 ; x 83 $ x2, our result follows at once. n

Theorem 4.9. For a relation algebra R, the orthomodular poset R (2)

is regular.

Proof. By Corollary 2.1.8 it is enough to show that every pairwise

compatible subset of R (2) with three elements is compatible. Let (xi , x 8i ), i 5
0, 1, 2, be pairwise compatible elements in R (2). We must show that the set
{(xi , x 8i ): i 5 0, 1, 2} is compatible. By Proposition 2.1.6 it is enough to

show that for each a P 23 the family {(xi , x 8i )
a (i): i 5 0, 1, 2} has a meet

in R (2) and

o
a P 23

&
2

i 5 0
(xi , x 8i )

a (i) 5 1 (4.1)

Note that (xi , x 8i ) being compatible with (xj , x 8j ) implies that (xi , x 8i ) is compat-
ible with the orthocomplement of (xj , x 8j ), namely (x 8j , xj). Therefore the

above lemmas remain valid if we interchange occurrences of xi with x 8i every-

where. Thus Lemma 4.7 shows that for each a P 23, the family {(xi ,

x 8i )
a (i): i 5 0, 1, 2} has a meet in R (2). To verify condition (4.1), note first

that we are guaranteed that the join in question exists, as it is an orthogonal
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join. To show that this join is equal to 1, it is sufficient to show that the first

component of this join equals 1, as there is only one factor pair having 1 in

its first coordinate. Then as we have an orthogonal join, we may use the
description of orthogonal joins in Theorem 2.3.11. Namely, the first coordinate

of this join is the relational product of the elements in the set {x a (0)
0 ? x a (1)

1 ?
x a (2)

2 : a P 23}. Here we are using x 0
i to denote xi and x 1

i to denote x 8i . Our

result now follows easily from Lemma 4.8. n

5. REGULARITY OF STRUCTURAL DECOMPOSITION

We have seen that the collection of all decompositions of a nonempty

set X naturally forms an orthomodular poset, RX (2). In the presence of some

additional type of structure on the set X, one may be interested only in
the decompositions which are compatible with this additional structure. For

instance, if X carries a group structure, then we may be concerned only with

decompositions of X which are compatible with the group operations. In

Harding (1996) it was shown that if X is equipped with any algebraic,

topological, or relational structure, then the decompositions of X which are

compatible with this additional structure form a subalgebra of the orthomodu-
lar poset RX (2). With this extra flexibility, many of the common constructions

of orthomodular posets can be realized as the decompositions of certain types

of structures.

In this section we wish to address the question of whether the structure-

preserving decompositions of an algebra, relational structure, or topological
space form a regular orthomodular poset. As shown by Example 2.1.9, a

subalgebra of a regular orthomodular poset need not be regular. So regularity

in this more general setting does not follow a priori from the results of the

previous section.

Proposition 5.1. Let R be a relation algebra and S be a subset of R (2)

which is closed under orthocomplementation. Assume further that for all (xi ,

x 8i ), i 5 1, 2, in S which are compatible in R (2) we have that (x1 ? x2, x 81 ;

x 82) is in S. Then S is a compatible subalgebra of R (2) and S itself is a regular

orthomodular poset.

Proof. This follows directly from Corollary 2.1.14 and Theorem 4.9. n

Definition 5.2. An algebraic structure is a set X equipped with a family

( fi)I of finitary, or infinitary, operations. A relational structure is a set X with
a nonempty binary relation R. And a topological structure is a set X together

with a topology t . The notions of product and isomorphism for structures of

the same type will have the usual meaning. For an algebraic, relational, or

topological structure X we define Fact X to be all those decompositions ( a ,
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a 8) in RX(2) for which there exist structures on X / a and X / a 8 making the

structure X canonically isomorphic to their product.

Lemma 5.3. Let X be a structure and ( a 1, a 2) P RX (2). If there are

structures on X / a 1 and X / a 2 making X structurally isomorphic to X / a 1 3
X / a 2, then these structures are unique. If X is an algebraic structure, the

structures on X / a 1 and X / a 2 are given by the usual quotient construction. If

X is a relational structure with relation R, the relations R1 and R2 on X / a 1

and X / a 2 are given by

Ri 5 {(x / a i , y / a i): (x, y) P R}

And if X is a topological structure with topology t , then the topologies t 1

and t 2 on X / a 1 and X / a 2 are given by

t i 5 { p i[A]: A is open in t }

Here t i is the projection onto X / a i.

Proof. For algebraic structures this result is very well known. To verify
our result for relational structures it is enough to show that

(X1 3 X2, R) 5 (X1, R1) 3 (X2, R2)

implies that R1 5 {(x1, x 81): exist x2, x 82 with ((x1, x2), (x 82, x 82)) P R}. But

this follows readily, as R2 is nonempty. Finally, to verify our result for
topological structures, it is enough to show that

(X1 3 X2, t ) 5 (X1, t 1) 3 (X2, t 2)

implies that t 1 5 { p 1[A]: A P t }. As we are dealing with the product of
topological spaces, the projection p 1 is both open and continuous (Kelly,

1955). So for A P t we have p 1[A] P t 1, as t I is open. But if B P t 1, then

p 2 1
1 [B] is in t as p 1 is continuous, and p 1[ p 2 1

1 [B]] is equal to B. n

The above result shows that Fact X fully describes all structure-preserv-

ing decompositions of X, up to isomorphisms. We must now establish several
technical results about products of relational and topological structures. As

an aid, we introduce the following notation.

Definition 5.4. If t 1 and t 2 are topologies on X1 and X2, we let t 1 3 t 2

denote the product topology on X1 3 X2. Similarly, if R1 and R2 are relations

on X1 and X2, we define R1 3 R2 to be the product relation on X1 3
X2. Specifically,

R1 3 R2 5 {((x1, x2), (x 81, x 82)): (x1, x 81) P R1 and (x2, x 82) P R2}

If t is a topology on the product of sets A 3 B, we define t A 5 { p A[U ]:
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U P t }. The previous lemma shows that in particular circumstances t A will

be a topology, but that is not in general the case. Similarly, if R is a relation

on A 3 B, we define

RA 5 {(a, a8): exists b, b8 with ((a, b), (a8, b8)) P R}

Finally, we warn the reader that this notation will be routinely abused when

considering n-fold products. Thus if R is a relation on A 3 B 3 C 3 D, we

feel free to write RA 3 C with the obvious meaning.

Lemma 5.5. If (A 3 B 3 C 3 D,R) is naturally isomorphic to both (A
3 B, RA 3 B) 3 (C 3 D, RC 3 D) and (A 3 C, RA 3 C ) 3 (B 3 D, RB 3 D), then

it is naturally isomorphic to (A, RA) 3 (B, RB) 3 (C, RC) 3 (D, RR).

Proof. We must show that R 5 RA 3 RB 3 RC 3 RD. Surely R is

contained in this product relation. For the converse, let ((a1, b2, c3, d4),

(a 81, b 82, c 83, d 84)) be an element of the product relation. Then there exist

((ai , bi , ci , di), (a 8i , b 8i , c 8i , d 8i )) P R for i 5 1, . . . , 4

This gives us that ((a1, b1), (a 81, b 81)) is in RA 3 B and that ((c3, d3), (c 83, d 83))
is in RC 3 D. As we have assumed that R is equal to the product of the relations

RA 3 B 3 RC 3 D, it follows that

((a1, b1, c3, d3), (a 81, b 81, c 83, d 83)) P R (5.1)

and similarly

((a2, b2, c4, d4), (a 82, b 82, c 84, d 84)) P R (5.2)

As we have assumed R is equal to RA 3 C 3 RB 3 D, it follows from (5.1) and

(5.2) that

((a1, b2, c3, d4), (a 81, b 82, c 83, d 84)) P R

This establishes our result. n

Lemma 5.6. Let t be a topology on the product of sets X 3 Y and

suppose that there exist topologies on X, Y with t the product topology. Then
for any U P t and any point (x, y) in U there is some V P t with

(i) (x, y) in V
(ii) V # U

(iii) V 5 p X [V ] 3 p Y [V ].

Proof. From Lemma 5.3, we have that t X and t Y are topologies and that

t 5 t X 3 t Y . As {A 3 B: A P t X , B P t Y} is a basis for the product topology
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t , there must be sets V1, V2 in t so that (x, y) is in p X [V1] 3 p Y [V2] and

p X [V1] 3 p Y [V2] is contained in U. Take V equal to p X [V1] 3 p Y [V2]. n

Lemma 5.7. Let (A 3 B 3 C 3 D, t ) be a topological space such that

t A 3 B, t C 3 D, t A 3 C, and t B 3 D are topologies. If the given space is canonically
isomorphic to both (A 3 B, t A 3 B) 3 (C 3 D, t C 3 D) and (A 3 C, t A 3 C ) 3
(B 3 D, t B 3 D), then t A , t B , t C , t D are topologies and the given space is

canonically isomorphic to (A, t A) 3 (B, t B) 3 (C, t C) 3 (D, t D).

Proof. First we must show that t A 5 { p A[U ]: U P t } is a topology.

Clearly it is closed under arbitrary unions; we must show it is closed under

finite intersections. Suppose U1 and U2 are in t and set U3 to be the intersection

of p A [U1] 3 B 3 C 3 D and p A[U2] 3 B 3 C 3 D. Clearly p A[U3] is
equal to p A[U1] ù p A[U2]. We need only show that U3 is in t . Once we have

established the claim

p A[U ] 3 B 3 C 3 D is in t for all U in t (5.3)

it will follow that U3 is the intersection of two open sets, and hence is open.

To establish this claim, suppose that U P t . As we have assumed t 5 t A 3 C

3 t B 3 D, it follows that U 8 5 p A 3 C [U ] 3 B 3 D is in t . A simple calculation

shows that

p A[U ] 3 B 3 C 3 D 5 p A 3 B[U 8] 3 C 3 D

Then, as t 5 t A 3 B 3 t C 3 D, we have that p A[U ] 3 B 3 C 3 D is in t .

Next, we must show that t is equal to the product topology t A 3 t B 3
t C 3 t D. Our claim (5.3) has just established that p A [U ] 3 B 3 C 3 D is

in t for all U P t . Clearly this holds for the projections p B , p C , p D as well.

But the collection of all such sets generates the product topology. Thus t is

finer than the product topology.
Conversely, suppose U P t and that (a, b, c, d ) P U. As t is equal to

t A 3 B 3 t C 3 D, Lemma 5.6 provides the existence of a set V in t such that (i)

(a, b, c, d ) is in V, (ii) V # U, and (iii) V is equal to p A 3 B[V ] 3 p C 3 D[V ].

Then as t is equal to t A 3 C 3 t B 3 D, Lemma 5.6 provides the existence of a

set W in t such that (i) (a, b, c, d ) is in W, (ii) W # V, and (iii) W is equal

to p A 3 C[W ] 3 p B 3 D [W ]. Let

P 5 p A[W ] 3 p B[W ] 3 p C[W ] 3 p D[W ]

Clearly P is an open neighborhood of (a, b, c, d ) in the product topology.
If we can show that P # U, it will follow that the product topology is finer

than t . Suppose that (a1, b2, c3, d4) is in P. Then there are elements ai , bi ,

ci , di for i 5 1, . . . , 4 with (ai , bi , ci , di) in W for i 5 1, . . . , 4. As W
equals p A 3 C [W ] 3 p B 3 D [W ] we have that
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(a1, b2, c1, d2) and (a3, b4, c3, d4) are in W

Then as W # V and V 5 p A 3 B[V ] 3 p C 3 D[V ], we have that (a1, b2, c3, d4)

is in V. As V # U, our result follows. n

Theorem 5.8. If X is an algebraic, relational, or topological structure,
then Fact X is a compatible subalgebra of RX(2). Further, the orthomodular

poset Fact X is regular.

Proof. We rely on Proposition 5.1. Surely Fact X is closed under ortho-

complementation. If ( a 1, a 81) and ( a 2, a 82) are elements of Fact X which are

compatible in RX(2), we must show ( a 1 ? a 2, a 8i ; a 82) is in Fact X. This amounts
to showing that there are structures on X / a 1 ? a 2 and X / a 81; a 82 making X
structurally isomorphic to the product.

For algebraic structures we must show that a 1 ? a 2 and a 81; a 82 are congru-

ences of X. The intersection a 1 ? a 2 of two congruences is always a congruence.

But the compatibility of ( a 1, a 81) and ( a 2, a 82) provides that a 81 permutes with

a 82, and the relational product a 81; a 82 of permuting congruences is a
congruence.

For relational and topological structures, the key is provided by Lemmas

5.5 and 5.7. As ( a 1, a 81) and ( a 2, a 82) are compatible, Proposition 3.4 shows

that a 1, a 2, a 81, a 82 lie in a Boolean subsystem B of RX. As B is generated as

a Boolean algebra by a 1 and a 2, an element such as a 1; a 2 or a 1; a 82 must

be either the unit or a coatom of B. As all the coatoms arise in this manner,
we have by Proposition 2.3.4 that as sets

X > X / a 1; a 2 3 X / a 1; a 82 3 X / a 81; a 2 3 X / a 81; a 82

Note that Corollary 2.3.5 shows that X / a 1 is canonically isomorphic to

X / a 1; a 2 3 X / a 1; a 82, with similar statements holding for X / a 2, etc. Therefore,

Lemmas 5.5 and 5.7 show that we can equip the factors X / a 1; a 2, etc., with

structures so that the above isomorphism is a structural isomorphism. Our

result then follows, as X / a 1 ? a 2 is canonically isomorphic to X / a 1; a 2 3 X /
a 1; a 82 3 X / a 81; a 2. n

Definition 5.9. For an algebraic, relational, or topological structure X, we

define BooFin (Fact X ) to be the collection of all finite Boolean subalgebras of

Fact X. We define a structural decomposition of X to be a decomposition ( w ;

X1, . . . , Xn) of the set X, where the Xi can be endowed with structures of

the same type as X, making w a structural isomorphism from X to X1 3 ? ? ?
3 Xn. Two decompositions of the structure X are said to be equivalent if

they are equivalent as decompositions of the set X (see Definition 3.7). We

then define SDecompFin(X ) to be the collection of all equivalence classes

of structural decompositions of X.
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Obviously BooFin(Fact X ) is a subset of BooFin(RX (2)). Noticing that

any set decomposition of X which is equivalent to a structural decomposition

of X must itself be a structural decomposition, we then have that SDecomp-
Fin(X ) is a subset of DecompFin(X ). In Proposition 3.8 we showed that there

were mutually inverse isomorphisms F and C between BooFin(RX (2)) and

DecompFin(X ). Thus we can consider the restrictions of F , C to BooFin

(Fact X ) and SDecompFin(X ).

Theorem 5.10. Let X be any algebraic, relational, or topological structure.

Then the restrictions of F and C are mutually inverse isomorphisms between

BooFin(Fact X ) and SDecompFin(X ).

Proof. We have only to show that the restriction of F to BooFin(Fact

X ) is a map into SDecompFin(X ) and that the restriction of C to SDecomp-

Fin(X ) is a map into BooFin(Fact X ). The reader should recall the definitions

of these maps given in Proposition 3.8.

Suppose B is a Boolean subalgebra of Fact X with coatoms ( a i , a 8i ),
i 5 1, . . . , n. We know there is a set isomorphism w : X ® X / a 1 3 ? ? ? 3
X / a n. We must show that there are structures on the X / a i making this a

structural isomorphism. If X is an algebraic structure, this follows immedi-

ately, as our assumption that each ( a i , a 8i ) is in Fact X provides that each a i

is a congruence.

To verify our result for relational structures, it is sufficient to show that
if R is a relation on a set A1 3 ? ? ? 3 An with R 5 Ri x R 8i for i 5 1, . . . ,

n, then R is equal to the product relation R1 3 ? ? ? 3 Rn. Here we are using

Ri for the projection RAi of R onto Ai and R 8i for the projection of R onto

P {Aj: j Þ i}. Surely R is contained in the product relation. Suppose that

((a 1
1, . . . , a n

n), (b 1
1, . . . , b n

n)) is an element of this product relation. Then as

(a i
i, b i

i) is in Ri for i # n, there exist elements ((a i
1, . . . , a i

n), (b i
1, . . . , b i

n))
in R for i # n. From the assumption that R 5 R2 3 R 82 we have

((a 1
1, a 2

2, a 1
3, . . . , a 1

n), (b 1
1, b 2

2, b 1
3, . . . , b 1

n)) P R

Then as R 5 R3 3 R 83 we have

((a 1
1, a 2

2, a 3
3, a 1

4, . . . , a 1
n), (b 1

1, b 2
2, b 3

3, b 1
4, . . . , b 1

n)) P R

Continuing in this fashion, we have ((a 1
1, . . . , a n

n), (b 1
1, . . . , b n

n)) is in R.

This shows that R is equal to the product relation.

To verify our result for topological spaces, we assume that t is a topology
on a set A 5 A1 3 ? ? ? 3 An. We must show that if t i and t 8i are topologies

with t 5 t i 3 t 8i for i 5 1, . . . , n, then t is equal to the product topology

t 1 3 ? ? ? 3 t n. Here t i 5 { p [G]: G P t } and t 8i 5 { p 8i [G]: G P t }, where

p i , is the projection onto Ai and p 8i is the projection onto P {Aj: j Þ i}.
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It follows easily that { p i[G] 3 p 8i [A]: i # n, G P t } is a subbasis for

the product topology t 1 3 ? ? ? 3 t n. As we are assuming that t 5 t i 3 t 8i ,
this subbasis is contained in t . So t is finer than the product topology.
Conversely, let

-
a 5 (a1, . . . , an) be a point in A and let E P t be an open

neighborhood of a. As we have assumed that t 5 t i 3 t 8i for i # n, we can

find sets Gi , G 8i , in t such that each p i [Gi] 3 p 8i [G 8i ] is an open neighborhood

of
-

a in t which is contained in E. Further, these sets can be chosen so that

for each i , n.

p i 1 1[Gi 1 1] 3 p 8i 1 1[G 8i 1 1] # p i[Gi] 3 p 8i [G 8i ]

Our claim is that p 1[G1] 3 ? ? ? p n[Gn] is an open neighborhood of
-

a in the
product topology which is contained in E. Surely this set is open in the

product topology and contains
-

a . Suppose that
-

b 5 (b1, . . . , bn) and that
-

b P p 1[G1] 3 ? ? ? p n[Gn]. As a P p n[Gn] 3 p 8n[G 8n] and bn P p n[Gn], we

have that

(a1, . . . , an 2 1, bn) P p n[Gn] 3 p 8n[G 8n]

Then, as p n[Gn] 3 p 8n[G 8n] # p n 2 1[Gn 2 1] 3 p 8n 2 1[G 8n 2 1] and bn 2 1 P
p n 2 1[Gn 2 1], we have

(a1, . . . , an 2 2, bn 2 1, bn) P p n 2 1[Gn 2 1] 3 p 8n 2 1[G 8n 2 1]

Proceeding in this manner, we have that
-

b is in p 1[G1] 3 p 8i [G 8i ] and hence

in E. This shows that the product topology is finer than t , and hence the two

are equal.

Having shown that the restriction of F to BooFin(Fact X ) is a mapping

into SDecompFin(X ) for any algebraic, relational, or topological structure
X, we must establish a similar result for the restriction of C to SDecompFin

(X ). Namely, if w : X ® X1 3 ? ? ? 3 Xn is a structural decomposition of X,

we must show that the Boolean subalgebra B of RX(2) with coatoms (ker( p i C
w ), (ker( p 8i C w )) is entirely contained in Fact X. As Xi is isomorphic to X /

ker( p i C w ) and P {X j: j Þ i} is isomorphic to X /ker( p 8i C w ), it follows that
each of these coatoms is in Fact X. But every element of B is a meet of

coatoms, and Fact X is a compatible subalgebra of RX(2). It follows from

Lemma 2.1.13 that B is a subset of Fact X. n

For any algebraic, relational, or topological structure X, Theorem 5.8

shows that Fact X is a regular orthomodular poset, and Theorem 5.10 shows

that finite Boolean subalgebras of Fact X correspond to finitary direct product
decompositions of X. In the remainder of this section we will establish similar

results for other orthomodular posets which arise from decompositions. Before

proceeding further, we first establish the converse to a well-used result from

topological algebra.
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Lemma 5.11. Let (A, t A) and (B, t B) be topological spaces and let fA and

fB be n-ary operations on A and B, respectively. If the associated n-ary

operation on A 3 B is continuous with respect to the product topology on
A 3 B, then the maps fA and fB are continuous.

Proof. Let w be the natural homeomorphism from (A 3 B, t A 3 t B)n to

the product (A, t A)n 3 (B, t B)n. A routine calculation shows that for any U # A

f 2 1
A [U ] 5 p An[ w [ f 2 1[U 3 B]]]

If U is open in t A , then U 3 B is open in t A 3 t B. As f is continuous, w is

a homeomorphism, and the projection p An
is open, we have that f 2 1

A [U ] is

open in (A, t A)n. Thus fA is continuous. n

We have shown that the decompositions of any algebra, relational

structure, or topological space form a regular orthomodular poset. These

results can also be combined to apply to many other situations. Rather than

proceed in the fullest possible generality, we choose a generic case to illustrate

the point.

Definition 5.12. A partially ordered topological group (X, ? , 2 , 1, # ,

t ) consists of a group (X, ? , 2 , 1) equipped with a partial ordering # and

a topology t such that:

(i) x # y implies that axb # ayb for all a, b, x, y P X.

(ii) The group operations are continuous with respect to the topology t .

For a partially ordered topological group X, we define Fact X to be the

set of all pairs of equivalence relations ( a , a 8) in RX(2) such that the sets X /

a and X / a 8 can be endowed with partially ordered topological group structures
making X structurally isomorphic to their product.

As a topological group can be separately considered as an algebra, a

relational structure, and as a topological space, our earlier results show
that a decomposition of a partially ordered topological group is completely

determined by the decomposition of its underlying set. Thus Fact X fully

describes the decompositions of X up to isomorphism.

Proposition 5.13. Let X be a partially ordered topological group. Then

Fact X is a compatible subalgebra of RX(2). Further, Fact X is a regular

orthomodular poset.

Proof. Assume that ( a , a 8) and ( b , b 8) are elements of Fact X which

are compatible in RX(2). In view of Proposition 5.1, we must show that ( a ? b ,

a 8; b 8) is in Fact X. From the assumption that ( a , a 8) and ( b , b 8) are in Fact

X, it follows that they are also elements of Fact (X, ? 2 , 1) and Fact (X, # )
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and Fact (X, t ). By Theorem 5.8, we have the existence of operations ? i ,

2 i , 1i , relations # i , and topologies t i so that

(X, ? , 2 , 1, # , t ) > (X / a ? b , ? 1, 2 1, 11, # 1, t 1)

3 (X / a 8; b 8, ? 2, 2 2, 12, # 2, t 2)

We need to show that (X/ a ? b , ? 1, 2 1, 11, # 1, t 1) and (X / a 8; b 8, ? 2, 2 2, 12,

# 2, t 2) are partially ordered topological groups. Surely they are partially

ordered groups. This is easy to verify, as a failure of any the group identities,

a failure of any of the defining conditions of a partial ordering, or a failure

of condition (i) in Definition 5.12 would translate directly into a failure of
the same condition in the product. It remains to check that operations ? i , 2 i ,

1i are continuous with respect to the topologies t i. But this is the content of

Lemma 5.11. n

Proposition 5.14. Let X be a partially ordered topological group. Then

the restrictions of F and C are mutually inverse isomorphisms between

BooFin (Fact X ) and SDecomp Fin (X ).

Proof. We first show the restriction of F is a mapping into SDecompFin
(X ). Suppose B is a finite Boolean subalgebra of Fact X with coatoms

( a i , a 8i ), i 5 1, . . . , n. Then Theorem 5.10 provides that w : X ® X / a 1 3
? ? ? 3 X / a n is separately an algebraic, relational, and topological decomposi-

tion of X. That these structures on the X / a i jointly make X / a i a partially

ordered topological group follows from the assumption that ( a i , a 8i ) is in
Fact X. Conversely, showing that the restriction of C is a mapping into

BooFin (Fact X ) follows as Fact X is a compatible subalgebra of RX(2), exactly

as in the proof of Theorem 5.10. n

Remark 5.15. Flachsmeyer (1982) and KatrnosÆka (1990) introduced a

method to construct an orthomodular poset +! from the idempotents of a

ring ! with unit. For idempotents e and f, set e # f if ef 5 e 5 fe, and put
e ’ 5 1 2 e. As idempotents of ! correspond to direct decompositions of

the left !-module !A, it follows that +! is isomorphic to Fact !A. In view

of Theorem 5.8, we have that +! is regular. See Harding (1996), Remarks

4.9, and Remark 5.8, for further comments on the relationship between +!
and decompositions of modules.

Remark 5.16. It is well known that the complex algebra of a group G
is a relation algebra G + JoÂnsson (1982). The elements of G + are subsets of
G, the relational product of two subsets A and B is the usual product AB of

two subsets of a group, A

)

is given by A 2 1, and 18 is {e}. As noted in

Harding (1996), Remark 4.10 (G +)(1) consists of all subgroups of G and

(G +)(2) consists of all pairs of subgroups (A, B) with A ù B equal to {e} and



1202 Harding

AB equal to G. It follows directly from Theorem 4.9 that (G +)(2) is a regular

orthomodular poset.

Remark 5.17. Mushtari (1989) demonstrated a method to construct an

orthomodular poset from a bounded modular lattice M. Let M (2) be the

collection of all ordered pairs of complementary elements of M, i.e., pairs

(x, x8) with x ? x8 5 0 and x 1 x8 5 1. Define a relation # on M (2) by setting

(x, x8) # ( y, y8) if x # y and y8 # x8. Define a unary operation ’ on M (2)

by setting (x, x8) ’ to be (x8, x), and define constants 0 5 (0, 1) and 1 5 (1,

0). With these operations, M (2) is an orthomodular poset. As shown in Harding

(1996), Theorem 4.12, for each modular lattice M, there is a relation algebra

RM with M (2) equal to (RM)(2). By Theorem 4.9 we have that M (2) is a regular

orthomodular poset.

Definition 5.18. Let G be a group with operators in the sense of van

der Waerden (1949, p. 138), i.e., G is a group together with a family ^ of

endomorphisms of G. A map | ? | from G to the positive reals is called a

norm if (i) |x| 5 0 iff x 5 0, (ii) |x| 5 | 2 x|, and (iii) |x 1 y| # |x| 1 |y|.
If (Gi ,| ? |i), i 5 1, . . . n, is a family of normed groups with operators of
the same type, we define their product to be the product group together with

a norm | ? | defined by |(g1, . . .,gn) |2 5 ( n
1 |gi|

2
i . Given a normed group with

operators G, we define Fact G to be all those ( a , a 8) in RG(2) such that

G / a and G / a 8 can be equipped with the structure of normed groups with

operators making G structurally isomorphic to their product.

Lemma 5.19. Let G1, . . . , Gn be groups with operators of the same type

and | ? | be a norm on their product G. Then there are norms on the G i making

(G, | ? |) equal to the product if and only if for all (g1, . . . , gn) P G

|(g1, . . .,gn)|
2 5 o

n

i 5 1

|(0, . . . , 0,gi , 0, . . . , 0)|2 (5.4)

If such norms exist, they are uniquely determined by |gi|i 5 |(0, . . . , 0, gi ,

0, . . . , 0)|.

Proof. Suppose such norms | ? |i do exist. Then by the definition of the
product of normed groups,

|(0, . . . , 0, gi , 0, . . . , 0)|2 5 |gi|
2
i 1 o

j Þ i
|0|2

j

Therefore |gi|i 5 |(0, . . . , 0, gi , 0, . . . , 0)|, and as |(g1, . . . , gn)|
2 5

( n
i |gi|

2
i , condition (5.4) follows directly. Conversely, define | ? |i by |gi|i 5

|(0, . . . , 0, gi , 0, . . . , 0)|. Then | ? |i is a norm on G i and (5.4) implies |(g1,

. . . , gn)|
2 5 S n

1 |gi|
2
i . n
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In particular, this lemma shows that Fact G completely determines the

decompositions of the normed group with operators G up to isomorphisms.

Proposition 5.20. Let G be a normed group with operators. Then Fact G
is a compatible subalgebra of RG(2) and hence is a regular orthomodular poset.

Proof. We rely on Proposition 5.1. Surely Fact G is closed under ortho-

complementation. Suppose ( a 1, a 81) and ( a 1, a 82) are elements of Fact G
which are compatible in RG(2). Then by Theorem 5.10 there exist groups

with operator structures on G / a 1; a 2, etc., so that as groups with operators

G > G / a 1; a 2 3 G / a 1; a 82 3 G / a 81; a 2 3 G / a 81; a 82

Let G1, . . . , G4 denote the factors G / a 1; a 2, etc., and G8 denote their product.
Then as G is isomorphic to G8 as a group with operators, there is a norm

| ? | on G8 making this an isomorphism of normed groups with operators. Our

assumption that ( a 1, a 81) is in Fact G, together with Lemma 5.19, gives that

for all (g1, g2, g3, g4) P G8

|(g1, g2, g3, g4)|
2 5 |(g1, g2, 0,0)|2 1 |(0, 0, g3, g4)|

2

And similarly, as ( a 2, a 82) is in Fact G, we have for all (g1, g2, g3, g4) P G8

|(g1, g2, g3, g4)|
2 5 |(g1, 0, g3, 0)|2 1 |(0, g2, 0, g4)|

2

Applying the second identity to both terms on the right of the first yields

that |(g1, g2, g3, g4)|
2 is equal to

|(g1, 0, 0, 0)|2 1 |(0, g2, 0, 0)|2 1 |(0, 0, g3, 0)|2 1 |(0, 0, 0, g4)|
2

So by Lemma 5.19, there exist norms | ? |i on G i making the normed group

with operators G isomorphic to the product. It follows that ( a 1 ? a 2, a 81; a 82)
is in Fact G as required. n

Proposition 5.21. Let G be a normed group with operators. Then the

restrictions of F and C are mutually inverse isomorphisms between the sets

BooFin (Fact G) and SDecompFin (G).

Proof. We first show that the restriction of F is a mapping into SDecomp-

Fin (G). Assume B is a finite Boolean subalgebra of Fact G with coatoms

( a i , a 8i ), i 5 1, . . . , n. Let Gi denote G / a i and G8 denote the product G1 3
? ? ? 3 Gn. Theorem 5.10 provides the existence of group with operator struc-
tures on the Gi making the product G8 isomorphic to G as a group with

operators. Therefore, there is a norm | ? | on G8 making G isomorphic to G8
as a normed group with operators. We need to show that there are norms

| ? |i on the G i so that (G8, | ? |) is equal to the product. Our assumption that

( a i , a 8i ) is in Fact G, together with Lemma 5.19, gives
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|(g1, . . . , gn)|
2 5 |(0, . . . , 0, gi , 0, . . . , 0)|2

1 |(g1, . . . , gi 2 1, 0, gi 1 1, . . . , gn)|
2

for all i 5 1, . . . , n. Then condition (5.4) of Lemma 5.19 follows easily,
establishing the existence of the required norms on the Gi.

Showing that the restriction of C is a mapping into BooFin (Fact G)

follows from compatibility, as in the proof of Theorem 5.10. n

Any vector space is a group with operators. Here the operators are the

unary operations of multiplication by a scalar, one such operation for each

scalar. Clearly then any normed vector space, and in particular any inner
product space, is a normed group with operators. Recall that a subspace S
of an inner product space is a splitting subspace if S 1 S ’ is equal to the

entire space. For Hilbert spaces every closed subspace is a splitting subspace,

but this is not true of inner product spaces in general. It has long been known

that the splitting subspaces of an inner product space form an orthomodular

poset (DvurecÏ enskij, 1993). As we shall see, they form a regular orthomodu-
lar poset.

Proposition 5.22. Let E be an inner product space. Then the orthomodula r

poset (S(E ), # , 0, E, ’ ) of splitting subspaces of E is isomorphic to Fact

(E, | ? |).

Proof. For any vector space V there is a bijection between Fact V and

the collection of all ordered pairs of subspaces of V which intersect trivially
and together span V. To each such ordered pair of subspaces (A, B) we

associate the ordered pair of congruences ( a A , a B), where a C 5 {(u, v): u 2
v P C } for any subspace C of V. Note that V / a A > B and V / a B > A.

We claim that for an ordered pair of subspaces (A, B) of E, ( a A , a B)

is in Fact (E, | ? |) if and only if A is a splitting subspace and B 5 A ’ . From

this it will follow that the map S V ( a S , a S
’ ) is an isomorphism from (S (E ),

# , 0, E, ’ ) to Fact (E, | ? |).
Suppose A is a splitting subspace of E. We must show that there are

norms on E¤a A and E¤a A
’ making (E, | ? |) isomorphic to the product. But

this follows easily as E¤a A > A ’ and E¤a A
’ > A and for any a P A and

a8 P A ’ we have,

|a 1 a8 |2 5 (a 1 a8) ? (a 1 a8) 5 a ? a 1 a8 ? a8 5 |a|2 1 |a8|2

Conversely, assume that there are norms on E¤a A and E¤a B making (E, | ? |)
isomorphic to the product. This implies that there are norms on A and B
making (a, b) V a 1 b an isomorphism from the normed group A 3 B to

(E, | ? |), and these norms on A and B can be none other than the restrictions

of | ? |. Thus |a 1 b|2 5 |a|2 1 |b|2 for all a P A and b P B. We must show



Regularity in Quantum Logic 1205

that B 5 A ’ . But the subspace lattice of E is modular, and we know that A
and B are complements in this lattice, so it is sufficient to show that B #
A ’ . Let a P A and b P B. Then as |a 1 b|2 5 |a|2 1 |b|2 we have

(a 1 b) ? (a 1 b) 5 a ? a 1 a ? b 1 b ? a 1 b ? b 5 a ? a 1 b ? b

Therefore

a ? b 1 b ? a 5 0 for all a P A and b P B

If we are working with a real inner product space, we conclude directly that

a ? b 5 0 for all a P A and b P B, and hence B # A ’ . If our inner product

space is complex, the above shows that a ? b is purely imaginary for all a P
A and b P B. But A is closed under scalar multiplication, so (ia) ? b 5 i (a ? b)

is also purely imaginary. Thus a ? b 5 0 for all a P A and b P B in the

complex case as well. n

6. INFINITE BOOLEAN SUBALGEBRAS

In Section 3 we established a bijective correspondence between Boolean

subsystems of a relation algebra R and Boolean subalgebras of the orthomodu-
lar poset R (2). This was used to establish a correspondence between the

finite Boolean subalgebras of RX(2) and equivalence classes of finite direct

decompositions of the set X. In Section 5 we extended this result to relate

the finite Boolean subalgebras of Fact X to equivalence classes of finitary

decompositions of X for any type of algebraic, relational, or topological

structure. But we have avoided any mention of infinite Boolean subalgebras.
The obvious generalization of the above results to infinite Boolean subalge-

bras will not work Ð a nonatomic Boolean subalgebra of RX (2) will certainly

not yield an infinite direct product decomposition of X. The key is to replace

the notion of an infinite direct product with the more general notion of a

continuously varying product, i.e., a sheaf. We begin by briefly reviewing

the fundamentals of sheaves and describing the notation we will use.
A sheaf is a triple SÄ 5 (S, Z, p ) where S and Z are topological spaces,

and p : S ª Z is a local homeomorphism. This means that every point in S
has an open neighborhood which is mapped homeomorphi cally onto an open

subset of Z. For each z P Z, the set p 2 1 [{z}] is called the stalk over z and

is denoted Sz. For any U # Z, a section of SÄ over U is a map f : U ª S which

is continuous with respect to the subspace topology on U and satisfies p C
f 5 idU. A section over Z is called a global section. We use G USÄ to denote

the collection of all sections over U, and G SÄ for the collection of all global

sections. We use | U to denote the natural restriction map from G SÄ to G USÄ .
For further background on sheaves consult Swan (1964).
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Next, we describe an important method for constructing sheaves due

essentially to Pierce (1967; see also Arens and Kaplansky, 1949; Burris and

Sankappanavar, 1981; Comer, 1971; Davey, 1973; Macintyre, 1973). Let X
be a set and B be a Boolean subsystem of RX. We use b B to denote the

Stone space of B, i.e., the collection of all prime ideals P of B topologized

by taking { b a : a P B} as a basis, where b a 5 {P: a P P}. For each P P
b B, we have in particular that P is an up-directed family of equivalence

relations on X. So ø P is an equivalence relation on X which we denote by

a P. We then use SP to denote S¤a P and S for the disjoint union of the sets SP.
Finally, as a topology on S we take the smallest topology containing all sets

of the form {x¤a P: P P K }, where x P X and K is a clopen subset of b B.
Then SÄ 5 (S, b B, p ) is a sheaf, which we call the Pierce sheaf of X over B.
The map x V x

Ä
, where x

Ä
(P) 5 x/ a P for all P P b B, is an isomorphism from

X to G SÄ . Further, for x, y P X and a P B, we have that x
Ä

and y
Ä

agree on

the clopen subset b a of b B if and only if (x, y) P a . All the above results
are well known. A proof which uses notation similar to the above can be

found in (Harding, 1993).

Definition 6.1. We say ( w ; S, Z, p ) is a Boolean sheaf representation of

a set X if (i) Z is a Boolean space, (ii) SÄ 5 (S, Z, p ) is a sheaf, (iii) w : X ª
G SÄ is an isomorphism, and (iv) for each nonempty clopen subset K # Z,
there is some z P K with the stalk Sz having more than one element. We say

that two Boolean sheaf representations ( w ; S, Z, p ) and ( w 8; S8, Z 8, p 8) are

equivalent if there is a homeomorphi sm s : Z ª Z 8 and an isomorphism f :

S ª S8 such that (i) f maps the stalk Sz isomorphically to S 8s z, and (ii) f C
w (x) C s 2 1 5 w 8 (x) for each x P X. We then define BooSh (X ) to be the

collection of all equivalence classes of Boolean sheaf representations of X.
We also define Boo (RX(2)) to be the collection of all Boolean subalgebras

of the orthomodular poset RX(2).

There are many ways to formulate the definition of equivalence, and

we have chosen the one most convenient for our purposes. In the following

lemma we shall show that every element of the sheaf space S is in the range
of some global section. Using this, it is easy to see that the definition given

above is equivalent to the existence of a homeomorphi sm s : Z ª Z 8 such

that w (x) (z) 5 w 8(x)( s (z)) for all x P X and z P Z. The map f in the above

definition, then, is uniquely determined. In fact, one can show that if such

a map f does exist, then not only is it an isomorphism, but a homeomorphism

as well. But we will not need these facts, and work only with the definition
we have given above.

Lemma 6.2. Let ( w ; S, Z, p ) be a Boolean sheaf representation of X and

let T denote {ker ( | K C w ): K # Z clopen}.
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(i) If f, g are global sections and K # Z is clopen, then there exists

a global section h which agrees with f on K and agrees with g
on Ø K.

(ii) Each element of S is in the range of some global section.

(iii) If ( w ; S, Z, p ) is equivalent to ( w 8; S8, Z 8, p 8) via s : Z ª Z 8 and

f : S ª S8, then ker ( | K C w ) 5 ker ( | s [K] C w 8).
(iv) T is a Boolean subsystem of RX and K V ker ( | Ø K C w ) is a

Boolean algebra isomorphism.

(v) z V {ker( | K C w ): z P K clopen} is a homeomorphism from Z to b T.
(vi) For all x, y P X and z P Z we have w (x) (z) 5 w ( y)(z) iff (x, y)

P ker ( | K C w ) for some clopen neighborhood K of z.

Proof. (i) Trivial.

(ii) Suppose s P S. Choose an open neighborhood A of s on which p
is a homeomorphi sm. Then there is a unique local section whose range is
exactly A. If necessary, we can restrict the domain of this section to produce a

local section with clopen domain whose range contains s. Using a compactness

argument, and an idea similar to the one expressed in part (i), we can produce

a global section whose range contains s.
(iii) As f is an isomorphism, w (x)(z) 5 w ( y)(z) iff f ( w (x)(z)) 5

f ( w ( y)(z)). But using equivalence, f ( w (x)(z)) 5 f ( w ( y)(z)) iff w 8(x)( s (z))
5 w 8( y)( s (z)).

(iv) For a clopen subset K of Z, let u (K ) denote the relation ker( | K C
w ). Note first that u (K ø M ) 5 u (K ) ù u (M ). This provides a certain

monotonicity that shows u (K ) and u (M ) are contained in u (K ù M ), and as

these are all equivalence relations, u (K ) ; u (M ) # u (K ù M ). Suppose that
(x, y) P u (K ù M ). Then w (x) and w ( y) agree on K ù M. Define h to agree

with w (x) on K and with w ( y) on Ø K. As K is clopen, h is continuous, and

therefore is equal to w (w) for some w P X. Then (x, w) P u (K ) and (w, y)

P u (M ), showing that u (K ù M ) 5 u (K); u (M ). Therefore T is closed under

finite intersections and relational products. It follows that T is a lattice under

set inclusion with meets given by intersections and joins given by relational
products. Then from the above descriptions of u (K ù M ) and u (K ø M ), it

follows that the map K V u ( Ø K ) is a lattice homomorphi sm onto T. As

Clopen Z is a Boolean algebra, T is also Boolean. Therefore T is a Boolean

subsystem of RX.
To show that the map K V u ( Ø K ) is an isomorphism, it is sufficient to

show that if K Þ [ , then u ( Ø K ) is nontrivial. As ( w ; S, Z, p ) is a Boolean
sheaf representation, by definition there is some stalk over K with at least

two elements. Therefore there are global sections which differ at some point

in K, and these global sections may be chosen to agree on Ø K. Therefore

u ( Ø K ) is nontrivial.
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(v) It is well known that the map z V { Ø K: z P K } is a homeomorphism

from Z to the Stone space of Clopen Z. As K V u ( Ø K ) is an isomorphism

of Boolean algebras, it follows that z V { u (K ): z P K} is a homeomorphism
from Z to b T.

(vi) Surely if (x, y) P ker( | K C w ) for some clopen neighborhood K of

z, then w (x) and w ( y) agree at the point z. Conversely, if w (x) and w ( y)

agree at z, choose an open neighborhood A of w (x)(z) on which p is a

homeomorphism. Then w (x) 2 1[A] ù w ( y) 2 1[A] is an open neighborhood of

z and hence contains a clopen neighborhood K of z. As p is one to one on
A, it follows that w (x) and w ( y) agree on K. n

Theorem 6.3. Let X be a set. Then there are mutually inverse isomor-

phisms F and C between Boo (RX(2)) and BooSh (X ) defined as follows:

(i) F (B) is the equivalence class of the Pierce sheaf representation of

X over the Boolean subsystem { a : ( a , a 8) P B}.

(ii) C ([ w : X ª G SÄ ]) is {(ker( | K C w ), ker( | Ø K C w )): K # Z clopen}.

Proof. Let ( w ; S, Z, p ) be a Boolean sheaf representation of X and let

T denote {ker( | K C w ): K # Z clopen}. Part (iii) of Lemma 6.2 shows that

the value of C is independent of the particular representative of the equiva-
lence class chosen, hence C is well defined. Part (iv) of Lemma 6.2 gives

that T is a Boolean subsystem of RX, and clearly ker( | Ø K C w ) is the complement

of ker( | K C w ) in T. It follows from Proposition 3.5 that {(ker ( | K C w ), ker

( | Ø K C w )): K # Z clopen} is a Boolean subalgebra of RX(2). Therefore C is

a well-defined map into Boo (RX(2)), and our earlier discussion gives reference

to the fact that F is a well-defined map into BooSh (X ).
Next, suppose B is a Boolean subalgebra of RX (2). Let C 5 { a : ( a , a 8)

P B}, and let ( , ; S, b C, p ) be the Pierce sheaf representation of X over C.

Then each clopen subset of b C is of the form b a for some a P C. In our

earlier discussion of the Pierce sheaf we gave reference to the fact that xÄ

agrees with yÄ on b a iff (x, y) P a . This shows that a 5 ker( | b a C , ). It

follows that C C F (B) 5 B, and hence C C F is the identity.
Now we establish that F C C is the identity. Let ( w ; S, Z, p ) be a

Boolean sheaf representation of X and let T 5 {ker ( | K C w ): K # Z clopen}.

Then F C C applied to the equivalence class of this sheaf representation is

the equivalence class of the Pierce sheaf representation ( , ; S8, b T, p 8) of X
over T. Part (v) of Lemma 6.2 provides a homeomorphism s : Z ® b T. As

every element of S is in the range of some global section w (x), part (vi) of
Lemma 6.2 shows we can define a map f : S ® S8 by setting f ( w (x)(z)) 5
xÄ ( s (z)). Indeed, if w (x)(z) is equal to w ( y)(z), then (x, y) P ker( | K C w ) for

some clopen neighborhood K of z. But this relation ker( | K C w ) is an element

of the prime ideal s (z), so xÄ ( s (z)), equals yÄ ( s (z)), showing that f is well
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defined. Reversing this argument shows that f is one to one. Indeed, if

f ( w (x)(z)) equals f ( w ( y)(z)), then (x, y) P ker( | K C w ) for some clopen

neighborhood K of z. In particular, w (x)(z) 5 w ( y)(z). Clearly this map f
takes the stalk Sz to the stalk S8 s z, and as every element of S8 is in the range

of some global section x
Ä
, f is an isomorphism from Sz to S8 s z. By definition,

f C f (x) 5 xÄ C s for each x P X. Therefore ( w ; S, Z, p ) is equivalent to

( , ; S8, b T, p 8), showing that F C C is the identity. n

As finite direct product decompositions correspond to Boolean sheaf

representations over finite, hence discrete, Boolean spaces, Theorem 6.3 can

be viewed as an extension of Proposition 3.8.

Definition 6.4. A sheaf of algebras of type (ni)I is a sheaf SÄ 5 (S, Z, p )

where each stalk Sz has a family of operations ( f z
i)I. Each map f z

i must have

arity ni, and we require that the natural map fi: ø Z S ni
z ® S be continuous

with respect to the subspace topology on ø Z S ni
z inherited from S ni. It is well

known that the global sections G SÄ of a sheaf of algebras form a subalgebra

of the product of the stalks.

A Boolean sheaf representation of an algebra X is a Boolean sheaf

representation w : X ® G SÄ of the set X where the stalks of SÄ can be equipped

with operations making SÄ a sheaf of algebras of the same type of X and w
a structure-preserving isomorphism. If such operations on the stalks do exist,

it is easily seen that they must make the natural projection from X to Sz a

homomorphism, and hence they are uniquely determined.

Let X be an algebra and w : X ® G SÄ and w 8: X ® G SÄ 8 be equivalent

Boolean sheaf representations of the set X. It is easily seen that if one of

these is a Boolean sheaf representation of the algebra X, then so is the other.
We may then define SBooSh (X ) to be all equivalence classes of Boolean

sheaf representations of the algebra X. Note that SBooSh (X ) is a subset of

BooSh (X ). We also define Boo (Fact X ) to be the collection of all Boolean

subalgebras of Fact X. Clearly Boo (Fact X ) is a subset of Boo (RX(2)).

Proposition 6.5. Let X be an algebra. Then the restrictions of F and C
are mutually inverse isomorphisms between Boo (Fact X ) and SBooSH (X ).

Proof. We need only show that the restrictions of F and C are maps

between Boo (Fact X ) and SBooSh (X ). If B is a Boolean subalgebra of Fact

X, then B8 5 { a : ( a , a 8) P B} is a Boolean sublattice of the congruence

lattice of X consisting of pairwise permuting congruences. It is well known
that the Pierce sheaf representation of X over B8 is a representation of the

algebra X. A complete proof of this using notation similar to ours is given

in Harding (1993). So F is a map into SBooSH (X ). Also, if w : X ® G SÄ is

a Boolean sheaf representation of the algebra X over a Boolean space Z, then
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ker( | K C w ) is a congruence of X for each K # Z. Therefore F is a map into

Boo (Fact X ). n

Definition 6.6. A sheaf of binary relational structures is a sheaf SÄ 5 (S,

Z, p ) where each stalk Sz is equipped with a nonempty binary relation Rz so
that ø {Rz: z P Z } is an open subset of S 2. For sheaves over Boolean spaces,

this condition on the relations Rz can be stated in a more usable form. If f,
g are global sections and f (z)Rzg (z), we require that there be a clopen neigh-

borhood K of z such that f (v)Rvg (v) for all v P K. Given such a sheaf of

relational structures, the global sections G S also are equipped with a binary

relation RÄ . Here f RÄ g iff f (z) Rzg (z) for all z P Z.
A Boolean sheaf representation of a relational structure X is a Boolean

sheaf representation w : X ® G SÄ of the set X where the stalks of SÄ can be

equipped with binary relations making SÄ a sheaf of relational structures and

w a structure-preserving isomorphism. If such relations do exist, they are

uniquely determined as w (x)(z)Rz w ( y)(z) iff there are x8Ry8 so that w (x) agrees

with w (x8) and w ( y) agrees with w ( y8) on some clopen neighborhood of z.
If we have a pair of equivalent Boolean sheaf representations of the set X,

and one is a representation of the structure X, then both are representations

of the structure X. So we may define SBooSh (X ) to be all equivalence

classes of Boolean sheaf representations of the structure X. Note that SBooSh

(X ) is a subset of BooSh (X ). Finally, we let Boo (Fact X ) denote the

collection of all Booleaan subalgebras of Fact X. Note that Boo (Fact X ) is
a subset of Boo (RX(2)).

Proposition 6.7. Let X be a relational structure. Then the restrictions of

F and C are mutually inverse isomorphisms between Boo (Fact X ) and

SBooSh (X ).

Proof. We need only show that the restrictions are maps between

these sets.

Let B be a Boolean subalgebra of Fact X and B8 5 { a : ( a , a 8) P B}.

Define relations on the stalks of the Pierce sheaf SÄ 5 (S, b B8, p ) of X over
B8 by setting RP 5 {(xÄ (P), yÄ (P)): (x, y) P R}. Surely these relations make

SÄ a sheaf of relational structures. To show that , is a structural isomorphism,

we must show that xRy iff xÄ (P)RpyÄ (P) for all P P b B8. That the first condition

implies the second follows directly from the definition of the relations Rp.

Conversely, assume the second condition. Then for each P there is (xp , yp)

P R with xÄ (P) 5 xÄ p(P) and yÄ (P) 5 yÄ p(P). But xÄ (P) 5 xÄ p(P) implies that xÄ

and xÄ p agree on a clopen neighborhood of P, and similarly for yÄ and yÄ p. Using

compactness, we can find a pairwise disjoint clopen cover b a 1, . . . , b a n of

b B8 and elements (xi , yi) P R such that (xi , x) and ( yi , y) are in a i for all

i 5 1, . . . , n. Then a 1, . . . , a n are the coatoms of a Boolean subalgebra of
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B. So by theorem 5.10, X ® X / a 1 3 ? ? ? 3 X / a n is a decomposition of

the relational structure X. Therefore xRy, showing that , is a structural

isomorphism. So F is a mapping into SBooSh (X ).
Suppose w : X ® G SÄ is a Boolean sheaf representation of the structure

X over a Boolean space Z, and let K be a clopen subset of Z. Setting a 5
ker( | K C w ) and a 8 5 X / a is canonically isomorphic to G KSÄ and X / a 8 is

canonically isomorphic to G Ø K SÄ . Therefore X / a and X / a 8 can be equipped

with relations making X structurally isomorphic to their product. So ( a , a 8)
P Fact X, and therefore C is a mapping into Boo (Fact X ). n

Remark 6.8. While we have succesfully characterized the Boolean subal-

gebras of Fact X for any algebraic or relational structure X, we do not have

such results for topological structures, or structures involving such analytical

features as a norm.
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