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In this paper we try to give an up-to-date account of certain aspects of the the-
ory of ortholattices (abbreviated OLs), orthomodular lattices (abbreviated OMLs)
and modular ortholattices (abbreviated MOLs), not hiding our own research in-
terests.

Since most of the questions we deal with have their origin in Universal Alge-
bra, we start with a chapter discussing the basic concepts and results of Universal
Algebra without proofs. In the next three chapters we discuss, mostly with proofs,
the basic results and standard techniques of the theory of OMLs. In the remaining
five chapters we work our way to the border of present day research, mostly no or
only sketchy proofs. Chapter 5 deals with products and subdirect products, chap-
ter 6 with free structures and chapter 7 with classes of OLs defined by equations.
In chapter 8 we discuss embeddings of OLs into complete ones. The last chap-
ter deals with questions originating in Category Theory, mainly amalgamation,
epimorphisms and monomorphisms.

The later chapters of this paper contain an abundance of open problems. We
hope that this will initiate further research.

1 Basic Universal Algebra

We assume a definition of natural numbers which makes every natural number n
the set of all natural numbers k£ < n. An n-ary operation on a set A is a map f of
A™ into A. An element a € A™ gives rise to a sequence (a(0),a(1),...,a(n—1)) of
A, more commonly written with indices (ag, ay,...,a,—1). The number n is called
the arity of the operation. It is important to allow the case n = 0. Since A° = {0}
a 0-ary or nullary operation is a map of {(} into A. Since such a map is completely
determined by the element f(f)) we usually specify 0-ary operations, also called
constants, by giving the element f(). A similar remark applies to unary (1-ary)
operations. We “identify” them with maps from A to itself.

A closure system over a set A is a set C of subsets of A satisfying

If B C C then (B € C.

Here we make the convention that the intersection of the empty subset of C is A,
so that A € C. If C is a closure system over A and if X C A we define the closure



I'X of X with respect to the closure system C by T'X = {C|X C C € C}. T'X
is obviously the smallest element of C containing X as a subset. If for B C C we
define \/ B =T(U B) and A B =) B then C becomes a complete lattice. T'0) is the
smallest and A is the largest element of this lattice.

An algebraic closure system is a closure system C satisfying
If £ CC is a chain, i.e. totally ordered by C, then |JK € C.

This definition, one of many equivalent ones, is particularly useful in proofs in-
volving Zorn’s lemma.

An algebra is a pair A = (4, (fi)ier), where A is a set, called the underlying
set, or the universe of the algebra, and each f; is for some n;, an n;-ary operation
on A. The family (n;);cr is called the type of the algebra. Whereas every n;
is finite it is necessary, in order to cover important examples, to admit infinitely
many operations f;.

A subuniverse of an algebra A = (A, (fi)ier) is a set B C A which is closed
under all operations f;, i.e. satisfies

If a € B™ then f;(a) € B,
or, in more common and more cumbersome notation
If ag,a1,...,a,,_1 € B then fi(ag,a1,...,a,, 1) € B.

Let Sub(A) be the set of all subuniverses of A. The most important and in fact
characteristic property is:

Proposition 1.1 If A is an algebra then Sub(A) is an algebraic closure system.

As a consequence of this we obtain that for any X C A there exists a smallest
subuniverse ' X containing X. I' X is said to be the subuniverse generated by X.

A subalgebra of an algebra A = (A, (fi)icr) is an algebra B = (B, (g;)ic1)
such that B C A and g; is the restriction of f; to B™ i.e.

If a € B™ then g;(a) = fi(a).

Clearly this requires that B is a subuniverse of A. Conversely, if B is a subuniverse
of A and g; is the restriction of f; to B™ then (B, (gi)ic1) becomes a subalgebra of
A. Because of this one-one correspondence between subuniverses and subalgebras
we will not be too fussy about distinguishing them. Thus, we refer to Sub(.A)
as the closure system or lattice of subalgebras of 4. Many authors require the
definition of algebra and subalgebra that the underlying set be not empty. We see
no reason for this.



Let A = (A, (fi)ier) and B = (B, (gi)ier) be algebras of the same type. A
homomorphism of A into B is a map ¢ : A — B satisfying for every i € I and
a€ Am

¢(fi(a)) = gi(poa)

or, in cumbersome notation,

o(fi(ao, ar, s an; 1)) = gi(plao), p(ar), - - plan, -1)).

B is said to be a homomorphic image of A iff there exists a homomorphism of A
onto B. An embedding of A into B is a one-one homomorphism of A into B. An
isomorphism is an embedding which is onto.

Closely related to homomorphisms are congruence relations. A congruence
relation, short: congruence, on an algebra A = (A, (fi)ics) is an equivalence
relation on A4, i.e. a reflexive, symmetric and transitive relation R satisfying

If a,b € A™ and a(k)Rb(k)(0 < k < n;) then fi(a)Rfi(b).

We express this by saying that R is compatible with the operation f;. If R is an
equivalence relation on A and a € A define the equivalence (congruence if R is
a congruence) class of @ modulo R by a/R = {blaRb} and the quotient set of A
modulo R by A/R = {a/R|a € A}.

If R is a congruence in A we may define operations ¢g; in A/R. If a € A™
define a/R € (A/R)™ by (a/R)(k) = a(k)/R. Then define g; by

if a € A™ then g;(a/R) = fi(a)/R,
in cumbersome notation

gi(aO/R,al/R,.. .,ani,l/R) = fi((lg,(ll,.. -;an,-fl)/R-

With these operations (A/R, (gi)ic1) becomes an algebra of the same type as A
the so called quotient algebra A/R of A modulo R. The map kg : A - A/R
defined by kg(a) = a/R becomes a homomorphism of A onto A/R, called the
canonical homomorphism of A onto A/R.

We are now in a position to establish the basic relationship between homo-
morphisms and congruences, known under various names.

Homomorphism Theorem Let ¢ : A — B be a homomorphism of A into B.
Define a relation R = ker(yp) (the kernel of ¢) by aRb iff p(a) = ¢(b). Then
R is a congruence in A and there ezists a unique map ¥ : A/R — B such that
Yo kg =w. This map ¢ is a one-one homomorphism of A/R into B.



If o is onto then clearly 1 is onto, hence an isomorphism. Thus every homo-
morphic image of A is isomorphic with a quotient algebra of A.

It is of some importance that the set Con(A) of all congruences in A is an
algebraic closure system over A x A.

Let (Ax)rex be a family of sets. The product [], ., A of the family consists
of all choice functions on the family, i.e. all maps a with domain K such that
a(k) € Ay for all k € K. With every product [], . Ax there come maps pry, of
the product onto Ay defined by pri(a) = a(k). The map pry is called the k-th
projection. If the A = (A, (f¥)ic1) are algebras we define operations f; in the
product componentwise, i.e. by fi(a)(k) = fF(pri o a). The resulting algebra
[Iicx Ax is called the product of the family (Ax)rex. In case of a product of

algebras, the pry are homomorphisms.

The cartesian product A x B of two sets is defined in basic set theory as
{(a,b)|a € A,b € B}. If A= (A,(fi)ier), B = (B,(gi)icr) we may define opera-
tions h; in A x B by h;(a) = (fi(pra(a)),gi(pre(a))). This gives a new algebra
A x B. This can be subsumed under the product defined before. We leave out the
details.

An important property of products which, in more general settings, can be
used to define products is the

Extension Property of Products If A, Ay (k € K) are algebras and for every
k € K, ¢ is a homomorphism of A into Ay then there exists a unique homomor-
phism of A into [[, . x Ar satisfying pry o o = @y for every k.

A subdirect product of a family (Ay)rer of algebras is a subalgebra A of the
product J], . 5 Ax such that every pry maps A onto Ay. A subdirect representation
of an algebra A is an embedding ¢ of A into a product [], ., Ar such that the
maps pri o map A onto Ag. An algebra A is said to be subdirectly irreducible iff
for every subdirect representation ¢ : A — [], x A one of the maps prj, oy is one-
one, hence an isomorphism. The fundamental result about subdirectly irreducibles
is

Birkhoff’s Subdirect Representation Theorem FEvery algebra is isomorphic
with a subdirect product of subdirectly irreducible algebras.



Subdirect irreducibility of an algebra has a neat and very useful character-
ization in terms of congruences. The smallest congruence of an algebra A =
(A, (fi)ier) is obviously the diagonal Ay = {(a,a)la € A}. An algebra A =
(A, (fi)ier) is subdirectly irreducible iff there is a smallest congruence different
from A 4.

Let K be a class of algebras of the same type. We define H(K) to be the class
of all homomorphic images of algebras in K, S(K) the class of all subalgebras of
algebras in K, and P(K) the class of all products of algebras in K. An equational
class or variety of algebras is a class K with H(K) C K, S(K) C K and P(K) C K.
If K is any class of algebras of the same type then HSP(K) is the smallest variety
containing K.

In our general considerations so far we have distinguished corresponding op-
erations in algebras of the same type by giving them the same index. This is prac-
tically never done in concrete cases. In these cases one identifies corresponding
operations by denoting them by the same symbol. For illustration let us consider
the case of groups. In order to get subgroups as a special case of our general
notion of subalgebras we have to consider a group as an algebra with the group
multiplication as a binary operation, the forming of inverses as a unary operation
and the unit as a constant. In order to make this fit our general development so
far we would have to introduce operations (say) fo, f1, f2. Instead of doing this
we introduce special symbols - for the group multiplication, ~! for the forming of
inverses and e for the unit. We then say a group is an algebra (G, (-,”! ,e)) of type
(2,1,0), indicating the arities of the operations in the given order.

2 The basics of ortholattices and orthomodular
lattices

We assume that the reader is familiar with the basics of lattice theory, it’s descrip-
tion as a partially ordered set and it’s representation by Hasse diagrams.

A bounded lattice is an algebra (L, (V,A,0,1)) where (L, (V,A)) is a lattice,

0 is a lower bound of L and 1 is an upp7er bound of L. An ortilocomplementation
on a bounded lattice is a unary operation ' satisfying

avVa =1 ahad =0

a<b=V <d

a' =a.

An easy consequence of this are the DeMorgan laws

(@avb) =d AV, (anb) =d VD



Each of these can replace the second condition in the description, thus defining
an orthocomplementation by equations. An ortholattice (abbreviated: OL) is an
algebra (L, (V,A,’,0,1)) where (L,(V,A,0,1)) is a bounded lattice and ' is an
orthocomplementation on it. If one interchanges the binary operations V, A and
the constants 0,1 one again obtains an OL, called the dual of the original OL. If
the operations are clear we speak simply of the OL L.

An orthomodular lattice (abbreviated: OML) is an OL satisfying the ortho-
modular law

if a < bthenaV (a' AD) =b.
This law can again be relaced by the equation
aV(ad A(aVvb))=aVhb.

The prime example of an OL which is not orthomodular is the benzene ring (see
diagram).

In fact we have
Proposition 2.1 Let L be an OL. These are equivalent
(1) L is an OML
(2) ifa<banda Nb=0 thena="0

(3) the benzene ring is not a subalgebra of L.

The proof of this is straightforward.

A fundamental concept in OLs is commutativity. An element a is said to
commute with an element b, in symbols aCb, if a = (a Ab)V (aAb'). Clearly a < b
implies aCb and aCb implies aCb'. The commutator y(a,b) of elements a, b of an
OL is defined by y(a,b) = (a V) A(aV V) A(a"Vb)A(a' VD).

Proposition 2.2 In an OL L the following are equivalent.



1) L is an OML
2) aCb = bCa

(
(
(3) aCb= d'Ch
(4) aCb=aV (a'Ab)=aVb
(

5) aCb & v(a,b) = 0.

Proof. 1 = 5. Assume aCb. Then y(a,b) = (@' Vb)) A (aVI)A(a' V')A (aVD') =
(@ VOA(anb)V(aAY)VOA(@ V)N ((aAb)V (aAb)VD)=(a" VD) A((an
BYVB)A(a V')A ((aAD) VDY) =bAD =0, using the dual of the orthomodular
law. Assume conversely that v(a,b) = 0. Clearly a > (a Ab) V (a A b'). But
aA(aVb)A(aVb)<~(a,b) =0 which gives aCb by condition 2 of (2.1).

5= 2. aCb= v(a,b) =0 = v(b,a) =0 = bCa.

2= 3. aCb = bCa = bCd' = da'Cbh.

3=4. aV(a'Ab) < aVb = aV(a'Ab)CaVb = a'A(aVb)CaVb = a'A(aVb') =
(@ AN(aVV)A(aVvD)V(a AlaVvd)Aa AY) = (a' A((a' Ab)V (a' AD)) )V (a' AD') =
(a"ANa)V(a"AY)=d Ab. ThusaV (a' Ab) =aVb.

4 = 1. Obvious since a < b implies aCb. I

In an OML aCb holds iff a vV (a’ Ab) = a Vv b. If this last equation holds we
have (aVb) A (aV )= (aV (a'Ab)A(aVDb)=a, hence aCb.

Proposition 2.3 Let L be an OML, a,z; € L (i € I). If aCxz; (i € I) and if
V@i exists then \/;_;(a A x;) exists and a N\ ;c; w0 =\ (a Axi), and dually.

Proof. Clearly a A \/; z; is an upper bound of {a A z;|i € I}. Let v be any upper
bound of this set and put u = v Aa A\, 2z Then aAz; <u < an\, ;o
and ' Aa AV o < (@' Va))ANaAV;zi =ana AN\ o (j € 1), hence
wW NaAVerzi <an Ny ANV iepwi =0, hence u = a A\, z; by 2 of (2.1).
It follows that a A \/,;.; #; is the least upper bound of {a A z;[i € I}. 1

If a is an element of an OML L we define C(a) = {z € L|aCz}. If A C L we
define C(A) = {z € L|aCxz holds for all a € A}.

Proposition 2.4 If a is an element of an OML L, if x; € C(a) (i € I) and if
Vier @i ewists then \/,.; x; € C(a), and dually. In particular C(a) is a subalgebra
of L.

icl

Proof. We have (a AV, zi)V(a'AV,;c; i) = Ve, ((anzi) V(a' Axy)) = Ve p 4,
hence \/,;.; z;Ca, hence \/,.; z; € C(a). B

An element ¢ of an OML is said to be central if it commutes with all elements
of L, and the set of all central elements C(L) is called the centre of L.

For elements a < b in an OL L we define [a,b] = {z|a < z < b} and speak of
the interval [a, b].



Proposition 2.5 Let a < b be central in an OML L. (1) ([a,b], (V, A, x,a,b)) is
an OL where % is defined by ¢* = aV (bAzx'). (2) The map f : L — [a,b] defined
by f(x) =aV (bAx) is an onto homomorphism.

Proof. (1) Let a < o < b. ThenzVa* =zVaV(bAz) =22V (DbA)
and as x < b orthomodularity gives x V z* = b. As zCa,b A ' (2.3) yields
zAz* = zA(aV(bAzZ")) = (xAa)V(zAbAZ') = a. Note z** = aV(bA(aV(bAZ'))') =
aV(bANa A Vez). Then as b > x the dual of the orthomodular law gives
z** =aV (a' Az) and as a < x the orthomodular law gives x** = x. Therefore *
is an orthocomplementation. (2) Obviously f(z') = z*. In view of the DeMorgan
laws it suffices to show f(z Vy) = f(x)V f(y). As b is central (2.3) provides
f(aVy) = aV (A (zVy)) = aV(bAz)V(bAY) = (aV(bAz))V(aV(bAY)) = f(2)V f(y)-
Therefore f is a homomorphism and trivially onto. il

Corollary 2.6 Fvery interval [a,b] in an OML L is an OML under the ortho-
complementation x* = aV (bAz'). Further, this OML is a homomorphic image of
a subalgebra of L.

Proof. Suppose [a, b] is an interval in L. Consider the subalgebra S of L consisting
of all elements which commute with both a,b. Then S contains the interval [a, b]
and a, b are central in the OML S. From the previous proposition, [a,b] is an OL
under the orthocomplementation z* = aV (bAz'), and this OL is a homomorphic
image of the OML S, hence is orthomodular. I

Lemma 2.7 If ¢ is central in an OML L, then f : L — [0,¢] x [0,¢'] defined by
fl@) = (x A,z A ) is an isomorphism. Conversely, if f : L — A X B is an
isomorphism, then there is a central element ¢ in L with A 22 [0,¢] and B = [0, ¢'].

Proof. Assume c is central in L. By (2.5) the map f : L — [0,¢] x [0,¢'] is
a homomorphism. As (z Ac¢)V (z Ac') = z, f is one-one. For x < ¢, y < ¢
commutativity gives f(z Vy) = (z,y), hence f is onto. For the converse, take ¢ in

L with f(c) = (1,0). 1
The most important tool for computations in OMLs is the

Foulis-Holland Theorem If one of the elements a,b,c of an OML commutes
with the other two then the sublattice (not subalgebra) generated by {a,b,c} is
distributive.

Proof. Assume a,bCc. Then c¢ is central in I'{a,b,c} and hence the map = —
(zAc¢,zAc') is an isomorphism of I'{a, b, ¢} with the product [0, ¢] x [0, ¢']. Clearly
{a A c,bAc,c} generate a distributive sublattice of [0,¢] and {a A ;b A, ', 0}
generate a distributive sublattice of [0, ¢']. The sublattice generated by {a,b,c} is
clearly isomorphic with a sublattice of the product of these two sublattices. i

Proposition 2.8 Let X be a subset of an OML L. The subalgebra T'X generated
by X is Boolean iff any two elements of X commute.



Proof. Clearly in a Boolean algebra any two elements commute. Assume that
any two elements of X commute. Then X C C(X), hence I'’X C C(X), hence
X CC(TX), hence '’X C C(I'X). Thus any two elements of I'’X commute, which
implies that T'X is Boolean by the Foulis-Holland Theorem. 1

3 Subalgebras

We begin with Boolean subalgebras. Note that every element z of an OL L is
contained in a Boolean subalgebra of L, namely the subalgebra {0,z,z', 1}. Also,
as the union of a chain of Boolean subalgebras is again a Boolean subalgebra,
a direct application of Zorn’s lemma yields that each Boolean subalgebra of L
is contained in a maximal Boolean subalgebra of L, also termed a block of L.
Therefore

Proposition 3.1 Fvery OL is the union of its blocks.

Suppose L is an OL. If L is an OML then for any a < bin L we have aCb, hence
by (2.8) I'{a,b} is Boolean, so a,b are elements of some block of L. Conversely,
if L is not an OML then by (2.1) there are a < b in L which generate a benzene
ring, hence are not elements of any Boolean subalgebra of L. Therefore

Proposition 3.2 An OL L is an OML iff the partial ordering on L is the union
of the partial ordering on the blocks of L.

This shows that each OML is determined by its blocks. We remark that there
are a number of results, such as Greechie’s Loop Lemma [25], Dichtl’s astroids
[20], and Kalmbach’s bundle lemma describing conditions on a family of Boolean
algebras (B;)1 which ensure their union is an OML. See [32] for a complete account.
We next collect a few basic and well known properties of blocks, all of which are
easily proved.

Proposition 3.3 Let L be an OML. (1) The centre C(L) is the intersection of
the blocks of L. (2) If M is a subalgebra of L, then the blocks of M are exactly
{BN M|B is a block of L}. (8) If (Li)1 is a family of OMLs, then the blocks of
I1; L;i are {[1; Bi|B; is a block of L;}.

For OMLs L, M and a homomorphism ¢ : L — M the image ¢[B] of any block
of L is obviously a Boolean subalgebra of M, but need not be a block (consider
the identical embedding of 2 into 22). We are not aware of such an example with
the homomorphism ¢ onto.

An important class of OLs are those of height two, i.e. in which the maximal
number of elements in a chain is three. Clearly such an OL is determined by
specifying its cardinality, which, if finite, must be some even number at least four.
Define MOy, for k > 1 to be the OL of height two having cardinality 2 x & + 2.
Extend this by setting M Og to be a two element Boolean algebra. Clearly each



MO, is a modular ortholattice (abbreviated: MOL). A diagram of MO, is given
below.

It is a simple, but useful observation that for any elements z,y in an OL L,
[{z,y} is MO, iff y(z,y) = 1 and L is non-trivial. This yields

Lemma 3.4 Let L be an OML generated by the elements x,y. Then [0,v(z,y)] is
either trivial or M Os, [0,v(z,y)'] is Boolean, and L = [0,v(z,y)] x [0, v(z,y)'].

Proof. As 7(z,y) commutes with both z,y, it is central in L. So there are
homomorphisms f : L — [0,v(z,y)] and g : L — [0,7(z,y)’] defined by setting
f(z) = 2/\vy(z,y) and g(2) = 2Ny (x,y)'. Notey(f(x), f(y)) = f(7(x,y)) is the unit
of [0,v(x,y)] so this interval is either MO, or trivial. Similarly vy(g(z),g(y)) =0
so g(x) commutes with g(y) and by (2.8) the interval [0, y(z,y)'] is Boolean. I

As any finitely generated Boolean algebra is finite we then have
Corollary 3.5 For xz,y elements of an OML, T'{x,y} is finite.
An as an OML is Boolean iff all elements commute (2.8) we have

Corollary 3.6 If L is a non-Boolean OML, then MO, is a homomorphic image
of a subalgebra of L.

A variety V is called locally finite if for every A € V and every finite subset
S C A the subalgebra I'S generated by S is finite. The first of these two corollaries
may raise some false expectations none of the varieties of MOLs, OMLs, or OLs
is locally finite. To see this consider the MOL L of all subspaces of a three
dimensional vector space over the reals with orthocomplementation being given
by orthogonal subspaces. One can easily find three elements of L that generate an
infinite subalgebra.

There is a useful weakening of the notion of locally finite.

Definition 3.7 A wvariety V has the finite embedding property (f.e.p.) if for every
A €V and every finite S C A there is a finite B € V and a one-one set mapping
@ : S = B such that for each basic operation f; and each sg,...,Sn,—1 € S, if

fz'(SO: e -:Snifl) € S then @(fz‘(Sm B -75712'71)) = fi((P(So), s =<p(sni71))'

10



It follows from consideration of MacNeille completions of orthocomplemented
posets (section 8) that the variety of OLs has the f.e.p., and it follows from results
on finite MOLs (section 7) that the variety of MOLs does not have f.e.p. There is a
natural hope that one can combine the fact that Boolean algebras are locally finite
with various techniques to produce OMLs by “gluing” together Boolean algebras
to show that the variety of OMLs has the f.e.p. Such attempts have not so far
been successful. Due to the connection to the word problem, the following is one
of the basic outstanding problems in the theory of OMLs.

Problem. Does the variety of OMLs have the f.e.p.I’

4 Congruences and homomorphisms

Given an OL (L, (V,A,",0,1)) one calls the bounded lattice (L, (V,A,0,1)) the
bounded lattice reduct of the OL. Clearly any homomorphism between two OLs is
also a homomorphism between their bounded lattice reducts. For Boolean algebras
(B,(V,A,,0,1)) and (C,(V,A,",0,1)) it is well known that a map f: B — C is
a homomorphism between the Boolean algebras iff it is a homomorphism between
their bounded lattice reducts. But it is a simple matter to find an automorphism
of the bounded lattice reduct of MO, that is not an automorphism of MQO,.
However,

Proposition 4.1 If L is an OML then every congruence on the bounded lattice
reduct of L is a congruence on L.

Proof. Let R be a congruence on the lattice reduct of L. We must show that
aRb implies a' Rb'. We first show this in the special case that a < b. In this case,
orthomodularity gives a’' =0V (bAa'). Soa' =0V (bAad)RY V (aNd') =0 In
the general case aRb implies (a A b)R(a V b), hence (a A b)'R(aV b)’, and as a', b’
lie between (a A b)' and (a V b)’ the result follows. I

We next examine more closely the structure of congruences on an OML.

Lemma 4.2 Let R be a congruence on an OML L. For a,b € L these are equiv-
alent. (1) aRb, (2) (aVb) A (a' VV)RO, (3) aV x =bV x for some x with xRO0.

Proof. Assuming (1) (aVb) A (a' VV)R(aV a) A (a' Va') = 0. Assuming (2) set
x=(aVb) A(a' VD). Assuming (3) a=(aVO)R(aVz)=(bVz)R(bVO)=>b1

An algebra A is called congruence regular if every congruence on A is de-
termined by any one of its equivalence classes. In other words, A is congruence
regular if for any a in A and any congruences R,S on A we have a/R = a/S
implies that R = S. Groups and Boolean algebras are examples of congruence
regular algebras, while distributive lattices are not. The following is a special case
of a well known result that applies to any lattice with 0 where each interval [0, z|
is complemented.

11



Proposition 4.3 FEvery OML is congruence reqular.

Proof. Suppose R, S are congruences on an OML L and that a/R = a/S for some
a in L. If 2RO then for y a complement of z in the interval [0,a V z] we have that
xR0 implies yR(a V x), hence yS(a V ), giving 50. Thus a/R = a/S implies
0/R = 0/S. Suppose then that cRd. Let e be a complement of ¢ in the interval
[0,c¢Vd]. As cR(cV d) we have eR0, hence €S0, so ¢S(cV d), and ¢Sd. 1

As is customary with congruence regular algebras, we often choose to work
with a particular equivalence class of a congruence. For groups we choose the
equivalence class containing the group identity, which is a normal subgroup of the
group. For OMLs, we choose the equivalence class containing 0. The following
formula for recovering a congruence from its 0 equivalence class is implicit in the
previous proof.

Proposition 4.4 If R is a congruence on an OML L, then aRb iffaVz =0V x
for some xRO.

An algebra A is called congruence permutable if for any congruences R, S
on A we have Ro S = S o R. Note that groups, rings and Boolean algebras
are congruence permutable while distributive lattices are not. The following is a
special case of the well known result that any relatively complemented lattice is
congruence permutable [18; pg. 93].

Proposition 4.5 Fvery OML is congruence permutable.

Recall, for an OL L the collection Con(L) of all congruences on L is an alge-
braic closure system over L x L, hence forms complete lattice under set inclusion.
Meets in this lattice are given by set intersection and upwardly directed joins are
given by unions. If L is an OML, then as L is congruence permutable, binary joins
in this lattice are given by relational product. The collection Id(L) of all ideals
of the lattice L also forms a complete lattice under set inclusion. Meets in this
lattice are given by set intersection. Upwardly directed joins are given by unions,
and binary joins are given by IV J = {z|z < a Vb for some a € I,b € J}.

Proposition 4.6 For an OML L the map F : Con(L) — Id(L) defined by F(R) =
0/R is a bounded lattice embedding which preserves arbitrary joins and meets.

Proof. For a congruence R clearly 0/R is an ideal. As L is congruence regular
F is one-one. As meets in both Con(L) and Id(L) are given by intersections, F'
preserves arbitrary meets, and similarly F' preserves upwardly directed joins. It
remains only to show that F' preserves binary joins. Let R,S be congruences.
Note that their join in Con(L) is Ro S. If z belongs to F(Ro S) there is some zR0
and some yS0 with x Vy =z V z, hence z < x V y. Conversely, if R0 and yS0,
then (zVy)(RoS)0 as RoS is a congruence. So z < x V y implies that z(R o S)0.
This shows that F(Ro S) = F(R)V F(S). I
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It is of interest to characterize those ideals that arise as the zero equivalence
classes of congruences on an OML L, much the way we distinguish normal sub-
groups of a group.

Proposition 4.7 Let I be an ideal of an OML L. Then I is the zero equivalence
class of some congruence on L iff x € I andy € L implies y A (y' Vz) € 1.

Proof. Obviously if I = 0/R for some congruence R, then z € I, y € L implies
yAN(y'Vaz)Ry A (y' V0),soyA (y'Vx) belongs to I. Conversely, assume that [ is
closed under the given condition. Set R = {(a,b)|aV x = bV z for some z € I}.
As 0 is in I R is reflexive. By the symmetry of the definition R is symmetric.
As I is closed under finite joins it follows that R is transitive, and further that
R is compatible with joins. It remains only to show that R is compatible with
orthocomplementation. Suppose aRb. Then a Vx = bV x for some x in I. So
a' A(aVezx)and b’ A (bV z) belong to I, hence a' A (aVbVz)and b’ A(aVbhVx)
belong to I, and as I is a downset a' A (aV b) and b’ A (a VvV b) belong to I. As I is
closed under joins and a V b commutes with both a’,b’ we have (a V b) A (a' V V')
belongs to I. But a'V ((aVb)A(a' Vb)) = a’' Vb and b’V ((aVDh)A(a' VD)) =a' V.
Thus 'RV . 11

Among the most useful results about the congruence lattice of an OL follows
below. This will open the door to such powerful techniques as Jénsson’s Theorem
[17, pg. 147].

Proposition 4.8 For an OL L, Con(L) is distributive.

Proof. It is well known that the congruence lattice of any lattice is distributive
[18, pg. 75]. Our result then follows from the fact that the congruence lattice of
an algebra A is a sublattice of the congruence lattice of any reduct of A. I

To summarize, we have shown that OMLs are congruence regular, congru-
ence permutable; and congruence distributive. It seems to be an open question
to completely characterize those lattices which are isomorphic to the congruence
lattice of some OML. As a final remark we note that matters are much worse in the
absence of orthomodularity. Ortholattices are not in general congruence regular,
or congruence permutable, but, as shown above, are congruence distributive.

5 Products, directly and sub-directly irreducibles

A congruence R on an OML L is called a factor congruence if R has a complement
in the congruence lattice of L. Note, as Con(L) is distributive R will then have
exactly one complement, which we denote by R'. For readers familiar with the
definition of factor congruences for general algebras [17, pg. 52] we recall that
every OML is congruence permutable.
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Lemma 5.1 If R is a factor congruence on an OML L, then the natural map
f:L — L/RxL/R" is an isomorphism. Conversely, if f : L — A X B is an
isomorphism, then the kernels of pri o f and pro o f are complementary factor
congruences.

Proof. By general considerations f is a homomorphism. If f(z) = f(y), then
(z,y) belongs to both R and R', hence x = y. Given z,y in L, the fact that R, R’
permute and join to the largest congruence of L gives the existence of z with zRz
and zR'y. Then f(z) = (x/R,y/R'). Therefore the map f is one-one and onto.
Conversely, if R and S are the kernels of the natural projections of A x B onto A
and B, then R, S intersect to the identical relation on A x B, and for any (a,b),
(¢,d) in A x B, (a,b)R(a,d) and (a,d)S(¢,d). Thus Ro S is the universal relation
on Ax B. 1

The exact nature of the correspondence between central elements and factor
congruences on an orthomodular lattice L is made precise by the following result.
We leave the proof to the reader.

Proposition 5.2 The map ¢ — {(z,y)|x V¢ = y V ¢} is a lattice isomorphism
between C(L) and the Boolean subalgebra of Con(L) of factor congruences.

Definition 5.3 An ortholattice L is called directly irreducible if for every iso-
morphism f : L — Ly x --- x L, there is an index k so that the projection
pryo f: L — Ly is an isomorphism.

In view of the above remarks we have the following result.

Proposition 5.4 For an OML L, these are equivalent. (1) L is directly irre-
ducible, (2) C(L) consists of exactly two elements, (3) L has exactly two factor
congruences.

Lemma 5.5 If R is a congruence on an OML L and 0/R has a largest element
¢, then c is central in L and R is a factor congruence.

Proof. As cRO it follows that = A (z' V ¢) belongs to 0/R for each x in L. Hence
zA (@' Ve) <csoxA(r'Ve) =xAcforall zin L, showing that ¢ is central.
Therefore ¢’ is central and there is a congruence R’ with 0/ R' equal to [0, ¢']. Then
R, R’ are complements in the congruence lattice of L. I

Recall, an OL L is subdirectly irreducible if it has a least non-zero congruence,
and simple if it has exactly two congruences. Obviously any simple OL is sub-
directly irreducible, and every subdirectly irreducible OL is directly irreducible.
From the preceding lemma we have the following.

Proposition 5.6 A finite OML is directly irreducible iff it is simple. Therefore
every finite OML is isomorphic to a finite direct product of simple OMLs.
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Proof. Every finite OML is isomorphic to a finite direct product of directly
irreducible OMLs. 1

This result can be easily generalized to hold for any OML in which all chains
are finite. More generally, it is known to hold for any chain finite relatively com-
plemented lattice [18; pg. 94]. The first step towards a different generalization of
(5.6) is given by the following [27].

Theorem 5.7 The notions of directly irreducible and simple coincide in any
variety V generated by a class of OMLs with a finite upper bound on the lengths
of their chains.

It is hopeless to expect that each OML in a variety such as V will be iso-
morphic to a direct product of simple algebras. In the Boolean case, this would
amount to having each Boolean algebra B isomorphic to a power 2% for some set
X, and by cardinality considerations alone this is impossible for any countable
Boolean algebra. However, Stone’s theorem provides that any Boolean algebra B
is isomorphic to the collection of all continuous functions in 2% for some Boolean
space X (where 2 is given the discrete topology). We obtain a weaker, but useful,
analogue of Stone’s theorem.

Theorem 5.8 Let L be in a variety V' generated by a class of OMLs with a finite
upper bound on the lengths of their chains. Then there is a family of OMLs L,
indexed by the elements x of a Boolean space X, and a topology T on | J{L.|z € X}
such that (i) the subspace topology on each L, discrete, (ii) L, simple for all z in
a dense open subset of X, and (i) L = {f € ] La|f is continuous}.

While this result might seem ungainly, there are effective tools for working
with such a representation one can essentially lift many first order properties
from the L, to L. For further details of this result see [19, 28]. We remark that
the reader familiar with the notion of discriminator varieties [17, pg. 165] will
have seen representation theorems very similar to the one above. However,

Proposition 5.9 The only varieties of OMLs which are discriminator varieties
are the trivial variety and the variety of Boolean algebras.

Proof. Let V be a non-Boolean variety of OMLs. Then V contains MOy (3.6)
which is simple and has a subalgebra which is not simple. So by [17, lemma 9.2]
V' is not a discriminator variety. i

We mention a generalization of (5.6) in another direction [39]. It seems not
unreasonable to hope that the following result might be extended to a variety
generated by OMLs having at most n blocks.

Theorem 5.10 An OML with finitely many blocks is directly irreducible iff it is
simple. Therefore an OML with finitely many blocks is isomorphic to a finite direct
product of a Boolean algebra and simple OMLs.
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Likely the most useful result concerning representations of OMLs by direct
products remains Birkhoff’s subdirect representation theorem which states that
every algebra is isomorphic to a subdirect product of subdirectly irreducible alge-
bras. Unfortunately, when working with the full variety of OMLs, the subdirectly
irreducibles are difficult to narrow down. In fact

Proposition 5.11 Every OML is a subalgebra of a simple, hence subdirectly
irreducible, OML.

Proof. Given an OML L, construct an OML M by “gluing” L and a four element
Boolean at their bounds. 1

Still, there are many varieties of OMLs where one has very good control over
the subdirectly irreducibles. As ortholattices are congruence distributive (4.8),
one may apply Jonsson’s theorem [17, pg. 146] and Los’ Theorem [17, pg. 210] to
any variety V generated by a class K of OMLs to gain insight into the first order
properties of the subdirectly irreducibles in V. For example, if every member of
K has at most n elements in each of its chains, then the same is true of every

subdirectly irreducible, and, in view of (5.7), of every directly irreducible member
of V.

6 Free ortholattices

Definition 6.1 Given a class K of algebras of the same type, F' € K is K-freely
generated by a set X if (i) X C F, (ii) X generates F, and (iii) every set map
f: X = A with A € K extends uniquely to a homomorphism f: F — A.

By a standard argument two algebras IC-freely generated by X are isomorphic.
We next show the existence of a K-freely generated algebra over X where K is the
class of all algebras of a given type. Such algebras are called absolutely freely
generated.

Definition 6.2 Given a set X and a type 7 = (n;)r let ¥ be the set of all finite
strings of symbols from X U I. Define the set of terms of type T over X to be the
smallest subset S of ¥ such that (i) X C S, and (i) if i € I and pg,...,pn,—1 € S,
then the string ipo - pn,—1 5 in S.

We use T'(X) to denote the set of terms of type 7 over X and use the com-
mon convention of writing fi(po,...,Pn,—1) in place of the string ipg-- - pn,—1-
For each index i € I let f; be the n;-ary operation on 7T'(X) defined by setting
filpo, - pni—1) = filpo, - sPn,—1). Then (T(X), (fi)icr) is an algebra of type 7
called the term algebra of type 7 over X. The following result is well known [17,
pg. 66] and easily proved.

Proposition 6.3 The term algebra T(X) is absolutely freely generated by X .
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Next we show the existence of IC-freely generated algebras over a set X, at
least under mild assumptions on K. For any set X we define Ox(X) to be the in-
tersection of all congruences ¢ € Con(T(X)) such that T'(X)/¢ belongs to IS5(K).

Theorem 6.4 If K is closed under I, S, P, then the algebra T'(X)/Ok(X) is K-
freely generated by X/Ox(X).

Note, if V is a variety containing an algebra with more than one element, one
can easily show that X /0y (X) is in bijective correspondence with X, and it follows
that there is an algebra V-freely generated by X. We denote this (essentially
unique) algebra by Fy(X). For V the variety of one element algebras we let
Fy (X) be a one element algebra. In either case there is an obvious homomorphism
a:T(X) — Fy(X). The reader should consult [17, pg. 66] for a proof of above
result.

Definition 6.5 An equation, or identity, of type T over X is an ordered pair
(p,q) where p,q € T(X). An algebra A satisfies the equation, written A |= p = ¢,
if f(p) = f(q) for every homomorphism f: T(X) — A, and a class of algebras K
satisfies the equation, written K Ep = q, if A|=p=q for each A € K.

For example, the pair (z Vy,y') is an equation in the type of OLs over the set
X = {z,y,z}. This equation will be valid in some algebras (in any one element
algebra for instance), but is not valid in any non-trivial ortholattice. The following
result is well known [17, pg. 73].

Proposition 6.6 For a variety V and terms p,q in T(X) the following are equiv-
alent (1) V = p = q, (ii) Fv(X) =p=q, (i) (p.q) € Ov(X), (iv) a(p) = alq).

Recall, a : T(X) — Fy (X) is the natural homomorphism.

Definition 6.7 A wvariety V has a solvable free word problem over X if there is
an algorithm to determine for any terms p,q in T(X) whether a(p) = a(q).

In view of the above proposition, a solvable free word problem over X gives
an algorithm to determine whether an equation p = g holds for all algebras in V.

Theorem 6.8 The variety of lattices has solvable free word problem over any set.

Proof. While we do not provide a complete proof of this well known theorem
[18, pg. 163], it is worthwhile to sketch its features. Define < to be the smallest
binary relation on T'(X) satisfying (i) x < x for all x in X, (ii) a < cand b < ¢
implies a Vb < ¢, (iii) a < band a < ¢ implies a < bA¢, (iv) a <bora < ¢
implies a < bV e, and (v) a < cor b < cimplies a Ab < ¢. One can show that < is
a quasi-order on T'(X). Setting ¢ to be the usual equivalence relation associated
with a quasi-order, one then shows T'(X)/¢ is freely generated in the variety of
lattices by X/¢. As < can be effectively computed, the word free word problem
for lattices is solvable. 1
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Theorem 6.9 The variety of OLs has solvable free word problem over any set.

Proof. Again, the reader is directed to [8] for a complete proof, but we sketch the
details. Given a set X, take another set X' in bijective correspondence with X
and disjoint from X. Consider the term algebra T'(X U X') of the type of lattices
and define the relation < on T'(X U X') as above. As T(X U X') is absolutely
free, the obvious map ' : X U X' - X U X' extends to a homomorphism from
T(X U X') to its dual. Define R to be the smallest subset of T'(X U X') satisfying
(i) X U X' is contained in R, (ii) a,b € R and a',b’ £ aV b implies a Vb € R, and
(iii) a,b € R and a A b £ a',b’ implies a A b € R. One can show that “adding” a
top and bottom element to R/¢ yields an ortholattice freely generated by X/¢. 1

Various useful results about free lattices and free ortholattices are collected in
the following. Here Whitman’s condition refers to the property that a Ab < cV d
iffoneofaANb<c,aNb<d, a<cVd, b<cVd.

Proposition 6.10 (1) Every free lattice satisfies Whitman’s condition. (2) A
lattice freely generated by a three element set contains a sublattice freely generated
by a countable set. (3) Every free ortholattice satisfies Whitman’s condition. (4)
An ortholattice freely generated by a two element set contains a subalgebra freely
generated by a countable set.

The first two statements can be found in [18, pg. 166]. The third is easily
seen from the above construction of free ortholattices. The fourth is found in [8].
Another very useful fact, easily proved along the lines of (3.4) is the following.

Proposition 6.11 MO, x 2* is freely generated by a two element set in the
variety of OMLs and the variety of MOLs. Therefore the free word problem on
two generators is solvable in the variety of OMLs and the variety of MOLs.

This gives an extremely simple procedure to determine if an equation involving
only two variables is valid in every OML—one simply checks to see if it is valid
in MO,. See [37] for a discussion of how this simple observation could greatly
simplify many proofs in the literature. For more than two generators the situation
is nearly completely open. Some of the few known facts are collected below.

Proposition 6.12 If X has at least three elements, then an OML freely generated
by X contains a free lattice on countably many generators as a sublattice of its
lattice reduct.

Proof. Kalmbach [26, 31] has shown that any lattice L can be embedded into the
lattice reduct of some OML K(L). If L is a lattice freely generated by X, then
there is an OL homomorphism from the free OML F on X onto K(L). So there
is a lattice homomorphism from the lattice reduct of F' onto K(L), and as L is
projective in the variety of lattices (see section 9) L is isomorphic to a sublattice
of the lattice reduct of F'. The result then follows as L contains a sublattice freely
generated by a countable set. I
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Proposition 6.13 Let X be a set with at least three elements and let L be freely
generated by X in the variety of OMLs or MOLs. (1) L contains an infinite chain
and has infinitely many blocks. (2) L does not contain an uncountable chain.

Proof. (1) The previous result shows a free orthomodular lattice over X has an
infinite chain. There is an example in [14] of a 3-generated MOL with infinite
chains and infinitely many blocks. This provides the other assertions in this claim.
(2) As noticed by several authors, this is generally true of free algebras in any
variety of algebras having a semilattice reduct [16]. I

While we do not wish to develop the notion of word problems for finitely
presented algebras, we do want to mention one of the very significant results in
the area. The reader is directed to [41] for general background and the proof of
the following result.

Theorem 6.14 There is a finitely presented MOL with unsolvable word problem.

There remain many unsolved problems in this area. The first is of paramount
importance, the others less important but still of considerable interest.

Problems 1. Is the free word problem for OMLs (MOLs) on three or more
generators solvablel’ 2. Can a freely generated OML have an uncountable blockI’
3. If a,b are complements in a freely generated ortholattice are bV o' and b A o’
complements of al' 4. Characterize the finite subalgebras of a freely generated
ortholattice (OML).

7 Varieties of ortholattices

For an ortholattice L let [L] be the variety of ortholattices generated by L, and
for a class KC of ortholattices let [K] be the variety generated by K. Note that the
class of all one element OLs is a variety often called the trivial variety.

Proposition 7.1 (1) The trivial variety is the smallest variety of OLs. (2) Every
non-trivial variety of OLs contains the variety of Boolean algebras. (8) Every
non-Boolean variety of OLs contains either [M O2] or [Benzene)].

Proof. (1) Obvious. (2) Every ortholattice with more than one element contains
a two element Boolean algebra as a subalgebra, and the two element Boolean
algebra generates the variety of Boolean algebras. (3) By (2.1) every ortholattice
which is not orthomodular contains a subalgebra isomorphic to Benzene, and in
(3.6) we showed that every non-Boolean variety of OMLSs contains MO;. 1

For varieties of OMLs somewhat more is known [12].

Proposition 7.2 Let V be a variety of OMLs that is generated by its finite mem-
bers. If V is not contained in [MO2], then V contains a variety generated by one
of the four OMLs shown below.
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In each of these figures orthocomplementary elements are directly above and
below one another, or directly beside one another for the middle elements. In the
final figure the two elements on the left end are to be “identified” with the two on
the right end.

For varieties of MOLs the situation becomes very interesting. We remind
the reader that a subdirectly irreducible (ortho) complemented modular lattice of
height three is called a (orthocomplemented) projective plane.

Theorem 7.3 The varieties of MOLs generated by their finite members are ex-
actly the [M O] where &k is a cardinal.

Proof. This is a difficult theorem, but we can outline the steps in the proof. Sup-
pose L is a finite subdirectly irreducible MOL. If L is of height two or less, then L is
equal to M O,, for some n < w. Otherwise L contains an element a of height 3. By
a theorem of Bruns [9] the interval [0, a] of L is an orthocomplemented projective
plane. But Baer showed [3] that every involution on a finite projective plane has
a fixed point, hence no finite projective plane admits an orthocomplementation.
Thus every finite subdirectly irreducible MOL is an M O,, for some n < w.

Suppose V is a variety generated by a class K of finite MOLs. As every finite
MOL is a direct product of simple, hence subdirectly, MOLs (5.6) we may assume
each member of K is subdirectly irreducible, hence equal to M O,, for some n < w.
If {m|MO,, € K} is finite, then it has a maximum n, and clearly V = [MO,].
Suppose that {m|MO,,, € K} is infinite. We claim that M O,, belongs to V', hence
V =[MO,]. But this follows as V' is an equational class and any equation in n
variables failing in M O,, must fail in some n generated subalgebra of M O,,, hence
in MO, Finally, note that [MO,] = [MO,] for each infinite cardinal x as MO,
and MO, satisfy the same equations. i

Note that it is an easy consequence of Jonsson’s theorem that [MO,,] is cov-
ered by [MOp41] for each n < w, hence the varieties [M O] form a chain of order
type w + 1. But these are not the only varieties of MOLs. Let P be an orthocom-
plemented projective plane, such as the lattice of subspaces of a three dimensional
vector space over the reals with the orthocomplement of a subspace S being its
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orthogonal subspace S~. Clearly there are equations valid in all MOy, such as
v(z,v(y,2)) = 0, which are not valid in P. Thus [P] is distinct from all [MO,].
However, it is a simple matter to show that MO, is a subalgebra of an interval of
P, hence [P] contains M O,,. The following two theorems summarize the remain-
ing facts known of varieties of MOLs. The first is due to Bruns [9] and the second
to Roddy [40].

Theorem 7.4 If L is a subdirectly irreducible MOL containing an atom, then
either [L] = [M O] for some cardinal k or [L] contains [P)] for some orthocomple-
mented projective plane P.

Theorem 7.5 FEvery variety of MOLs distinct from [MO,] for all cardinals k
contains [MO,].

We are left with the following open problem sometimes referred to as Bruns’
conjecture. We consider it a basic open problem in the theory of OMLs.

Problem. Does every variety of MOLs which is different from [MO,] for all
cardinals k contain an orthocomplemented projective planel’

8 Completions

A lattice L is called complete if every subset of L has a greatest lower bound and a
least upper bound. A completion of L is a lattice embedding of L into a complete
lattice C'. A completion of L is called regular if the embedding preserves all existing
joins and meets from L, and is called join (meet) dense if every element of C is
the join (meet) of images of elements of L. It is well known that an embedding
that is both join and meet dense is regular.

Theorem 8.1 FEvery lattice L can be join densely embedded into a complete lattice
C which satisfies exactly the same equations as L.

This well known theorem [18, pg. 68] is proved by considering the mapping of
L into the ideal lattice Id(L) of L which takes an element a of L to the principal
ideal a | generated by a. One easily checks that this embedding preserves all
existing meets, but destroys all but essentially finite joins.

Theorem 8.2 FEvery lattice can be join and meet densely embedded, hence requ-
larly embedded, into a complete lattice C'.

Proof. We provide a sketch, for complete details see [35]. Given a lattice L, let
P be the power set of L. Define maps L,U : P — P by setting, for each A C L,
L(A) ={z|Va € A,z <a} and U(A) = {z|Va € A,a < z}. One easily checks that
the composite LU is a closure operator on P. Therefore the closed sets form a
complete lattice C' under set inclusion. Consider the map ¢ : L — P defined by
setting ¢(a) = a J. Obviously ¢ is a lattice embedding of L into C. If A = LU(A)
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it follows that A = ({u | |u € U(A)} and, as A is a downset, A =J{a | |a € A}.
Therefore ¢ is both join and meet dense. 1

In [5] it was shown that up to isomorphism there is only one join and meet
dense completion of a lattice L. We call this the MacNeille completion of L.
Unfortunately MacNeille completions of lattices are poorly behaved when it comes
to preserving identities. In fact, the variety of all lattices and the variety of one
element lattices are the only varieties of lattices which are closed under MacNeille
completions [29]. One might hope to find a completion which is both regular and
preserves identities. This is not possible [4, pg. 233].

Proposition 8.3 There is a distributive lattice which can not be reqularly embed-
ded into any complete distributive lattice.

We next turn our attention to Boolean algebras. Recall the classic result of
Stone that for each Boolean algebra B there is a zero dimensional compact Haus-
dorff space X, called the Stone space of B, with B isomorphic to the Boolean
algebra of clopen subsets of X. Stone’s representation theorem provides two nat-
ural completions for Boolean algebras.

Theorem 8.4 Let B be a Boolean algebra with Stone space X. Then the collection
Reg(X) of all reqular open subsets of X is a complete Boolean algebra, and the
natural embedding of B into Reg(X) is both join and meet dense, hence regular.

For a proof of this well known theorem see [4, pg. 157]. In view of the charac-
terization of MacNeille completions of lattices as join and meet dense completions
[5] we call this the MacNeille completion of B and denote it B*. Obviously taking
the full power set of X will also provide a completion of B, which we call the
canonical completion of B and denote by B?. An abstract characterization of this
completion follows below.

Theorem 8.5 Up to isomorphism there is a unique embedding e : B — C of a
Boolean algebra B into a complete Boolean algebra C' such that (i) each element of
C is a join of meets and a meet of joins of elements of e[B], and (ii) if S,T C B
with A e[S] < \/ e[T] then there are finite S' C S, T' CT with A\ e[S'] <\ e[T"].

We remark that the most useful of lattice completions, the ideal lattice, can-
not be applied to Boolean algebras as Id(B) is only complemented if B is finite.
However, the MacNeille completion B* does provide even a strengthening of (8.1)
in the Boolean case. We next turn our attention to completions of ortholattices.
Again, we can not use ideal lattices to obtain completions as they will not be (or-
tho) complemented. In fact, it is not at first apparent that there are any general
methods to complete ortholattices. To the best of our knowledge, there are two.

Theorem 8.6 Up to isomorphism, there is a unique embedding e : L — C of an
OL L into a complete OL C' which is both join and meet dense, hence regular.
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We call this the MacNeille completion L* of L. Existence was proved by
MacLaren [34] by taking all subsets A C L which are equal to the lower bounds
of their upper bounds, and defining the orthocomplementation A~ = {u' : u is an
upper bound of A}. Uniqueness follows from [5].

Theorem 8.7 Up to isomorphism, there is a unique embedding e : L — C of an
OL L into a complete OL C such that (i) every element of C is a join of meets
and a meet of joins of elements of e[L], and (ii) if S,T C B with \e[S] <\ e[T]
then there are finite S' C S, T' C T with A\ e[S'] <V e[T"].

We call this the canonical completion L7 of L. We remark that the corre-
sponding theorem holds for bounded lattices as well. Methods of obtaining such a
completion have been around for some time. For lattices one uses Urquhart’s [42]
stable sets and for ortholattices Goldblatt’s filter space [22]. However, the first
abstract characterization and detailed study of this completion is in [21]. Unfor-
tunately, neither completion behaves well with respect to preserving equations.

Proposition 8.8 There is an OML L with neither L* nor L° orthomodular.

To produce an OML whose MacNeille completion is not orthomodular take
an incomplete inner product space E. Let L be the OML of all subspaces S of
E which are either finite dimensional, or whose orthogonal subspace S~ is finite
dimensional. Then the MacNeille completion of L is the ortholattice L(E,—) of
all subspaces S of E which satisfy S = S~ . But by a theorem of Amemiya and
Araki [2] L(E, —) is orthomodular iff E is complete. More elementary examples are
given in [26] using a technique to construct an orthomodular lattice from a given
lattice due to Kalmbach [31]. An example of an OML whose canonical completion
is not orthomodular is given in [30]. This example is also based on the Kalmbach
construction. Taking the direct product of these two counterexamples yields an
OML with neither L* nor L? orthomodular. We remark that co! ! mpletions can
be found for these examples (based on completing the underlying inner product
space or the underlying lattice used in the Kalmbach construction), but in general
the following remains one of the major open problems in the area.

Problem. Can every OML be embedded into a complete OML.

There are partial results known. In the presence of a finiteness condition
we obtain the following generalization of the well known fact that the MacNeille
completion of a Boolean algebra is Boolean.

Theorem 8.9 Let V be a wvariety generated by a class of OMLs with a finite
upper bound on the lengths of their chains. Then V is closed under MacNeille
completions.

The proof of this theorem [28] relies heavily on the representation theorem
for such varieties outlined in theorem (5.8). It is a minor open problem whether
this theorem would apply to a variety generated by a class K of OMLs with a
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finite upper bound on the number of their commutators. The following results are
useful in setting limits on what one can hope to obtain in a completion. See [30]
for a proof of the following.

Proposition 8.10 Every regular completion of an OML factors through the Mac-
Neille completion. Therefore there is an OML which cannot be regularly embedded
into a complete OML.

Theorem 8.11 There is a MOL which cannot be embedded into a complete MOL.

Proof. A deep theorem of Kaplansky [32, pg. 178] shows every complete MOL
is a continuous geometry, and therefore has a dimension function. Let M be the
MOL of all subspaces S of a Hilbert space H for which either S or S~ is finite
dimensional. As M contains a countable set of pairwise perspective atoms, M
cannot admit a dimension function, hence cannot be embedded into a complete
MOL. 1

We conclude this section with a positive result which may eventually be helpful
in solving the completion problem. This result has a long history, and we honestly
do not know who to credit for it. See [11] for an outline of a proof and description
of the history.

Proposition 8.12 Every OML can be embedded into an OML in which each ele-
ment is a join of two or fewer atoms.

9 Categorical properties

Every variety of algebras naturally forms a category whose objects are the alge-
bras in the variety and whose morphisms are the homomorphisms between these
algebras (not necessarily onto homomorphisms). There are a large number of cat-
egorical questions one can ask of such varieties. We content ourselves with but a
few, namely questions relating to monomorphisms, epimorphisms, injectives and
projectives. The survey article [33] is excellent source of information on categorical
issues relating to varieties of algebras.

Definition 9.1 Let V be a variety and h : B — C be a homomorphism between
members of V.. We say h is a monomorphism if for all algebras A in V and all
homomorphisms f,g : A — B we have ho f = ho g implies f = g. Similarly
h: B — C is an epimorphism if for all algebras D in V and all homomorphisms
f,9:C = D we have foh = goh implies f = g.

One easily sees that one-one homomorphisms are monomorphisms and onto
homomorphisms are epimorphisms. The question arises whether there are any
others. For monomorphisms the answer is easily found.

Proposition 9.2 Let V' be a variety of ortholattices. Then the monomorphisms
iV are exactly the one-one homomorphisms.
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This is a well known result which holds for any variety of algebras. The proof
follows by noting that for any B in V and any z # y in B there are homomorphisms
f, g from the free algebra on one generator (a four element Boolean algebra in our
setting) with f mapping the generator to  and g mapping the generator to y. The
dual question whether every epimorphism is onto poses much greater difficulty.
Before describing the known results, we introduce an additional notion [23, pg.
252] which is also of considerable interest.

Definition 9.3 Let K be a class of algebras of the same type. A V -formation in IC
is a quintuplet (B, Ly, Lo, f1, f2) where B, Ly, Ly are algebras in K and f; : B — L;
(i = 1,2) are embeddings. An amalgamation of the V-formation in K is a triple
(C,g1,92) where C is an algebra in K and g; : L; — C (i = 1,2) are embeddings
with g1 o fi = g2 o fo. The amalgamation is called strong if g1[L1] N go[L2] =
91[f1[B]]. The class K is said to have the (strong) amalgamation property if every
V -formation in K has a (strong) amalgamation.

The connection between amalgamations and epimorphisms is given by the
following well known result [33].

Lemma 9.4 If a variety V' has the strong amalgamation property, then the epi-
morphisms in V are exactly the onto homomorphisms.

Proof. Suppose h : B — C is not onto. If (D, f,g) is a strong amalgamation of
the V-formation (h[B],C,C,id,id) then foh =gohbut f #g. 1

Proposition 9.5 The variety of OLs has the strong amalgamation property,
therefore the epimorphisms in this variety are exactly the onto homomorphisms.

Proof. A more detailed treatment is given in [10] but we can outline the idea.
Suppose Ly and Ly are ortholattices and that B = Ly N L, is a subalgebra of both.
Define a relation < on Ly ULy by setting 2 < y iff one of the following occurs (i) z,y
belong to the same L; (i = 1,2) and z <; y, or (ii) z belongs to L;, y belongs to L;
and there is some b in B with z <; b <; y. One easily checks that (L; ULs, <) is a
partially ordered set and that the union of the orthocomplementations on Ly, Lo is
an orthocomplementation on L; U Ly. The result then follows from the well known
[34] and easily proved fact that the MacNeille completion of a orthocomplemented
poset is an ortholattice. 1

The following well known result [33] is an interesting exercise.

Proposition 9.6 The variety of Boolean algebras has the strong amalgamation
property, so epimorphisms in this variety are exactly the onto homomorphisms.

The situation for orthomodular lattices is not so fortunate [10].

Proposition 9.7 Neither the variety of OMLs, nor the variety of MOLs, have
the amalgamation property.
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There are however a number of special cases where V-formations can be amal-
gamated in OML. The first result below was established in [10], the second is a
reformulation of Greechie’s celebrated “paste job” [24].

Theorem 9.8 In the variety of OMLs, any V-formation (B, L1, Lo, f1, f2) with
B Boolean has a strong amalgamation.

Theorem 9.9 Let (B, Ly, Lo, f1, f2) be a V-formation in the variety of OMLs
such that there is an element a in B with f;[B] the union of the principal ideal
[0, fi(a)] and the principal filter [f;(a'),1] in L;. Then there is a strong amalga-
mation (C, g1,g92) of this V-formation with L = g1[L1] U ga[L2].

Unfortunately, the above considerations have left the following open questions,
which we consider to be basic open problems in the area.

Problem. In the variety of OMLs (MOLs) are the epimorphisms exactly the onto
homomorphismsT’

We remark that in [11] an effective procedure is given to determine if epimor-
phisms coincide with onto homomorphisms in any variety generated by a finite
number of finite OMLs. We next turn our attention to injective and projective
algebras.

Definition 9.10 An algebra C in a variety V is called injective if for every
monomorphism f : A — B and every homomorphism g : A — C there exists
a homomorphism h : B — C with ho f = g. Dually, C is called projective if for
every epimorphism f : B — A and every homomorphism g : C — A there exists
a homomorphism h : C — B with f oh = g. The notions of weakly injective and
weakly projective are formed by replacing monomorphisms and epimorphisms with
one-one and onto homomorphisms.

Note that injectives and weakly injectives coincide in any variety of algebras
as the monomorphisms in any variety are exactly the one-one homomorphisms.
Characterizing injectives in certain varieties of OLs will pose little difficulty.

Theorem 9.11 In the variety of Boolean algebras, an algebra is injective iff it is
complete. In the variety of OLs, the variety of OMLs and the variety of MOLs,
an algebra is injective iff it has exactly one element.

Proof. The result for Boolean algebras is well known [4, pg. 113]. Suppose V is
one of the varieties of OLs, OMLs, MOLs and C is a member of V' having more
than one element. As each of these varieties has simple algebras of arbitrarily
large cardinality (M O,) there is a simple algebra B in V' with cardinality greater
than C. For f : 2 - B and g : 2 — C the obvious embeddings, there is no
homomorphism h : B — C with (or without) ho f =g. 1

Note that projectives and weakly projectives need not coincide in a variety
where epimorphisms are not exactly the onto homomorphisms. We consider only
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weakly projectives. The following well known result [4, pg. 36] provides an abstract
characterization of the weakly projectives in any variety.

Theorem 9.12 For C an algebra in a variety V these are equivalent. (1) C is
weakly projective in V. (2) There is a free algebra F' in 'V and homomorphisms
f:F —=C and g:C — F with f o g the identity on C.

In particular any free algebra in V is weakly projective in V', and any weakly
projective in V must be a subalgebra of a free algebra. However, it can be difficult
to provide a more direct characterization of weakly projectives. Even for the
variety of Boolean algebras, no satisfactory description is known. But we do have
the following sufficient condition.

Proposition 9.13 In the variety of Boolean algebras, every at most countable
algebra with more than one element is weakly projective.

It is perhaps surprising that there are complete descriptions of the Boolean
algebras that are weakly projective in the varieties of OLs and OMLs.

Proposition 9.14 In the variety of ortholattices, a Boolean algebra is weakly pro-
jective iff it has two, four, or eight elements.

Proof. Let B be a Boolean algebra. If B has one, two, or four elements the result
is trivial. Kearnes established the result for an eight element Boolean algebra. If
B has more than eight elements then B does not satisfy Whitman’s condition. By
(6.10) every free ortholattice satisfies Whitman’s condition. Therefore B is not a
subalgebra of a free ortholattice, hence is not weakly projective.

Theorem 9.15 In the variety of OMLs, a Boolean algebra is weakly projective iff
it has more than one element and is at most countable.

A proof of this result is found in [15, 16]. There are a number of miscellaneous
results that may provide some feel for the topic. First, in the variety of OLs
benzene is weakly projective. More generally, one obtains weakly projectives in
OLs by replacing the intervals on the sides of benzene with a weakly projective
lattice and its dual. Second, M O, x 2 is weakly projective in the variety of OMLs.
Third, M O3 x 2 is not weakly projective in the variety of MOLs. The first two
results are (slight modifications of) well known and easily proved results. The
third is much more difficult, requiring in part, the delicate construction of an
infinite MOL with rather particular properties [14]. Also established in [15] is the
following.

Proposition 9.16 Let V be a variety of OMLs generated by a class of OMLs with
a finite upper bound on the lengths of their chains. If A € V is finite, then 2 x A
is weakly projective in V.

No doubt the reader is aware there are many open questions in this area.

Problems. Characterize the weakly projectives in the variety of OLs, OMLs, and
MOLs.
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