
Algebraic Aspects of Orthomodular LatticesGunter BrunsMcMaster University, Hamilton, Ontario, L8S 4K1, CanadaJohn HardingNew Mexico State University, Las Cruces, NM 88001, USAIn this paper we try to give an up-to-date account of certain aspects of the the-ory of ortholattices (abbreviated OLs), orthomodular lattices (abbreviated OMLs)and modular ortholattices (abbreviated MOLs), not hiding our own research in-terests.Since most of the questions we deal with have their origin in Universal Alge-bra, we start with a chapter discussing the basic concepts and results of UniversalAlgebra without proofs. In the next three chapters we discuss, mostly with proofs,the basic results and standard techniques of the theory of OMLs. In the remaining�ve chapters we work our way to the border of present day research, mostly no oronly sketchy proofs. Chapter 5 deals with products and subdirect products, chap-ter 6 with free structures and chapter 7 with classes of OLs de�ned by equations.In chapter 8 we discuss embeddings of OLs into complete ones. The last chap-ter deals with questions originating in Category Theory, mainly amalgamation,epimorphisms and monomorphisms.The later chapters of this paper contain an abundance of open problems. Wehope that this will initiate further research.1 Basic Universal AlgebraWe assume a de�nition of natural numbers which makes every natural number nthe set of all natural numbers k < n. An n-ary operation on a set A is a map f ofAn into A. An element a 2 An gives rise to a sequence (a(0); a(1); : : : ; a(n�1)) ofA, more commonly written with indices (a0; a1; : : : ; an�1). The number n is calledthe arity of the operation. It is important to allow the case n = 0. Since A0 = f;ga 0-ary or nullary operation is a map of f;g into A. Since such a map is completelydetermined by the element f(;) we usually specify 0-ary operations, also calledconstants, by giving the element f(;). A similar remark applies to unary (1-ary)operations. We \identify" them with maps from A to itself.A closure system over a set A is a set C of subsets of A satisfyingIf B � C then TB 2 C.Here we make the convention that the intersection of the empty subset of C is A,so that A 2 C. If C is a closure system over A and if X � A we de�ne the closure1



�X of X with respect to the closure system C by �X = TfCjX � C 2 Cg. �Xis obviously the smallest element of C containing X as a subset. If for B � C wede�ne WB = �(SB) and VB = TB then C becomes a complete lattice. �; is thesmallest and A is the largest element of this lattice.An algebraic closure system is a closure system C satisfyingIf K � C is a chain, i.e. totally ordered by �, then SK 2 C.This de�nition, one of many equivalent ones, is particularly useful in proofs in-volving Zorn's lemma.An algebra is a pair A = (A; (fi)i2I), where A is a set, called the underlyingset, or the universe of the algebra, and each fi is for some ni, an ni-ary operationon A. The family (ni)i2I is called the type of the algebra. Whereas every niis �nite it is necessary, in order to cover important examples, to admit in�nitelymany operations fi.A subuniverse of an algebra A = (A; (fi)i2I ) is a set B � A which is closedunder all operations fi, i.e. satis�esIf a 2 Bni then fi(a) 2 B,or, in more common and more cumbersome notationIf a0; a1; : : : ; ani�1 2 B then fi(a0; a1; : : : ; ani�1) 2 B.Let Sub(A) be the set of all subuniverses of A. The most important and in factcharacteristic property is:Proposition 1.1 If A is an algebra then Sub(A) is an algebraic closure system.As a consequence of this we obtain that for any X � A there exists a smallestsubuniverse �X containing X . �X is said to be the subuniverse generated by X .A subalgebra of an algebra A = (A; (fi)i2I ) is an algebra B = (B; (gi)i2I)such that B � A and gi is the restriction of fi to Bni , i.e.If a 2 Bni then gi(a) = fi(a).Clearly this requires that B is a subuniverse of A. Conversely, if B is a subuniverseof A and gi is the restriction of fi to Bni then (B; (gi)i2I) becomes a subalgebra ofA. Because of this one-one correspondence between subuniverses and subalgebraswe will not be too fussy about distinguishing them. Thus, we refer to Sub(A)as the closure system or lattice of subalgebras of A. Many authors require thede�nition of algebra and subalgebra that the underlying set be not empty. We seeno reason for this. 2



Let A = (A; (fi)i2I) and B = (B; (gi)i2I) be algebras of the same type. Ahomomorphism of A into B is a map ' : A ! B satisfying for every i 2 I anda 2 Ani'(fi(a)) = gi(' � a)or, in cumbersome notation,'(fi(a0; a1; : : : ; ani�1)) = gi('(a0); '(a1); : : : ; '(an1�1)):B is said to be a homomorphic image of A i� there exists a homomorphism of Aonto B. An embedding of A into B is a one-one homomorphism of A into B. Anisomorphism is an embedding which is onto.Closely related to homomorphisms are congruence relations. A congruencerelation, short: congruence, on an algebra A = (A; (fi)i2I) is an equivalencerelation on A, i.e. a re
exive, symmetric and transitive relation R satisfyingIf a; b 2 Ani and a(k)Rb(k)(0 � k < ni) then fi(a)Rfi(b).We express this by saying that R is compatible with the operation fi. If R is anequivalence relation on A and a 2 A de�ne the equivalence (congruence if R isa congruence) class of a modulo R by a=R = fbjaRbg and the quotient set of Amodulo R by A=R = fa=Rja 2 Ag.If R is a congruence in A we may de�ne operations gi in A=R. If a 2 Anide�ne a=R 2 (A=R)ni by (a=R)(k) = a(k)=R. Then de�ne gi byif a 2 Ani then gi(a=R) = fi(a)=R;in cumbersome notationgi(a0=R; a1=R; : : : ; ani�1=R) = fi(a0; a1; : : : ; ani�1)=R:With these operations (A=R; (gi)i2I) becomes an algebra of the same type as Athe so called quotient algebra A=R of A modulo R. The map �R : A ! A=Rde�ned by �R(a) = a=R becomes a homomorphism of A onto A=R, called thecanonical homomorphism of A onto A=R.We are now in a position to establish the basic relationship between homo-morphisms and congruences, known under various names.Homomorphism Theorem Let ' : A ! B be a homomorphism of A into B.De�ne a relation R = ker(') (the kernel of ') by aRb i� '(a) = '(b). ThenR is a congruence in A and there exists a unique map  : A=R ! B such that � �R = '. This map  is a one-one homomorphism of A=R into B.3



A=RA B�R ' If ' is onto then clearly  is onto, hence an isomorphism. Thus every homo-morphic image of A is isomorphic with a quotient algebra of A.It is of some importance that the set Con(A) of all congruences in A is analgebraic closure system over A�A.Let (Ak)k2K be a family of sets. The productQk2K Ak of the family consistsof all choice functions on the family, i.e. all maps � with domain K such that�(k) 2 Ak for all k 2 K. With every product Qk2K Ak there come maps prk ofthe product onto Ak de�ned by prk(�) = �(k). The map prk is called the k-thprojection. If the Ak = (Ak; (fki )i2I ) are algebras we de�ne operations fi in theproduct componentwise, i.e. by fi(�)(k) = fki (prk � �). The resulting algebraQk2K Ak is called the product of the family (Ak)k2K . In case of a product ofalgebras, the prk are homomorphisms.The cartesian product A � B of two sets is de�ned in basic set theory asf(a; b)ja 2 A; b 2 Bg. If A = (A; (fi)i2I ), B = (B; (gi)i2I ) we may de�ne opera-tions hi in A � B by hi(a) = (fi(prA(a)); gi(prB(a))). This gives a new algebraA�B. This can be subsumed under the product de�ned before. We leave out thedetails.An important property of products which, in more general settings, can beused to de�ne products is theExtension Property of Products If A, Ak (k 2 K) are algebras and for everyk 2 K, 'k is a homomorphism of A into Ak then there exists a unique homomor-phism of A into Qk2K Ak satisfying prk � ' = 'k for every k.A subdirect product of a family (Ak)k2K of algebras is a subalgebra A of theproductQk2K Ak such that every prk mapsA ontoAk. A subdirect representationof an algebra A is an embedding ' of A into a product Qk2K Ak such that themaps prk �' map A onto Ak. An algebra A is said to be subdirectly irreducible i�for every subdirect representation ' : A !Qk2K Ak one of the maps prk�' is one-one, hence an isomorphism. The fundamental result about subdirectly irreduciblesisBirkho�'s Subdirect Representation Theorem Every algebra is isomorphicwith a subdirect product of subdirectly irreducible algebras.4



Subdirect irreducibility of an algebra has a neat and very useful character-ization in terms of congruences. The smallest congruence of an algebra A =(A; (fi)i2I) is obviously the diagonal �A = f(a; a)ja 2 Ag. An algebra A =(A; (fi)i2I) is subdirectly irreducible i� there is a smallest congruence di�erentfrom �A.Let K be a class of algebras of the same type. We de�ne H(K) to be the classof all homomorphic images of algebras in K, S(K) the class of all subalgebras ofalgebras in K, and P (K) the class of all products of algebras in K. An equationalclass or variety of algebras is a class K with H(K) � K, S(K) � K and P (K) � K.If K is any class of algebras of the same type then HSP (K) is the smallest varietycontaining K.In our general considerations so far we have distinguished corresponding op-erations in algebras of the same type by giving them the same index. This is prac-tically never done in concrete cases. In these cases one identi�es correspondingoperations by denoting them by the same symbol. For illustration let us considerthe case of groups. In order to get subgroups as a special case of our generalnotion of subalgebras we have to consider a group as an algebra with the groupmultiplication as a binary operation, the forming of inverses as a unary operationand the unit as a constant. In order to make this �t our general development sofar we would have to introduce operations (say) f0; f1; f2. Instead of doing thiswe introduce special symbols � for the group multiplication, �1 for the forming ofinverses and e for the unit. We then say a group is an algebra (G; (�;�1 ; e)) of type(2; 1; 0), indicating the arities of the operations in the given order.2 The basics of ortholattices and orthomodularlatticesWe assume that the reader is familiar with the basics of lattice theory, it's descrip-tion as a partially ordered set and it's representation by Hasse diagrams.A bounded lattice is an algebra (L; (_;^; 0; 1)) where (L; (_;^)) is a lattice,0 is a lower bound of L and 1 is an upper bound of L. An orthocomplementationon a bounded lattice is a unary operation 0 satisfyinga _ a0 = 1 a ^ a0 = 0a � b) b0 � a0a00 = a:An easy consequence of this are the DeMorgan laws(a _ b)0 = a0 ^ b0; (a ^ b)0 = a0 _ b0:5



Each of these can replace the second condition in the description, thus de�ningan orthocomplementation by equations. An ortholattice (abbreviated: OL) is analgebra (L; (_;^;0 ; 0; 1)) where (L; (_;^; 0; 1)) is a bounded lattice and 0 is anorthocomplementation on it. If one interchanges the binary operations _;^ andthe constants 0; 1 one again obtains an OL, called the dual of the original OL. Ifthe operations are clear we speak simply of the OL L.An orthomodular lattice (abbreviated: OML) is an OL satisfying the ortho-modular lawif a � b then a _ (a0 ^ b) = b.This law can again be relaced by the equationa _ (a0 ^ (a _ b)) = a _ b:The prime example of an OL which is not orthomodular is the benzene ring (seediagram).
ab b0a0
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1

In fact we haveProposition 2.1 Let L be an OL. These are equivalent(1) L is an OML(2) if a � b and a0 ^ b = 0 then a = b(3) the benzene ring is not a subalgebra of L.The proof of this is straightforward.A fundamental concept in OLs is commutativity. An element a is said tocommute with an element b, in symbols aCb, if a = (a^ b)_ (a^ b0). Clearly a � bimplies aCb and aCb implies aCb0. The commutator 
(a; b) of elements a; b of anOL is de�ned by 
(a; b) = (a _ b) ^ (a _ b0) ^ (a0 _ b) ^ (a0 _ b0).Proposition 2.2 In an OL L the following are equivalent.6



(1) L is an OML(2) aCb) bCa(3) aCb) a0Cb(4) aCb) a _ (a0 ^ b) = a _ b(5) aCb, 
(a; b) = 0.Proof. 1) 5. Assume aCb. Then 
(a; b) = (a0 _ b)^ (a_ b)^ (a0 _ b0)^ (a_ b0) =(a0 _ b)^ ((a^ b)_ (a^ b0)_ b)^ (a0 _ b0)^ ((a^ b)_ (a^ b0)_ b0) = (a0 _ b)^ ((a^b0) _ b) ^ (a0 _ b0) ^ ((a ^ b) _ b0) = b ^ b0 = 0, using the dual of the orthomodularlaw. Assume conversely that 
(a; b) = 0. Clearly a � (a ^ b) _ (a ^ b0). Buta ^ (a0 _ b0) ^ (a0 _ b) � 
(a; b) = 0 which gives aCb by condition 2 of (2.1).5) 2. aCb) 
(a; b) = 0) 
(b; a) = 0) bCa.2) 3. aCb) bCa) bCa0 ) a0Cb.3) 4. a_(a0^b) � a_b) a_(a0^b)Ca_b) a0^(a_b0)Ca_b) a0^(a_b0) =(a0^ (a_b0)^ (a_b))_ (a0^ (a_b0)^a0^b0) = (a0^ ((a0^b)_ (a0^b0))0)_ (a0^b0) =(a0 ^ a) _ (a0 ^ b0) = a0 ^ b0. Thus a _ (a0 ^ b) = a _ b.4) 1. Obvious since a � b implies aCb.In an OML aCb holds i� a _ (a0 ^ b) = a _ b. If this last equation holds wehave (a _ b) ^ (a _ b0) = (a _ (a0 ^ b)) ^ (a _ b0) = a, hence aCb.Proposition 2.3 Let L be an OML, a; xi 2 L (i 2 I). If aCxi (i 2 I) and ifWI xi exists then Wi2I(a ^ xi) exists and a ^Wi2I xi = Wi2I(a ^ xi), and dually.Proof. Clearly a^WI xi is an upper bound of fa^ xiji 2 Ig. Let v be any upperbound of this set and put u = v ^ a ^ Wi2I xi. Then a ^ xj � u � a ^ Wi2I xiand u0 ^ a ^ Wi2I xi � (a0 _ x0j) ^ a ^ WI xi = a ^ x0j ^ Wi2I xi (j 2 I), henceu0 ^ a ^Wi2I xi � a ^Vi2I x0i ^Wi2I xi = 0, hence u = a ^Wi2I xi by 2 of (2.1).It follows that a ^Wi2I xi is the least upper bound of fa ^ xiji 2 Ig.If a is an element of an OML L we de�ne C(a) = fx 2 LjaCxg. If A � L wede�ne C(A) = fx 2 LjaCx holds for all a 2 Ag.Proposition 2.4 If a is an element of an OML L, if xi 2 C(a) (i 2 I) and ifWi2I xi exists then Wi2I xi 2 C(a), and dually. In particular C(a) is a subalgebraof L.Proof. We have (a^Wi2I xi)_(a0^Wi2I xi) = Wi2I((a^xi)_(a0^xi)) = Wi2I xi,hence Wi2I xiCa, hence Wi2I xi 2 C(a).An element c of an OML is said to be central if it commutes with all elementsof L, and the set of all central elements C(L) is called the centre of L.For elements a � b in an OL L we de�ne [a; b] = fxja � x � bg and speak ofthe interval [a; b]. 7



Proposition 2.5 Let a � b be central in an OML L. (1) ([a; b]; (_;^; �; a; b)) isan OL where � is de�ned by x� = a _ (b ^ x0). (2) The map f : L! [a; b] de�nedby f(x) = a _ (b ^ x) is an onto homomorphism.Proof. (1) Let a � x � b. Then x _ x� = x _ a _ (b ^ x0) = x _ (b ^ x0)and as x � b orthomodularity gives x _ x� = b. As xCa; b ^ x0 (2.3) yieldsx^x� = x^(a_(b^x0)) = (x^a)_(x^b^x0) = a. Note x�� = a_(b^(a_(b^x0))0) =a _ (b ^ a0 ^ (b0 _ x)). Then as b � x the dual of the orthomodular law givesx�� = a _ (a0 ^ x) and as a � x the orthomodular law gives x�� = x. Therefore �is an orthocomplementation. (2) Obviously f(x0) = x�. In view of the DeMorganlaws it su�ces to show f(x _ y) = f(x) _ f(y). As b is central (2.3) providesf(x_y) = a_(b^(x_y)) = a_(b^x)_(b^y) = (a_(b^x))_(a_(b^y)) = f(x)_f(y).Therefore f is a homomorphism and trivially onto.Corollary 2.6 Every interval [a; b] in an OML L is an OML under the ortho-complementation x� = a_ (b^x0). Further, this OML is a homomorphic image ofa subalgebra of L.Proof. Suppose [a; b] is an interval in L. Consider the subalgebra S of L consistingof all elements which commute with both a; b. Then S contains the interval [a; b]and a; b are central in the OML S. From the previous proposition, [a; b] is an OLunder the orthocomplementation x� = a_ (b^ x0), and this OL is a homomorphicimage of the OML S, hence is orthomodular.Lemma 2.7 If c is central in an OML L, then f : L ! [0; c] � [0; c0] de�ned byf(x) = (x ^ c; x ^ c0) is an isomorphism. Conversely, if f : L ! A � B is anisomorphism, then there is a central element c in L with A �= [0; c] and B �= [0; c0].Proof. Assume c is central in L. By (2.5) the map f : L ! [0; c] � [0; c0] isa homomorphism. As (x ^ c) _ (x ^ c0) = x, f is one-one. For x � c, y � c0commutativity gives f(x_ y) = (x; y), hence f is onto. For the converse, take c inL with f(c) = (1; 0).The most important tool for computations in OMLs is theFoulis-Holland Theorem If one of the elements a; b; c of an OML commuteswith the other two then the sublattice (not subalgebra) generated by fa; b; cg isdistributive.Proof. Assume a; bCc. Then c is central in �fa; b; cg and hence the map x 7!(x^c; x^c0) is an isomorphism of �fa; b; cg with the product [0; c]� [0; c0]. Clearlyfa ^ c; b ^ c; cg generate a distributive sublattice of [0; c] and fa ^ c0; b ^ c0; c0; 0ggenerate a distributive sublattice of [0; c0]. The sublattice generated by fa; b; cg isclearly isomorphic with a sublattice of the product of these two sublattices.Proposition 2.8 Let X be a subset of an OML L. The subalgebra �X generatedby X is Boolean i� any two elements of X commute.8



Proof. Clearly in a Boolean algebra any two elements commute. Assume thatany two elements of X commute. Then X � C(X), hence �X � C(X), henceX � C(�X), hence �X � C(�X). Thus any two elements of �X commute, whichimplies that �X is Boolean by the Foulis-Holland Theorem.3 SubalgebrasWe begin with Boolean subalgebras. Note that every element x of an OL L iscontained in a Boolean subalgebra of L, namely the subalgebra f0; x; x0; 1g. Also,as the union of a chain of Boolean subalgebras is again a Boolean subalgebra,a direct application of Zorn's lemma yields that each Boolean subalgebra of Lis contained in a maximal Boolean subalgebra of L, also termed a block of L.ThereforeProposition 3.1 Every OL is the union of its blocks.Suppose L is an OL. If L is an OML then for any a � b in L we have aCb, henceby (2.8) �fa; bg is Boolean, so a; b are elements of some block of L. Conversely,if L is not an OML then by (2.1) there are a � b in L which generate a benzenering, hence are not elements of any Boolean subalgebra of L. ThereforeProposition 3.2 An OL L is an OML i� the partial ordering on L is the unionof the partial ordering on the blocks of L.This shows that each OML is determined by its blocks. We remark that thereare a number of results, such as Greechie's Loop Lemma [25], Dichtl's astroids[20], and Kalmbach's bundle lemma describing conditions on a family of Booleanalgebras (Bi)I which ensure their union is an OML. See [32] for a complete account.We next collect a few basic and well known properties of blocks, all of which areeasily proved.Proposition 3.3 Let L be an OML. (1) The centre C(L) is the intersection ofthe blocks of L. (2) If M is a subalgebra of L, then the blocks of M are exactlyfB \M jB is a block of Lg. (3) If (Li)I is a family of OMLs, then the blocks ofQI Li are fQI BijBi is a block of Lig.For OMLs L;M and a homomorphism ' : L!M the image '[B] of any blockof L is obviously a Boolean subalgebra of M , but need not be a block (considerthe identical embedding of 2 into 22). We are not aware of such an example withthe homomorphism ' onto.An important class of OLs are those of height two, i.e. in which the maximalnumber of elements in a chain is three. Clearly such an OL is determined byspecifying its cardinality, which, if �nite, must be some even number at least four.De�ne MOk for � � 1 to be the OL of height two having cardinality 2 � � + 2.Extend this by setting MO0 to be a two element Boolean algebra. Clearly each9



MO� is a modular ortholattice (abbreviated: MOL). A diagram of MO2 is givenbelow.
a a0 b b00

1
It is a simple, but useful observation that for any elements x; y in an OL L,�fx; yg is MO2 i� 
(x; y) = 1 and L is non-trivial. This yieldsLemma 3.4 Let L be an OML generated by the elements x; y. Then [0; 
(x; y)] iseither trivial or MO2, [0; 
(x; y)0] is Boolean, and L �= [0; 
(x; y)]� [0; 
(x; y)0].Proof. As 
(x; y) commutes with both x; y, it is central in L. So there arehomomorphisms f : L ! [0; 
(x; y)] and g : L ! [0; 
(x; y)0] de�ned by settingf(z) = z^
(x; y) and g(z) = z^
(x; y)0. Note 
(f(x); f(y)) = f(
(x; y)) is the unitof [0; 
(x; y)] so this interval is either MO2 or trivial. Similarly 
(g(x); g(y)) = 0so g(x) commutes with g(y) and by (2.8) the interval [0; 
(x; y)0] is Boolean.As any �nitely generated Boolean algebra is �nite we then haveCorollary 3.5 For x; y elements of an OML, �fx; yg is �nite.An as an OML is Boolean i� all elements commute (2.8) we haveCorollary 3.6 If L is a non-Boolean OML, then MO2 is a homomorphic imageof a subalgebra of L.A variety V is called locally �nite if for every A 2 V and every �nite subsetS � A the subalgebra �S generated by S is �nite. The �rst of these two corollariesmay raise some false expectations|none of the varieties of MOLs, OMLs, or OLsis locally �nite. To see this consider the MOL L of all subspaces of a threedimensional vector space over the reals with orthocomplementation being givenby orthogonal subspaces. One can easily �nd three elements of L that generate anin�nite subalgebra.There is a useful weakening of the notion of locally �nite.De�nition 3.7 A variety V has the �nite embedding property (f.e.p.) if for everyA 2 V and every �nite S � A there is a �nite B 2 V and a one-one set mapping' : S ! B such that for each basic operation fi and each s0; : : : ; sni�1 2 S, iffi(s0; : : : ; sni�1) 2 S then '(fi(s0; : : : ; sni�1)) = fi('(s0); : : : ; '(sni�1)).10



It follows from consideration of MacNeille completions of orthocomplementedposets (section 8) that the variety of OLs has the f.e.p., and it follows from resultson �nite MOLs (section 7) that the variety of MOLs does not have f.e.p. There is anatural hope that one can combine the fact that Boolean algebras are locally �nitewith various techniques to produce OMLs by \gluing" together Boolean algebrasto show that the variety of OMLs has the f.e.p. Such attempts have not so farbeen successful. Due to the connection to the word problem, the following is oneof the basic outstanding problems in the theory of OMLs.Problem. Does the variety of OMLs have the f.e.p.?4 Congruences and homomorphismsGiven an OL (L; (_;^;0 ; 0; 1)) one calls the bounded lattice (L; (_;^; 0; 1)) thebounded lattice reduct of the OL. Clearly any homomorphism between two OLs isalso a homomorphism between their bounded lattice reducts. For Boolean algebras(B; (_;^;0 ; 0; 1)) and (C; (_;^;0 ; 0; 1)) it is well known that a map f : B ! C isa homomorphism between the Boolean algebras i� it is a homomorphism betweentheir bounded lattice reducts. But it is a simple matter to �nd an automorphismof the bounded lattice reduct of MO2 that is not an automorphism of MO2.However,Proposition 4.1 If L is an OML then every congruence on the bounded latticereduct of L is a congruence on L.Proof. Let R be a congruence on the lattice reduct of L. We must show thataRb implies a0Rb0. We �rst show this in the special case that a � b. In this case,orthomodularity gives a0 = b0 _ (b ^ a0). So a0 = b0 _ (b ^ a0)Rb0 _ (a ^ a0) = b0. Inthe general case aRb implies (a ^ b)R(a _ b), hence (a ^ b)0R(a _ b)0, and as a0; b0lie between (a ^ b)0 and (a _ b)0 the result follows.We next examine more closely the structure of congruences on an OML.Lemma 4.2 Let R be a congruence on an OML L. For a; b 2 L these are equiv-alent. (1) aRb, (2) (a _ b) ^ (a0 _ b0)R0, (3) a _ x = b _ x for some x with xR0.Proof. Assuming (1) (a _ b) ^ (a0 _ b0)R(a _ a) ^ (a0 _ a0) = 0. Assuming (2) setx = (a _ b) ^ (a0 _ b0). Assuming (3) a = (a _ 0)R(a _ x) = (b _ x)R(b _ 0) = b.An algebra A is called congruence regular if every congruence on A is de-termined by any one of its equivalence classes. In other words, A is congruenceregular if for any a in A and any congruences R;S on A we have a=R = a=Simplies that R = S. Groups and Boolean algebras are examples of congruenceregular algebras, while distributive lattices are not. The following is a special caseof a well known result that applies to any lattice with 0 where each interval [0; x]is complemented. 11



Proposition 4.3 Every OML is congruence regular.Proof. Suppose R;S are congruences on an OML L and that a=R = a=S for somea in L. If xR0 then for y a complement of x in the interval [0; a_ x] we have thatxR0 implies yR(a _ x), hence yS(a _ x), giving xS0. Thus a=R = a=S implies0=R = 0=S. Suppose then that cRd. Let e be a complement of c in the interval[0; c _ d]. As cR(c _ d) we have eR0, hence eS0, so cS(c _ d), and cSd.As is customary with congruence regular algebras, we often choose to workwith a particular equivalence class of a congruence. For groups we choose theequivalence class containing the group identity, which is a normal subgroup of thegroup. For OMLs, we choose the equivalence class containing 0. The followingformula for recovering a congruence from its 0 equivalence class is implicit in theprevious proof.Proposition 4.4 If R is a congruence on an OML L, then aRb i� a _ x = b _ xfor some xR0.An algebra A is called congruence permutable if for any congruences R;Son A we have R � S = S � R. Note that groups, rings and Boolean algebrasare congruence permutable while distributive lattices are not. The following is aspecial case of the well known result that any relatively complemented lattice iscongruence permutable [18, pg. 93].Proposition 4.5 Every OML is congruence permutable.Recall, for an OL L the collection Con(L) of all congruences on L is an alge-braic closure system over L�L, hence forms complete lattice under set inclusion.Meets in this lattice are given by set intersection and upwardly directed joins aregiven by unions. If L is an OML, then as L is congruence permutable, binary joinsin this lattice are given by relational product. The collection Id(L) of all idealsof the lattice L also forms a complete lattice under set inclusion. Meets in thislattice are given by set intersection. Upwardly directed joins are given by unions,and binary joins are given by I _ J = fxjx � a _ b for some a 2 I; b 2 Jg.Proposition 4.6 For an OML L the map F : Con(L)! Id(L) de�ned by F (R) =0=R is a bounded lattice embedding which preserves arbitrary joins and meets.Proof. For a congruence R clearly 0=R is an ideal. As L is congruence regularF is one-one. As meets in both Con(L) and Id(L) are given by intersections, Fpreserves arbitrary meets, and similarly F preserves upwardly directed joins. Itremains only to show that F preserves binary joins. Let R;S be congruences.Note that their join in Con(L) is R�S. If z belongs to F (R�S) there is some xR0and some yS0 with x _ y = x _ z, hence z � x _ y. Conversely, if xR0 and yS0,then (x_ y)(R �S)0 as R �S is a congruence. So z � x_ y implies that z(R �S)0.This shows that F (R � S) = F (R) _ F (S).12



It is of interest to characterize those ideals that arise as the zero equivalenceclasses of congruences on an OML L, much the way we distinguish normal sub-groups of a group.Proposition 4.7 Let I be an ideal of an OML L. Then I is the zero equivalenceclass of some congruence on L i� x 2 I and y 2 L implies y ^ (y0 _ x) 2 I.Proof. Obviously if I = 0=R for some congruence R, then x 2 I , y 2 L impliesy ^ (y0 _ x)Ry ^ (y0 _ 0), so y ^ (y0 _ x) belongs to I. Conversely, assume that I isclosed under the given condition. Set R = f(a; b)ja _ x = b _ x for some x 2 Ig.As 0 is in I R is re
exive. By the symmetry of the de�nition R is symmetric.As I is closed under �nite joins it follows that R is transitive, and further thatR is compatible with joins. It remains only to show that R is compatible withorthocomplementation. Suppose aRb. Then a _ x = b _ x for some x in I . Soa0 ^ (a _ x) and b0 ^ (b _ x) belong to I , hence a0 ^ (a _ b _ x) and b0 ^ (a _ b _ x)belong to I , and as I is a downset a0 ^ (a_ b) and b0 ^ (a_ b) belong to I . As I isclosed under joins and a _ b commutes with both a0; b0 we have (a _ b) ^ (a0 _ b0)belongs to I . But a0_((a_b)^(a0_b0)) = a0_b0 and b0_((a_b)^(a0_b0)) = a0_b0.Thus a0Rb0.Among the most useful results about the congruence lattice of an OL followsbelow. This will open the door to such powerful techniques as J�onsson's Theorem[17, pg. 147].Proposition 4.8 For an OL L, Con(L) is distributive.Proof. It is well known that the congruence lattice of any lattice is distributive[18, pg. 75]. Our result then follows from the fact that the congruence lattice ofan algebra A is a sublattice of the congruence lattice of any reduct of A.To summarize, we have shown that OMLs are congruence regular, congru-ence permutable, and congruence distributive. It seems to be an open questionto completely characterize those lattices which are isomorphic to the congruencelattice of some OML. As a �nal remark we note that matters are much worse in theabsence of orthomodularity. Ortholattices are not in general congruence regular,or congruence permutable, but, as shown above, are congruence distributive.5 Products, directly and sub-directly irreduciblesA congruence R on an OML L is called a factor congruence if R has a complementin the congruence lattice of L. Note, as Con(L) is distributive R will then haveexactly one complement, which we denote by R0. For readers familiar with thede�nition of factor congruences for general algebras [17, pg. 52] we recall thatevery OML is congruence permutable. 13



Lemma 5.1 If R is a factor congruence on an OML L, then the natural mapf : L ! L=R � L=R0 is an isomorphism. Conversely, if f : L ! A � B is anisomorphism, then the kernels of pr1 � f and pr2 � f are complementary factorcongruences.Proof. By general considerations f is a homomorphism. If f(x) = f(y), then(x; y) belongs to both R and R0, hence x = y. Given x; y in L, the fact that R;R0permute and join to the largest congruence of L gives the existence of z with xRzand zR0y. Then f(z) = (x=R; y=R0). Therefore the map f is one-one and onto.Conversely, if R and S are the kernels of the natural projections of A�B onto Aand B, then R;S intersect to the identical relation on A � B, and for any (a; b),(c; d) in A�B, (a; b)R(a; d) and (a; d)S(c; d). Thus R �S is the universal relationon A�B.The exact nature of the correspondence between central elements and factorcongruences on an orthomodular lattice L is made precise by the following result.We leave the proof to the reader.Proposition 5.2 The map c 7! f(x; y)jx _ c = y _ cg is a lattice isomorphismbetween C(L) and the Boolean subalgebra of Con(L) of factor congruences.De�nition 5.3 An ortholattice L is called directly irreducible if for every iso-morphism f : L ! L1 � � � � � Ln there is an index k so that the projectionprk � f : L! Lk is an isomorphism.In view of the above remarks we have the following result.Proposition 5.4 For an OML L, these are equivalent. (1) L is directly irre-ducible, (2) C(L) consists of exactly two elements, (3) L has exactly two factorcongruences.Lemma 5.5 If R is a congruence on an OML L and 0=R has a largest elementc, then c is central in L and R is a factor congruence.Proof. As cR0 it follows that x ^ (x0 _ c) belongs to 0=R for each x in L. Hencex ^ (x0 _ c) � c so x ^ (x0 _ c) = x ^ c for all x in L, showing that c is central.Therefore c0 is central and there is a congruence R0 with 0=R0 equal to [0; c0]. ThenR;R0 are complements in the congruence lattice of L.Recall, an OL L is subdirectly irreducible if it has a least non-zero congruence,and simple if it has exactly two congruences. Obviously any simple OL is sub-directly irreducible, and every subdirectly irreducible OL is directly irreducible.From the preceding lemma we have the following.Proposition 5.6 A �nite OML is directly irreducible i� it is simple. Thereforeevery �nite OML is isomorphic to a �nite direct product of simple OMLs.14



Proof. Every �nite OML is isomorphic to a �nite direct product of directlyirreducible OMLs.This result can be easily generalized to hold for any OML in which all chainsare �nite. More generally, it is known to hold for any chain �nite relatively com-plemented lattice [18, pg. 94]. The �rst step towards a di�erent generalization of(5.6) is given by the following [27].Theorem 5.7 The notions of directly irreducible and simple coincide in anyvariety V generated by a class of OMLs with a �nite upper bound on the lengthsof their chains.It is hopeless to expect that each OML in a variety such as V will be iso-morphic to a direct product of simple algebras. In the Boolean case, this wouldamount to having each Boolean algebra B isomorphic to a power 2X for some setX , and by cardinality considerations alone this is impossible for any countableBoolean algebra. However, Stone's theorem provides that any Boolean algebra Bis isomorphic to the collection of all continuous functions in 2X for some Booleanspace X (where 2 is given the discrete topology). We obtain a weaker, but useful,analogue of Stone's theorem.Theorem 5.8 Let L be in a variety V generated by a class of OMLs with a �niteupper bound on the lengths of their chains. Then there is a family of OMLs Lxindexed by the elements x of a Boolean space X, and a topology � on SfLxjx 2 Xgsuch that (i) the subspace topology on each Lx discrete, (ii) Lx simple for all x ina dense open subset of X, and (iii) L �= ff 2QLxjf is continuousg.While this result might seem ungainly, there are e�ective tools for workingwith such a representation|one can essentially lift many �rst order propertiesfrom the Lx to L. For further details of this result see [19, 28]. We remark thatthe reader familiar with the notion of discriminator varieties [17, pg. 165] willhave seen representation theorems very similar to the one above. However,Proposition 5.9 The only varieties of OMLs which are discriminator varietiesare the trivial variety and the variety of Boolean algebras.Proof. Let V be a non-Boolean variety of OMLs. Then V contains MO2 (3.6)which is simple and has a subalgebra which is not simple. So by [17, lemma 9.2]V is not a discriminator variety.We mention a generalization of (5.6) in another direction [39]. It seems notunreasonable to hope that the following result might be extended to a varietygenerated by OMLs having at most n blocks.Theorem 5.10 An OML with �nitely many blocks is directly irreducible i� it issimple. Therefore an OML with �nitely many blocks is isomorphic to a �nite directproduct of a Boolean algebra and simple OMLs.15



Likely the most useful result concerning representations of OMLs by directproducts remains Birkho�'s subdirect representation theorem which states thatevery algebra is isomorphic to a subdirect product of subdirectly irreducible alge-bras. Unfortunately, when working with the full variety of OMLs, the subdirectlyirreducibles are di�cult to narrow down. In factProposition 5.11 Every OML is a subalgebra of a simple, hence subdirectlyirreducible, OML.Proof. Given an OML L, construct an OMLM by \gluing" L and a four elementBoolean at their bounds.Still, there are many varieties of OMLs where one has very good control overthe subdirectly irreducibles. As ortholattices are congruence distributive (4.8),one may apply J�onsson's theorem [17, pg. 146] and Los' Theorem [17, pg. 210] toany variety V generated by a class K of OMLs to gain insight into the �rst orderproperties of the subdirectly irreducibles in V . For example, if every member ofK has at most n elements in each of its chains, then the same is true of everysubdirectly irreducible, and, in view of (5.7), of every directly irreducible memberof V .6 Free ortholatticesDe�nition 6.1 Given a class K of algebras of the same type, F 2 K is K-freelygenerated by a set X if (i) X � F , (ii) X generates F , and (iii) every set mapf : X ! A with A 2 K extends uniquely to a homomorphism f̂ : F ! A.By a standard argument two algebrasK-freely generated byX are isomorphic.We next show the existence of a K-freely generated algebra over X where K is theclass of all algebras of a given type. Such algebras are called absolutely freelygenerated.De�nition 6.2 Given a set X and a type � = (ni)I let � be the set of all �nitestrings of symbols from X [ I. De�ne the set of terms of type � over X to be thesmallest subset S of � such that (i) X � S, and (ii) if i 2 I and p0; : : : ; pni�1 2 S,then the string ip0 � � � pn1�1 is in S.We use T (X) to denote the set of terms of type � over X and use the com-mon convention of writing fi(p0; : : : ; pn1�1) in place of the string ip0 � � � pni�1.For each index i 2 I let �fi be the ni-ary operation on T (X) de�ned by setting�fi(p0; : : : ; pni�1) = fi(p0; : : : ; pni�1). Then (T (X); ( �fi)i2I ) is an algebra of type �called the term algebra of type � over X . The following result is well known [17,pg. 66] and easily proved.Proposition 6.3 The term algebra T (X) is absolutely freely generated by X.16



Next we show the existence of K-freely generated algebras over a set X , atleast under mild assumptions on K. For any set X we de�ne �K(X) to be the in-tersection of all congruences � 2 Con(T (X)) such that T (X)=� belongs to IS(K).Theorem 6.4 If K is closed under I; S; P , then the algebra T (X)=�K(X) is K-freely generated by X=�K(X).Note, if V is a variety containing an algebra with more than one element, onecan easily show thatX=�V (X) is in bijective correspondence withX , and it followsthat there is an algebra V -freely generated by X . We denote this (essentiallyunique) algebra by FV (X). For V the variety of one element algebras we letFV (X) be a one element algebra. In either case there is an obvious homomorphism� : T (X) ! FV (X). The reader should consult [17, pg. 66] for a proof of aboveresult.De�nition 6.5 An equation, or identity, of type � over X is an ordered pair(p; q) where p; q 2 T (X). An algebra A satis�es the equation, written A j= p � q,if f(p) = f(q) for every homomorphism f : T (X)! A, and a class of algebras Ksatis�es the equation, written K j= p � q, if A j= p � q for each A 2 K.For example, the pair (x_y; y0) is an equation in the type of OLs over the setX = fx; y; zg. This equation will be valid in some algebras (in any one elementalgebra for instance), but is not valid in any non-trivial ortholattice. The followingresult is well known [17, pg. 73].Proposition 6.6 For a variety V and terms p; q in T (X) the following are equiv-alent (i) V j= p � q, (ii) FV (X) j= p � q, (iii) (p; q) 2 �V (X), (iv) �(p) = �(q).Recall, � : T (X)! FV (X) is the natural homomorphism.De�nition 6.7 A variety V has a solvable free word problem over X if there isan algorithm to determine for any terms p; q in T (X) whether �(p) = �(q).In view of the above proposition, a solvable free word problem over X givesan algorithm to determine whether an equation p � q holds for all algebras in V .Theorem 6.8 The variety of lattices has solvable free word problem over any set.Proof. While we do not provide a complete proof of this well known theorem[18, pg. 163], it is worthwhile to sketch its features. De�ne � to be the smallestbinary relation on T (X) satisfying (i) x � x for all x in X , (ii) a � c and b � cimplies a _ b � c, (iii) a � b and a � c implies a � b ^ c, (iv) a � b or a � cimplies a � b_ c, and (v) a � c or b � c implies a^ b � c. One can show that � isa quasi-order on T (X). Setting � to be the usual equivalence relation associatedwith a quasi-order, one then shows T (X)=� is freely generated in the variety oflattices by X=�. As � can be e�ectively computed, the word free word problemfor lattices is solvable. 17



Theorem 6.9 The variety of OLs has solvable free word problem over any set.Proof. Again, the reader is directed to [8] for a complete proof, but we sketch thedetails. Given a set X , take another set X 0 in bijective correspondence with Xand disjoint from X . Consider the term algebra T (X [X 0) of the type of latticesand de�ne the relation � on T (X [ X 0) as above. As T (X [ X 0) is absolutelyfree, the obvious map 0 : X [ X 0 ! X [ X 0 extends to a homomorphism fromT (X [X 0) to its dual. De�ne R to be the smallest subset of T (X [X 0) satisfying(i) X [X 0 is contained in R, (ii) a; b 2 R and a0; b0 6� a _ b implies a _ b 2 R, and(iii) a; b 2 R and a ^ b 6� a0; b0 implies a ^ b 2 R. One can show that \adding" atop and bottom element to R=� yields an ortholattice freely generated by X=�.Various useful results about free lattices and free ortholattices are collected inthe following. Here Whitman's condition refers to the property that a ^ b � c _ di� one of a ^ b � c, a ^ b � d, a � c _ d, b � c _ d.Proposition 6.10 (1) Every free lattice satis�es Whitman's condition. (2) Alattice freely generated by a three element set contains a sublattice freely generatedby a countable set. (3) Every free ortholattice satis�es Whitman's condition. (4)An ortholattice freely generated by a two element set contains a subalgebra freelygenerated by a countable set.The �rst two statements can be found in [18, pg. 166]. The third is easilyseen from the above construction of free ortholattices. The fourth is found in [8].Another very useful fact, easily proved along the lines of (3.4) is the following.Proposition 6.11 MO2 � 24 is freely generated by a two element set in thevariety of OMLs and the variety of MOLs. Therefore the free word problem ontwo generators is solvable in the variety of OMLs and the variety of MOLs.This gives an extremely simple procedure to determine if an equation involvingonly two variables is valid in every OML|one simply checks to see if it is validin MO2. See [37] for a discussion of how this simple observation could greatlysimplify many proofs in the literature. For more than two generators the situationis nearly completely open. Some of the few known facts are collected below.Proposition 6.12 If X has at least three elements, then an OML freely generatedby X contains a free lattice on countably many generators as a sublattice of itslattice reduct.Proof. Kalmbach [26, 31] has shown that any lattice L can be embedded into thelattice reduct of some OML K(L). If L is a lattice freely generated by X , thenthere is an OL homomorphism from the free OML F on X onto K(L). So thereis a lattice homomorphism from the lattice reduct of F onto K(L), and as L isprojective in the variety of lattices (see section 9) L is isomorphic to a sublatticeof the lattice reduct of F . The result then follows as L contains a sublattice freelygenerated by a countable set. 18



Proposition 6.13 Let X be a set with at least three elements and let L be freelygenerated by X in the variety of OMLs or MOLs. (1) L contains an in�nite chainand has in�nitely many blocks. (2) L does not contain an uncountable chain.Proof. (1) The previous result shows a free orthomodular lattice over X has anin�nite chain. There is an example in [14] of a 3-generated MOL with in�nitechains and in�nitely many blocks. This provides the other assertions in this claim.(2) As noticed by several authors, this is generally true of free algebras in anyvariety of algebras having a semilattice reduct [16].While we do not wish to develop the notion of word problems for �nitelypresented algebras, we do want to mention one of the very signi�cant results inthe area. The reader is directed to [41] for general background and the proof ofthe following result.Theorem 6.14 There is a �nitely presented MOL with unsolvable word problem.There remain many unsolved problems in this area. The �rst is of paramountimportance, the others less important but still of considerable interest.Problems 1. Is the free word problem for OMLs (MOLs) on three or moregenerators solvable? 2. Can a freely generated OML have an uncountable block?3. If a; b are complements in a freely generated ortholattice are b _ a0 and b ^ a0complements of a? 4. Characterize the �nite subalgebras of a freely generatedortholattice (OML).7 Varieties of ortholatticesFor an ortholattice L let [L] be the variety of ortholattices generated by L, andfor a class K of ortholattices let [K] be the variety generated by K. Note that theclass of all one element OLs is a variety often called the trivial variety.Proposition 7.1 (1) The trivial variety is the smallest variety of OLs. (2) Everynon-trivial variety of OLs contains the variety of Boolean algebras. (3) Everynon-Boolean variety of OLs contains either [MO2] or [Benzene].Proof. (1) Obvious. (2) Every ortholattice with more than one element containsa two element Boolean algebra as a subalgebra, and the two element Booleanalgebra generates the variety of Boolean algebras. (3) By (2.1) every ortholatticewhich is not orthomodular contains a subalgebra isomorphic to Benzene, and in(3.6) we showed that every non-Boolean variety of OMLs contains MO2.For varieties of OMLs somewhat more is known [12].Proposition 7.2 Let V be a variety of OMLs that is generated by its �nite mem-bers. If V is not contained in [MO2], then V contains a variety generated by oneof the four OMLs shown below. 19



�
�In each of these �gures orthocomplementary elements are directly above andbelow one another, or directly beside one another for the middle elements. In the�nal �gure the two elements on the left end are to be \identi�ed" with the two onthe right end.For varieties of MOLs the situation becomes very interesting. We remindthe reader that a subdirectly irreducible (ortho) complemented modular lattice ofheight three is called a (orthocomplemented) projective plane.Theorem 7.3 The varieties of MOLs generated by their �nite members are ex-actly the [MO�] where � is a cardinal.Proof. This is a di�cult theorem, but we can outline the steps in the proof. Sup-pose L is a �nite subdirectly irreducible MOL. If L is of height two or less, then L isequal toMOn for some n < !. Otherwise L contains an element a of height 3. Bya theorem of Bruns [9] the interval [0; a] of L is an orthocomplemented projectiveplane. But Baer showed [3] that every involution on a �nite projective plane hasa �xed point, hence no �nite projective plane admits an orthocomplementation.Thus every �nite subdirectly irreducible MOL is an MOn for some n < !.Suppose V is a variety generated by a class K of �nite MOLs. As every �niteMOL is a direct product of simple, hence subdirectly, MOLs (5.6) we may assumeeach member of K is subdirectly irreducible, hence equal to MOn for some n < !.If fmjMOm 2 Kg is �nite, then it has a maximum n, and clearly V = [MOn].Suppose that fmjMOm 2 Kg is in�nite. We claim that MO! belongs to V , henceV = [MO!]. But this follows as V is an equational class and any equation in nvariables failing in MO! must fail in some n generated subalgebra ofMO!, hencein MOn. Finally, note that [MO�] = [MO!] for each in�nite cardinal � as MO�and MO! satisfy the same equations.Note that it is an easy consequence of J�onsson's theorem that [MOn] is cov-ered by [MOn+1] for each n < !, hence the varieties [MO�] form a chain of ordertype !+1. But these are not the only varieties of MOLs. Let P be an orthocom-plemented projective plane, such as the lattice of subspaces of a three dimensionalvector space over the reals with the orthocomplement of a subspace S being its20



orthogonal subspace S?. Clearly there are equations valid in all MO�, such as
(x; 
(y; z)) � 0, which are not valid in P . Thus [P ] is distinct from all [MO�].However, it is a simple matter to show that MO! is a subalgebra of an interval ofP , hence [P ] contains MO!. The following two theorems summarize the remain-ing facts known of varieties of MOLs. The �rst is due to Bruns [9] and the secondto Roddy [40].Theorem 7.4 If L is a subdirectly irreducible MOL containing an atom, theneither [L] = [MO�] for some cardinal � or [L] contains [P ] for some orthocomple-mented projective plane P .Theorem 7.5 Every variety of MOLs distinct from [MO�] for all cardinals �contains [MO!].We are left with the following open problem sometimes referred to as Bruns'conjecture. We consider it a basic open problem in the theory of OMLs.Problem. Does every variety of MOLs which is di�erent from [MO�] for allcardinals � contain an orthocomplemented projective plane?8 CompletionsA lattice L is called complete if every subset of L has a greatest lower bound and aleast upper bound. A completion of L is a lattice embedding of L into a completelattice C. A completion of L is called regular if the embedding preserves all existingjoins and meets from L, and is called join (meet) dense if every element of C isthe join (meet) of images of elements of L. It is well known that an embeddingthat is both join and meet dense is regular.Theorem 8.1 Every lattice L can be join densely embedded into a complete latticeC which satis�es exactly the same equations as L.This well known theorem [18, pg. 68] is proved by considering the mapping ofL into the ideal lattice Id(L) of L which takes an element a of L to the principalideal a # generated by a. One easily checks that this embedding preserves allexisting meets, but destroys all but essentially �nite joins.Theorem 8.2 Every lattice can be join and meet densely embedded, hence regu-larly embedded, into a complete lattice C.Proof. We provide a sketch, for complete details see [35]. Given a lattice L, letP be the power set of L. De�ne maps L;U : P ! P by setting, for each A � L,L(A) = fxj8a 2 A; x � ag and U(A) = fxj8a 2 A; a � xg. One easily checks thatthe composite LU is a closure operator on P . Therefore the closed sets form acomplete lattice C under set inclusion. Consider the map ' : L ! P de�ned bysetting '(a) = a #. Obviously ' is a lattice embedding of L into C. If A = LU(A)21



it follows that A = Tfu # ju 2 U(A)g and, as A is a downset, A = Sfa # ja 2 Ag.Therefore ' is both join and meet dense.In [5] it was shown that up to isomorphism there is only one join and meetdense completion of a lattice L. We call this the MacNeille completion of L.Unfortunately MacNeille completions of lattices are poorly behaved when it comesto preserving identities. In fact, the variety of all lattices and the variety of oneelement lattices are the only varieties of lattices which are closed under MacNeillecompletions [29]. One might hope to �nd a completion which is both regular andpreserves identities. This is not possible [4, pg. 233].Proposition 8.3 There is a distributive lattice which can not be regularly embed-ded into any complete distributive lattice.We next turn our attention to Boolean algebras. Recall the classic result ofStone that for each Boolean algebra B there is a zero dimensional compact Haus-dor� space X , called the Stone space of B, with B isomorphic to the Booleanalgebra of clopen subsets of X . Stone's representation theorem provides two nat-ural completions for Boolean algebras.Theorem 8.4 Let B be a Boolean algebra with Stone space X. Then the collectionReg(X) of all regular open subsets of X is a complete Boolean algebra, and thenatural embedding of B into Reg(X) is both join and meet dense, hence regular.For a proof of this well known theorem see [4, pg. 157]. In view of the charac-terization of MacNeille completions of lattices as join and meet dense completions[5] we call this the MacNeille completion of B and denote it B�. Obviously takingthe full power set of X will also provide a completion of B, which we call thecanonical completion of B and denote by B� . An abstract characterization of thiscompletion follows below.Theorem 8.5 Up to isomorphism there is a unique embedding e : B ! C of aBoolean algebra B into a complete Boolean algebra C such that (i) each element ofC is a join of meets and a meet of joins of elements of e[B], and (ii) if S; T � Bwith V e[S] � W e[T ] then there are �nite S0 � S, T 0 � T with V e[S0] � W e[T 0].We remark that the most useful of lattice completions, the ideal lattice, can-not be applied to Boolean algebras as Id(B) is only complemented if B is �nite.However, the MacNeille completion B� does provide even a strengthening of (8.1)in the Boolean case. We next turn our attention to completions of ortholattices.Again, we can not use ideal lattices to obtain completions as they will not be (or-tho) complemented. In fact, it is not at �rst apparent that there are any generalmethods to complete ortholattices. To the best of our knowledge, there are two.Theorem 8.6 Up to isomorphism, there is a unique embedding e : L ! C of anOL L into a complete OL C which is both join and meet dense, hence regular.22



We call this the MacNeille completion L� of L. Existence was proved byMacLaren [34] by taking all subsets A � L which are equal to the lower boundsof their upper bounds, and de�ning the orthocomplementation A? = fu0 : u is anupper bound of Ag. Uniqueness follows from [5].Theorem 8.7 Up to isomorphism, there is a unique embedding e : L ! C of anOL L into a complete OL C such that (i) every element of C is a join of meetsand a meet of joins of elements of e[L], and (ii) if S; T � B with V e[S] � W e[T ]then there are �nite S0 � S, T 0 � T with V e[S0] � W e[T 0].We call this the canonical completion L� of L. We remark that the corre-sponding theorem holds for bounded lattices as well. Methods of obtaining such acompletion have been around for some time. For lattices one uses Urquhart's [42]stable sets and for ortholattices Goldblatt's �lter space [22]. However, the �rstabstract characterization and detailed study of this completion is in [21]. Unfor-tunately, neither completion behaves well with respect to preserving equations.Proposition 8.8 There is an OML L with neither L� nor L� orthomodular.To produce an OML whose MacNeille completion is not orthomodular takean incomplete inner product space E. Let L be the OML of all subspaces S ofE which are either �nite dimensional, or whose orthogonal subspace S? is �nitedimensional. Then the MacNeille completion of L is the ortholattice L(E;?) ofall subspaces S of E which satisfy S = S??. But by a theorem of Amemiya andAraki [2] L(E;?) is orthomodular i� E is complete. More elementary examples aregiven in [26] using a technique to construct an orthomodular lattice from a givenlattice due to Kalmbach [31]. An example of an OML whose canonical completionis not orthomodular is given in [30]. This example is also based on the Kalmbachconstruction. Taking the direct product of these two counterexamples yields anOML with neither L� nor L� orthomodular. We remark that co! ! mpletions canbe found for these examples (based on completing the underlying inner productspace or the underlying lattice used in the Kalmbach construction), but in generalthe following remains one of the major open problems in the area.Problem. Can every OML be embedded into a complete OML.There are partial results known. In the presence of a �niteness conditionwe obtain the following generalization of the well known fact that the MacNeillecompletion of a Boolean algebra is Boolean.Theorem 8.9 Let V be a variety generated by a class of OMLs with a �niteupper bound on the lengths of their chains. Then V is closed under MacNeillecompletions.The proof of this theorem [28] relies heavily on the representation theoremfor such varieties outlined in theorem (5.8). It is a minor open problem whetherthis theorem would apply to a variety generated by a class K of OMLs with a23



�nite upper bound on the number of their commutators. The following results areuseful in setting limits on what one can hope to obtain in a completion. See [30]for a proof of the following.Proposition 8.10 Every regular completion of an OML factors through the Mac-Neille completion. Therefore there is an OML which cannot be regularly embeddedinto a complete OML.Theorem 8.11 There is a MOL which cannot be embedded into a complete MOL.Proof. A deep theorem of Kaplansky [32, pg. 178] shows every complete MOLis a continuous geometry, and therefore has a dimension function. Let M be theMOL of all subspaces S of a Hilbert space H for which either S or S? is �nitedimensional. As M contains a countable set of pairwise perspective atoms, Mcannot admit a dimension function, hence cannot be embedded into a completeMOL.We conclude this section with a positive result which may eventually be helpfulin solving the completion problem. This result has a long history, and we honestlydo not know who to credit for it. See [11] for an outline of a proof and descriptionof the history.Proposition 8.12 Every OML can be embedded into an OML in which each ele-ment is a join of two or fewer atoms.9 Categorical propertiesEvery variety of algebras naturally forms a category whose objects are the alge-bras in the variety and whose morphisms are the homomorphisms between thesealgebras (not necessarily onto homomorphisms). There are a large number of cat-egorical questions one can ask of such varieties. We content ourselves with but afew, namely questions relating to monomorphisms, epimorphisms, injectives andprojectives. The survey article [33] is excellent source of information on categoricalissues relating to varieties of algebras.De�nition 9.1 Let V be a variety and h : B ! C be a homomorphism betweenmembers of V . We say h is a monomorphism if for all algebras A in V and allhomomorphisms f; g : A ! B we have h � f = h � g implies f = g. Similarlyh : B ! C is an epimorphism if for all algebras D in V and all homomorphismsf; g : C ! D we have f � h = g � h implies f = g.One easily sees that one-one homomorphisms are monomorphisms and ontohomomorphisms are epimorphisms. The question arises whether there are anyothers. For monomorphisms the answer is easily found.Proposition 9.2 Let V be a variety of ortholattices. Then the monomorphismsin V are exactly the one-one homomorphisms.24



This is a well known result which holds for any variety of algebras. The prooffollows by noting that for any B in V and any x 6= y in B there are homomorphismsf; g from the free algebra on one generator (a four element Boolean algebra in oursetting) with f mapping the generator to x and g mapping the generator to y. Thedual question whether every epimorphism is onto poses much greater di�culty.Before describing the known results, we introduce an additional notion [23, pg.252] which is also of considerable interest.De�nition 9.3 Let K be a class of algebras of the same type. A V -formation in Kis a quintuplet (B;L1; L2; f1; f2) where B;L1; L2 are algebras in K and fi : B ! Li(i = 1; 2) are embeddings. An amalgamation of the V -formation in K is a triple(C; g1; g2) where C is an algebra in K and gi : Li ! C (i = 1; 2) are embeddingswith g1 � f1 = g2 � f2. The amalgamation is called strong if g1[L1] \ g2[L2] =g1[f1[B]]. The class K is said to have the (strong) amalgamation property if everyV -formation in K has a (strong) amalgamation.The connection between amalgamations and epimorphisms is given by thefollowing well known result [33].Lemma 9.4 If a variety V has the strong amalgamation property, then the epi-morphisms in V are exactly the onto homomorphisms.Proof. Suppose h : B ! C is not onto. If (D; f; g) is a strong amalgamation ofthe V -formation (h[B]; C; C; id; id) then f � h = g � h but f 6= g.Proposition 9.5 The variety of OLs has the strong amalgamation property,therefore the epimorphisms in this variety are exactly the onto homomorphisms.Proof. A more detailed treatment is given in [10] but we can outline the idea.Suppose L1 and L2 are ortholattices and that B = L1\L2 is a subalgebra of both.De�ne a relation� on L1[L2 by setting x � y i� one of the following occurs (i) x; ybelong to the same Li (i = 1; 2) and x �i y, or (ii) x belongs to Li, y belongs to Ljand there is some b in B with x �i b �j y. One easily checks that (L1[L2;�) is apartially ordered set and that the union of the orthocomplementations on L1; L2 isan orthocomplementation on L1[L2. The result then follows from the well known[34] and easily proved fact that the MacNeille completion of a orthocomplementedposet is an ortholattice.The following well known result [33] is an interesting exercise.Proposition 9.6 The variety of Boolean algebras has the strong amalgamationproperty, so epimorphisms in this variety are exactly the onto homomorphisms.The situation for orthomodular lattices is not so fortunate [10].Proposition 9.7 Neither the variety of OMLs, nor the variety of MOLs, havethe amalgamation property. 25



There are however a number of special cases where V -formations can be amal-gamated in OML. The �rst result below was established in [10], the second is areformulation of Greechie's celebrated \paste job" [24].Theorem 9.8 In the variety of OMLs, any V -formation (B;L1; L2; f1; f2) withB Boolean has a strong amalgamation.Theorem 9.9 Let (B;L1; L2; f1; f2) be a V -formation in the variety of OMLssuch that there is an element a in B with fi[B] the union of the principal ideal[0; fi(a)] and the principal �lter [fi(a0); 1] in Li. Then there is a strong amalga-mation (C; g1; g2) of this V -formation with L = g1[L1] [ g2[L2].Unfortunately, the above considerations have left the following open questions,which we consider to be basic open problems in the area.Problem. In the variety of OMLs (MOLs) are the epimorphisms exactly the ontohomomorphisms?We remark that in [11] an e�ective procedure is given to determine if epimor-phisms coincide with onto homomorphisms in any variety generated by a �nitenumber of �nite OMLs. We next turn our attention to injective and projectivealgebras.De�nition 9.10 An algebra C in a variety V is called injective if for everymonomorphism f : A ! B and every homomorphism g : A ! C there existsa homomorphism h : B ! C with h � f = g. Dually, C is called projective if forevery epimorphism f : B ! A and every homomorphism g : C ! A there existsa homomorphism h : C ! B with f � h = g. The notions of weakly injective andweakly projective are formed by replacing monomorphisms and epimorphisms withone-one and onto homomorphisms.Note that injectives and weakly injectives coincide in any variety of algebrasas the monomorphisms in any variety are exactly the one-one homomorphisms.Characterizing injectives in certain varieties of OLs will pose little di�culty.Theorem 9.11 In the variety of Boolean algebras, an algebra is injective i� it iscomplete. In the variety of OLs, the variety of OMLs and the variety of MOLs,an algebra is injective i� it has exactly one element.Proof. The result for Boolean algebras is well known [4, pg. 113]. Suppose V isone of the varieties of OLs, OMLs, MOLs and C is a member of V having morethan one element. As each of these varieties has simple algebras of arbitrarilylarge cardinality (MO�) there is a simple algebra B in V with cardinality greaterthan C. For f : 2 ! B and g : 2 ! C the obvious embeddings, there is nohomomorphism h : B ! C with (or without) h � f = g.Note that projectives and weakly projectives need not coincide in a varietywhere epimorphisms are not exactly the onto homomorphisms. We consider only26



weakly projectives. The following well known result [4, pg. 36] provides an abstractcharacterization of the weakly projectives in any variety.Theorem 9.12 For C an algebra in a variety V these are equivalent. (1) C isweakly projective in V . (2) There is a free algebra F in V and homomorphismsf : F ! C and g : C ! F with f � g the identity on C.In particular any free algebra in V is weakly projective in V , and any weaklyprojective in V must be a subalgebra of a free algebra. However, it can be di�cultto provide a more direct characterization of weakly projectives. Even for thevariety of Boolean algebras, no satisfactory description is known. But we do havethe following su�cient condition.Proposition 9.13 In the variety of Boolean algebras, every at most countablealgebra with more than one element is weakly projective.It is perhaps surprising that there are complete descriptions of the Booleanalgebras that are weakly projective in the varieties of OLs and OMLs.Proposition 9.14 In the variety of ortholattices, a Boolean algebra is weakly pro-jective i� it has two, four, or eight elements.Proof. Let B be a Boolean algebra. If B has one, two, or four elements the resultis trivial. Kearnes established the result for an eight element Boolean algebra. IfB has more than eight elements then B does not satisfy Whitman's condition. By(6.10) every free ortholattice satis�es Whitman's condition. Therefore B is not asubalgebra of a free ortholattice, hence is not weakly projective.Theorem 9.15 In the variety of OMLs, a Boolean algebra is weakly projective i�it has more than one element and is at most countable.A proof of this result is found in [15, 16]. There are a number of miscellaneousresults that may provide some feel for the topic. First, in the variety of OLsbenzene is weakly projective. More generally, one obtains weakly projectives inOLs by replacing the intervals on the sides of benzene with a weakly projectivelattice and its dual. Second,MO2�2 is weakly projective in the variety of OMLs.Third, MO3 � 2 is not weakly projective in the variety of MOLs. The �rst tworesults are (slight modi�cations of) well known and easily proved results. Thethird is much more di�cult, requiring in part, the delicate construction of anin�nite MOL with rather particular properties [14]. Also established in [15] is thefollowing.Proposition 9.16 Let V be a variety of OMLs generated by a class of OMLs witha �nite upper bound on the lengths of their chains. If A 2 V is �nite, then 2�Ais weakly projective in V .No doubt the reader is aware there are many open questions in this area.Problems. Characterize the weakly projectives in the variety of OLs, OMLs, andMOLs. 27
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