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1. Basic Definitions and Historical Overview of the Problem

Orthomodular lattices appear — besides their algebraical importance — as event
structures of quantum mechanical systems. They allow to develop a generalized
probability theory which admits the phenomenon of noncompatibility: Two events
a, b that can be observed separately need not be jointly observable.

DEFINITION 1.1. Anorthomodular latticabbr.OML) is a latticeL with a least
and a greatest element (denoted by 0, 1, respectively) and with a unary opération
(orthocomplementatigrsatisfying the following properties for al, b € L:

(1) @) =a,

2a<b = 0V<d,
B)ava =1,

@ a<b=—= b=avbArda).

Here we always work with OMLs that arentrivial, i.e., 0% 1. When necessary,
we shall distinguish the bounds of OMLs by indices, e.g,,13. An elementa
of an OML L is called anatom if there is nob € L satisfying 0 < b < a.
We denote by (L) the set of all atoms of.. We say thatL is atomisticif each
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element ofL can be expressed as a join of atoms. Two elemerisof an OML
are calledorthogonal(in symbolsa L b) if a < b'. If we require in Definition 1.1
the existence of joins only for orthogonal pairs of elements (and dually for meets),
we obtain the definition of aorthomodular posefabbr.OMP). Typical examples
of OMLs are Boolean algebras and lattices of projections in Hilbert spaces. We
refer to [6, 18] for basic facts on OMLs and OMPs.

Let L be an OML. ABoolean subalgebraf L is a subalgebra which — with the
operations inherited fromh — becomes a Boolean algebra. Two elementse L
are calledcompatibleif they are contained in a Boolean subalgebrd.ofThe set
C(L) ={a € L : ais compatible to alk € L} is a Boolean subalgebra called the
centerof L.

DEFINITION 1.2. LetL be an OML. A mappingr : L — [0, 1] is called astate
on L if the following conditions are satisfied:

(1) m(1) =1,
(2) m(a v b) = m(a) + m(b) whenevew L b.

We denote by§(L) thestate spacéi.e., the set of all states) of an OML. In con-
trast to Boolean algebras and lattices of projections in Hilbert spaces, the following
situation is possible:

PROPOSITION 1.3 [4]There exists a finite OML which &atelessi.e., it does
not admit any state.

In the physical interpretation, the center represents the classical part of the system.
The state space represents all possible states of the system. The automorphism
group is also of importance, because it determines the symmetries. It is natural to
ask whether there is a kind of dependence between these attributes of the event
structure of a quantum system (OML). As a motivation, in OMLSs of projections in
von Neumann algebras the state space determines the center uniquely [1]. We ask
if a dependence of this type holds also for OMLs. Moreover, we pose our question
under the additional requirement that a given subsystem is embedded. Our main
result is to show there is no dependence between the above-mentioned attributes of
OMLs.

Before stating the main theorem, let us make an overview of the long history of
the problem. We use some of these preceding partial solutions, too.

The fact that an arbitrary Boolean algebra can occur as the center of an OML is
obvious.

The state spaces were characterized by the following theorem due to Shultz (see
[19] and also [8, 11] for simplified proofs):

THEOREM 1.4. For every OMLL, the state spac&(L) is a compact convex
subset of the space of real functionals brwith the product(= weak topology.
Conversely, every compact convex subset of a locally convex topological linear
space is affinely homeomorphic to the state space of some OML.
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The fact that any group can be represented as the automorphism group of an
OML was first mentioned by Kalmbach in [7]. A clear proof based on graph-
theoretical methods was given by Kallus and Trnkova [5]. Their construction also
allows to embed an arbitrary atomistic OML as a subalgebra. This result was
generalized to the nonatomistic case in [15]. (There is an alternative way of this
generalization: Following [2], every OML can be embedded into an atomistic one
in an automorphism-preserving manner. Then the construction from [5] can be
applied.) For concrete<{ set-representable) OMLs an analogous result was proved
in [16]. OMLs with given group of automorphisms and given group of affine
homeomorphisms of the state space are constructed in [20].

As the first result concerning the interplay of the attributes of OMLs, P. Ptak
[17] proved the existence of OMLs with given centers and state spaces. In [14],
this result was extended by embedding an arbitrary OML as a subalgebra. The
independence of the center, the state space, the automorphism group and a subal-
gebra was proved in [9], but in full generality only for orthomodular posets. The
problem remained open for OMLs. In particular, it was not clear if OMLs with
given centers (without any atom) and given nontrivial automorphism groups exist.
The patrtial results of [9] for OMLs which we use here are formulated as follows:

THEOREM 1.5. Let J be an OML admitting at least one statB,a nontrivial
Boolean algebraG a group andS a compact convex subset of a locally convex
Hausdorff linear space. I is the trivial group orB contains an atom, then there
is an OMLL such that

1) J <L,

(2) C(L) = B,

(3) Aut(L) = G,

(4) 8(L) is affinely homeomorphic t6.

Here we give the answer for OMLs in the general case. Although we use the partial
results of [5, 9] whenever possible, we needed completely new techniques at some
steps.

To make our historical survey complete, it should be mentioned that analogous
guestions for-complete OMLs and -additive states are even more complicated.
Partial results — the independence of the center, the state space and a subalgebra —
were developed in [1, 12, 13, 18].

2. Preliminaries

In this section we present some necessary notions and constructions used in the
sequel.

DEFINITION 2.1. LetL be an OML. Fom, b € L, a < b, we define thénterval
[a,bly; ={ce L :a <c<b}.
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We always consider an interval, b]; with the partial ordering inherited frorh:

PROPOSITION 2.2.Let L be an OML and lek L \ {0}. We endow the in-
terval K = [0, ¢]; with the partial ordering<y inherited fromL and with the
orthocomplementatior® defined by:’®* = a’* A; e. ThenK is an OML.

The latter proposition can be generalized to all (bounded) intervals, but we need it
only for the intervals of the forr0, ¢]; . These intervals angrincipal idealsin L.

DEFINITION 2.3. Let¥# be a family of OMLs. We take the Cartesian product
L =[x+ K and we endow it with the partial orderirg, and orthocomplemen-
tation '~ defined pointwise, i.e., forall, b € L, a = (ax)kes, b = (bg)xes, We
define

a<; b < VK eF :ax <k by,
a=b" &< VK € F :ax = (bg)'X.
ThenL becomes an OML called th@oductof the family & .

An OML is calledreducibleif it is isomorphic to a product of nontrivial OMLSs;
otherwise, it is calledrreducible A nontrivial OML is irreducible iff its center is
the two-element Boolean algebra. An OML is callsichpleif it does not allow

a nontrivial congruence. If an OML is simple, then it is irreducible. The reverse
implication need not hold.

DEFINITION 2.4. Let¥ be a family of OMLs. We make a familg of copies

of OMLs from # which are disjoint except that they have the same least element,
0, and the same greatest element, 1. Thus, for &1 € ¢, K # M, we have

K NM = {0, 1}. We take the unior. = [J§ and we endow it with the partial
ordering<; and orthocomplementatioft defined by

a<;b << IKe€G:(a,beK, a<gb),
a=b" < 3IKe€§:(a,beK, a=b").

Then L becomes an OML called thieorizontal sumof the family ¥, denoted
@Dx.s K, orinthe case that has two member&, K», asK; & K».

A horizontal sum of a family# of OMLs is callednontrivial if ¥ contains at
least 2 OMLs with more than 2 elements. Then its center is trivial. We call an
OML totally irreducibleif it is irreducible and cannot be expressed as a nontrivial
horizontal sum.

DEFINITION 2.5. LetK, L be OMLs. A mappingp: K — L is called ahomo-
morphismif it satisfies the following conditions:
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(1) ¢(0) =0,
(2) (@) = ¢(a) foralla € K,
(3) p(aVv b) =¢a) Vv e forala,b e K.

If ¢ is bijective and bothy and ¢! are homomorphisms, thep is called an
isomorphismlIf ¢: K — ¢(K) is an isomorphism, thegp is called arembedding
If K C L and the identity orK is an embedding intd,, thenk is asubalgebraof
L;insymbolsk < L.

We use the notatiog to denote isomorphisms of OMLs as well as group isomor-
phisms. Notice that isomorphisms of OMLs preserve centers and possible decom-
positions to products and horizontal sums.

For an OMLL, we denote byAut(L) the group of all automorphisms L — L
and byid, the identity onL. An OML is calledrigid if its automorphism group is
trivial, i.e., Aut(L) = {id.}.

We shall use the following partial results from [5]:

THEOREM 2.6. Let K be an OML,G be a group. There is a totally irreducible
OML L such thatk < L, Aut(L) = G.

THEOREM 2.7. There is a proper class of mutually non-isomorphic OMLSs, each
of which is totally irreducible, rigid, and of height three.

3. An Example

In this section we present an explicit example of the simplest situation: a rigid
OML with an empty state space and a trivial fwo-element) center. To describe
it, we use hypergraphs called Greechie diagrams (see [4, 6]).

A hypergraphis a coupleH = (V, &) consisting of a nonempty sét (of
verticeg and of a covering of V by nhonempty subsetedge}. A loop of order
nin H (n > 3) is ann-tuple of edge<ty, ..., E, € & such that the intersections
E.NE, ...,E,_1NE,, E,N E; are nonempty and mutually disjoint.

Let L be a finite OML and let us denote by(L) the set of all atoms of. The
Greechie diagranof L (see [4]) is a hypergrapH = (V, &) such thatV = A(L)
andé consists of all maximal subsets of mutually orthogonal elemenis(af).

LOOP LEMMA (see [4, 6]).Let H = (V, &) be a hypergraph satisfying the
following conditions

(1) VE € &: cardE) > 3,
(2)VE,Fe &, E#F:cardENF) <1,
(3) there is no loop of order less thahin H.

Then there is a uniqgue OML such thatH is the Greechie diagram df.
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a b
Figure 1. An OML admitting no states and many automorphisms.

Figure 2. A rigid OML admitting many states.

In figures, vertices of Greechie diagrams are denoted by small circles and edges
by line segments or smooth curves. States on a finite OML are in a one-to-one
correspondence with nonnegative evaluations of vertices of its Greechie diagram
such that for each edge the sum of evaluations of its vertices is 1.

The OML described by its Greechie diagram in Figure 1a, resp. b — “the web”
—admits no states. Indeed, all its vertices can be disjointly covered by 12, resp. 13
edges, so each statdas to satisfy

12 = Z s(a) = 13,

aeA(L)

a contradiction. This OML admits many automorphisms.
The OML corresponding to the Greechie diagram in Figure 2 is rigid because
the three loops are of different order.
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Figure 3. A rigid OML admitting no states.

We connect the latter two examples by additional edges and obtain the “spider in
web” in Figure 3. Itis the Greechie diagram of an OML admitting no states because
it contains the OML from Figure 1 as a subalgebra. As the “body of the spider”
(Figure 2) admits no nontrivial automorphisms and it fixes the automorphisms of
the whole structure, the resulting OML is rigid. No element different frarh i3
central, so the center is trivial, too.

We obtained an example demonstrating a solution of the simplest possible case
of our task. Before proving the general result, we shall formulate and prove two
lemmas.

4. The First Lemma

LEMMA 4.1. SupposeX, Q are nontrivial OMLs, andp: Q — K is a homomor-
phism with

(1) Q irreducible,

(2) p o =g forall u € Aut(Q),
(3) K isrigid.

Then, for any nontrivial Boolean algebra, there is an OMLL with Q < L,
Aut(L) = Aut(Q), and C(L) = B. Moreover, each interval beneath a central
element of. contains a homomorphic image @fas a subalgebra.

Proof. Let X be the Stone space & and fix y € X. According to The-
orem 2.7, there is a proper class of nonisomorphic rigid OMLs which are not
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decomposable to a horizontal sum. It follows that there is a fafdly | U C

X is clopen andy ¢ U} of such nonisomorphic OMLs, none of which is isomor-
phic to a horizontal summand & . For eachx € X with x # y let T, be the
horizontal sum of M | x € U andy ¢ U} andK, and sefl, = Q.

CLAIM 1. Foreachx # y, T, is rigid.

Proof. Suppose.: T, — T, is an automorphism. Thentakes horizontal sum-
mands ofT, to other horizontal summands &f. As no summand of the form/,
is isomorphic to any summand of the foifi, with V # U, nor isomorphic to a
summand ofK, A fixes each summand d@f,. As all the summands are rigid (see
condition (3)),A must equal the identity.

CLAIM 2. Foreachx,z € X, T, = T, impliesx = z.

Proof.If x # z, then there is a clopelii not containingy and containing exactly
one ofx, z. AssumeU containsx. So My, is a horizontal summand d&f,, but not
of T;.

Define a mapb: [[,.x T — K x [[,cx\(, T by setting

f) if x #y,
p(f(y) ifx=y.

Note that® is a homomorphism. We now define

(@) (x) = {

L= {f € l_[ T,| for eachx € X, ®f is constant on a neighborhoodx)}.

xeX

CLAIM3. For f,g € Landx € X, if f(x) = g(x), thenf and g agree on a
neighborhood of.

Proof. As f, g € L, there is a neighborhoodf of x on which®f and®g are
constant, hencef and ®g agree onN. First consider the case # y. We may
assumey ¢ N and hencebf agrees withf and®g agrees withg on N. If x = y,
then®f and &g take the common valuk on N, wherek is some element ok .
Then f andg have a common valueon N \ {y} and by assumptiory (y) = g(y).

CLAIM 4. L <[],cx T« So operations irL are coordinatewise.

Proof. Let f, g € L andx € X. Let N be a neighborhood of on which both
®f, &g are constant. The®(f A g) = Of A dg (as P is a homomorphism)
is also constant oiV. So L is closed under binary meets, and similarly is closed
under orthocomplementation, hence is a subalgebra.

CLAIM 5. Q isisomorphic to a subalgebra d@f.
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Proof.Letg € Q and defind™: Q0 — []

ram = {40 {7

T, by setting

xeX

Note (®I'(9))(x) = ¢(q) for eachx € X, so ®I'(g) is constant onX, hence
I'(q) € L. As ¢ is a homomorphismI'(g A r)(x) = I'(g)(x) A T'(r)(x) and
I'(g")(x) = (T'(g)(x)) for eachx € X, hencel" is a homomorphism. Buj # r
impliesT (q)(y) # I'(r)(y), hencel” is an embedding.

CLAIM 6. Foranyx € X and anyr € T,, thereisf € L with f(x) = ¢.

Proof.If x = y we take the elemerit(s) from above. Ifx # y we consider two
cases. First, if € M, for some clopen sd’ containingx but noty, let f be the
function with constant valueon U and O elsewhere. Finally, i # y andz € K,
choose a clopen neighborhoddof x which does not contain and setf to be the
function with constant valueon vV and 0 elsewhere.

CLAIM7. f e C(L)Iiff f = xy for some cloper/ € X (wherey, denotes the
characteristic function ot/).

Proof. Surely eachy, is central and is ir.. Conversely, supposg € L and
f(x) # 0,1 for somex € X. Note thatC(T,) is trivial for eachx € X. (By
condition (1),7, = Q is assumed irreducible. Far# y, T is a horizontal sum.
If X is a two element Boolean space akid= 2 we have only one horizontal
summandM of T,, but this can be chosen irreducible.) So, there is soradl,
which does not commute witli(x). Use the above claim to produce a functign
with g(x) = ¢. Then f andg do not commute. Hence, the rangefofs contained
in {0, 1}. A standard compactness argument shgws y,, for some clopen sdt .

Any automorphisma: L — L clearly restricts to an automorphism 6f(L).
By Stone duality, associated to each such automorphissma homeomorphism
B:X—>X with a(xy) = XBW)-

CLAIM 8. If f(x) = g(x), then(af)(Bx) = (ag)(Bx).

Proof. By Claim 3, if f(x) = g(x), then for some clopen neighborhoodof x
we havef A xy = g A xu. Hencew (f A xy) = a(g A xu), gvingaf A xpw) =
ag A xpw), and in particular thataf)(Bx) = (ag)(Bx).

CLAIM 9. The mapx,: T, — Tp, defined by, (f(x)) = (af)(Bx) is an isomor-
phism.

Proof. Using Claims 6 and 8 the may is well defined. Asx, (f(x) A g(x)) =
o ((f A g)(x)) = a(f Ag)(Bx) = (af)(Bx) A (ag)(Bx) = ox (f (%)) Aax(g(x))
the mapw, preserves binary meets. Similarly, it preserves orthocomplementation,
hence is a homomorphism. We obtain its inverse if we repeat the argument with
a~1in place ofx (as the homeomorphism associated wittt is g~1).
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CLAIM 10. A:Aut(L) — Aut(Q) defined byA (@) = «y is a group isomorphism.
Proof. Supposex € Aut(L) with 8: X — X the associated homeomorphism.

Thena,: T, — Tg, is anisomorphism for eache X, hence by Claim 28 = idx.
The definition ofw,: T, — T, reduces tax,(f(x)) = (af)(x). Thus, fora,§
automorphisms of, (ct;08y) (f () = a,((6)(¥)) = (@) (y) = (@0d),(f(¥)),
showing A is a group homomorphism. Suppage# id;. Then(af)(x) # f(x)
for somef € L andx € X, hencex, # idr, . But, by Claim 1,7, is rigid for each

X # y, sox = y. This showsA is an embedding. Finally, lei: 0 — Q be an
automorphism. Define: L — [],.; T by setting

xeT

f) ifx #,

p(f(y) ifx=y.

By condition (2),®(«f) = ®f, hencex: L — L. Clearlyx is an automorphism,
anda, = u. HenceA is a group isomorphism.

(af)(x) = {

Claim 10 establishe8ut(L) = Aut(Q), Claim 5 establishes tha® is isomorphic
to a subalgebra aof, and Claim 7 establisheS(L) = B. This concludes the proof
of the lemma. O

5. The Second Lemma

LEMMA 5.1. For any nontrivial OMLM there exist nontrivial OML®), K and
a surjective homomorphisgx Q — K such that

(1) Q isirreducible,

(2) K isrigid,

@) M=0,

(4) Aut(Q) = Aut(M),

(5) pou =g forall u e Aut(Q).

Proof.Using Theorem 2.6, we can find totally irreducible OMHEsand K such
that () M < H < K, (ii) H is of height at least four, (iijpAut(H) = Aut(M), and
(iv) K is rigid. Using Theorem 2.7, we can find a totally irreducible, rigid ORIL
of height 3 such thak is not isomorphic to a subalgebra of an intervalkaf

Recursively define a sequence of OMBsfor n € N by setting

PL.=R®H and P,1=R® (K x P,).

Forn e NputQ, =K x P,,800,,1 = K x (R&® Q,), and letp,: 9, — K be
the natural projection onto the first coordinate.

Next, for eachn < m we will define a map.,,,,: 9, — Q... For eaclhn € N
let &, be the identity map o®,, and definex,, ,+1: 0, — K x Q, € Q,11 by
setting

Mnanti(k, p) = (k, (k, p)).
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Then forn < m seth,,, = Ay—1m © -+ 0 Aynt1. NoOte that each,, .1, hence all
An.m fOr n < m are embeddings.

AS Ak © Aum = Ay for eachn < m < k, the OMLs Q,,, together with the
mapsh,..,, form a directed family [3, Chapter 3, Sec. 21] of OMLs. We form the
direct limit (also called the inductive limit) of this family (see also [15]), obtaining
an OML Q and maps\,.: 0, — Q for eachn € N. The following claims are
standard properties of direct limits.

CLAIM 1. Forall n < m, Ayueo © Aum = Anso. Further, as each.,,,, is an embed-
ding, thei, , are also embeddings.

CLAIM 2. Foreachg € Q there isn € N withg € A,,,,(Q,,) for all m > n.

CLAIM 3. Asg,, o A, = @, for all n < m, there exists a unigue homomorphism
¢: Q0 — K withg o A, = ¢, foreachn € N.

It is the OML Q and the map: Q@ — K that will be used to establish the lemma.
We proceed to verify their properties.

CLAIM 4. Q isirreducible.

Proof. Supposey € C(Q). Theng = A, (k, p) for somen € N and some
(k, p) € On. AS Ayoo = Aytl.0 © Aunt1 @NdA, 110 IS an embedding, we must
havex, ,+1(k, p) = (k, (k, p)) is central inQ,11 = K x (R & Q,). As bothK
andR & Q, are irreducible, there are only four central element@jn,, of these
only the bounds 1 are in the image of,, 1. HenceC(Q) = {0, 1}.

This verifies the first condition required by the lemma. The second Kthatrigid,
is satisfied by our choice df. The third is given by

CLAIM 5. M isisomorphic to a subalgebra @.

Proof. In our choices off and K, we required thall < H < K. ThusM is
isomorphic to a subalgebra &fx (R H) = Q1. The result follows as1,,: 01 —
Q is an embedding.

It remains to establish the final two conditions of the lemma involving automor-
phisms. For each € Aut(H), define recursively maps,: 0, — Q, by setting

_ )k, a(p)) ifpeH,
ar(k, p) = :(k,p) if peR

and

_J koaun(p)) if pe Qy,
an-i-l(ka P) - {(k, p) if pe R.

Note, eachw, is an automorphism of, andw,+1 o A, 41 = Annt1 0 ¢, fOr each
n € N. Then by a standard argument for direct limits we have
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CLAIM 6. For eacha € Aut(H) there is a unique automorphism(x): 0 — Q
With A (o) 0 Apyoo = Moo © @, fOr eachn € N.

CLAIM 7. A:Aut(H) — Aut(Q) is a group embedding.

Proof.Leta, 8 € Aut(H). By an obvious inductior,, o 8, = (« o B), for each
n € N. ThereforeA(a) o A(B) 0 oo = A(®) 0 Ao © By = Apso 0 & 0 B, =
Ao © (a0 B), for eachn € N. By the previous claim\ (@) o A(B) = A(x o B),
showing A is a group homomorphism. # # idy, then A(«) is not the identity
map of 0, henceA is an embedding.

Noting thatg o A(a) 0 Ayeo = @ 0 Ayeo © &, = @, 0 &, = @, WE easily obtain
CLAIM 8. For eacha € Aut(H), ¢ o A(a) = ¢.

Thus, if we show thatn mapsAut(H) onto Aut(Q), the remaining two conditions
of the lemma, thafut(M) = Aut(Q) and thaty o u = ¢ for all © € Aut(Q) will
be satisfied (recalf was chosen withut(H) = Aut(M)). Showing thatA is onto
will require some effort. For convenience, we dgtdenote the elemeriOk, 1p,)
of 0, =K x P,forn e N.

CLAIM 9. For eachn € N, A, restricts to an isomorphism betweéh g, 1o,
and [Oa )\noo(CIn)]Q-

Proof.Fork € N, A x+1(qx) = (0, (0, 1)). Hence, ifx € Qyy1 = K X (R® Q)
with x < A x+1(qx), thenx is in the range ok, ;1. Thus, forz < g, we have
Mer+1l0, zlg, = [0, Ak k+1(2)]0,.,, @nd by an obvious inductiork,;[0, z]p, =
[0, A4 (2)]g, for eachk < j.

To prove the claim, note it is enough to show for< m andx € Q,, that
Amoo(X) = Anoo(gn) IMPlIES X0 (X) € Anool0, gulg, - BUt Aoo (X) < Apoo(gn) =
Amooknm (gn) impliesx < A, (¢,), hencex € A,, [0, g,1o,-

CLAIM 10. If u € Aut(Q) andg € Q, theng(g) = 0impliesy o u(g) = 0.

Proof. Choosen so thatg, 1(q) € Ao (0,). SAYg = Ayoo(x). AS@ 0 Ay =
¢n, We havey, (x) = 0, sox < g, = (Ok, 1p,). Consider the maf = ¢ o Ayeo:
0, — K. We claim thatf(g,) = 0, hencef(x) = 0. Indeed, as the principal
ideal of O, generated by, is isomorphic toP,, the principal ideal oK generated
by f(g,) contains a homomorphic image 8f as a subalgebra. B, is a non-
trivial horizontal sum, hence simple, so any homomorphic image,af either
isomorphic toP, or is a one-element OML. A® is a subalgebra oP,, but not
isomorphic to a subalgebra of any interval K6f we must have that the principal
ideal of K generated byf (g,) is trivial, hencef (¢,) = 0 as required.

CLAIM11. If P, = P, thenn = m.
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Proof. Assumen < m. Proceed by induction on. If n = 1, thenP; is a
horizontal sum of two irreducible summands, and for any>= 1, P, = R @
(K x P,_,) is the horizontal sum of one irreducible and one reducible summand.
Assumen > 1, hencem > 1. ThenP, = K x (R® P,_1) andP, = K x
(R ® P,_1). ThereforeP,_1 = P,_1, and the result follows from the inductive
hypothesis.

CLAIM 12. If n,m € N and P, is isomorphic to the principal ideal o,,
generated by € Q,,,thenn <m andx = A,,,,(g,,).

Proof. By induction onm. Assumen = 1. If P, is isomorphic to the principal
ideal generated byk, p) € 01 = K x (R @ H), then asP, is irreducible either
k = 0orp = 0. Then, asR is a subalgebra oP,, but not isomorphic to a
subalgebra of a principal ideal of eith&ror K, nor isomorphic to a subalgebra of
a proper principal ideal ok (asR is of height three), we havé, p) = ¢1. Hence
P, = P1, which impliesn = 1.

Assumen > 1 and that the principal ideal @,, = K x (R® Q,,_1) generated
by x is isomorphic toP,. By the above reasoning, it follows that= (0, p) for
somep € Q1. If p # 1y, ,, then the principal ideal 0f,,_1 generated by
is isomorphic to the principal ideal a@p,, generated byO0, p), hence toP,. Thus,
we may apply the inductive hypothesis (wjthin place ofx) to obtainn <m — 1
andp = Anm-1(gs), hence©O, p) = ryu(gn). If p = 1y, ,, thenx = g, and
P, = P,, givingn = m.

CLAIM 13. If u € Aut(Q), thenp restricts to an automorphism @, 1,00 (g,)10
for eachn € N.

Proof. Let ¢ = A,00(g,) @and suppose(q) = Aueo(x) for somem € N and
x € Q.. Then asp(g) = ¢,(g,) = 0, Claim 10 givespu(g) = ¢,,(x) = 0, hence
x < gn. Two applications of Claim 9 then gi\i@, x]y,, = [0, u(g)lp = [0, glp =
[0, gx10, = P,. Hence, by Claim 12y = 1,,,(¢,) andu(q) = q.

CLAIM 14. If u e Aut(Q) restricts to the identity on0, 115(g1)]o, then
restricts to the identity of0, 2, (¢,)1o for eachn € N.

Proof. By Claims 9 and 13, for each € N the mapu, = A1 o o A, is an
automorphism of0, g, 1¢,. One easily checks thaf, ,+1 0 i1, = i1 0 Ay g1 fOr
eachn € N. In view of Claim 9 it is enough to show, = id for eachn € N. We
proceed by induction on.

The claim assumeg; = id. Supposer > 1. AsQ, = K x (R® Q,_1),
the interval[O, g, 10, is equal to{0} x (R & Q,_1). As R is rigid andR # Q,_1,
it follows that u,, restricts to the identity of0} x R. It remains to show that,
restricts to the identity of0} x Q,_1 = {0} x (K x P,_;). Foranyp € P,_;
we havew, (0, (0, p)) = punrn-1,(0, p) = Ay—1..,-1(0, p), SO the inductive
hypothesis givest, (0, (0, p)) = (0, (O, p)). As the automorphisnu, respects
orthocomplements if0, g, 1o, , it follows thatu, also fixes(0, (1, 0)), hence ak
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is rigid, 1, (0, (k, 0)) = (0, (k, 0)) for eachk € K. Then for anyk, p) € Q,_1 we
haveu, (0, (k, p)) = 1, (0, (k, 0)) v u,(0, (0, p)) = (O, (k, p)).

CLAIM 15. If u € Aut(Q) restricts to the identity o0, A1,(q1)]o, thenu =
idg.

Proof. We first note thay € Q andg(g) = 0 imply there is some: € N
with g € [0, X, (gx)]10, SO by the previous claim(g) = ¢. For the general case,
consider any element € Q and choose: so thatq and u(g) are ini,(Q0,).
As 0, = K x P,, there arex, k ek andp, p € P, with g = X, (k, p) and
M(Q) - )\iloo(k p) Thenq - )"n+l oo(k (k p)) andM(Q) - )"n+1 oo(k (k P)) We
obtainu(q) = puhns1.00(k, (k. P)) = thnsr,00(k, (0,0)) V phns1.00(0, (k, p)) =
Urni1.00(k, (0,0)) V X,11.00(0, (k, p)), where the final equality follows as
@hni1.00(0, (k, p)) = 0. Comparing the result with(q) = A1k, (k, p)) we
obtain the inequality0, (k, p)) < (k, (k, p)) giving (k, p) < (k, p). Thusg < nq
forallg € Q, and asu is an automorphism of an OMly, = id,.

We are now in a position to prove the final result required to establish the lemma.

CLAIM 16. A:Aut(H) — Aut(Q) is onto.

Proof. Let € Aut(Q). By Claims 9 and 131 = A1l o 1t 0 A iS @n
automorphism of0, g1]1p, = {0} x (R @ H). Thus, there is an automorphism
a € Aut(H) with u1(0, h) = (0, x(h)) forall h € H. ThenA(x) andu agree on
[0, L15(q1)]0, henceA (x) o /Ll_l restricts to the identity on this interval. By the
previous claimA («) o u=* = idy, henceA (o) = pu. a

6. Conclusion

We may combine the two lemmas to the following

THEOREM 6.1. Let J be a nontrivial OML,B a nontrivial Boolean algebra and
G a group. Then there is an OML such that

1 J =L,
() C(L) =
(3) Aut(L) =

Proof. By [15] there is an OMLM with J < M andAut(M) = G. By the
second lemma, there are nontrivial OM@s K and a homomorphism: 0 — K
satisfying (1) Q is irreducible, (2)K is rigid, 3)J < M < Q, (4) Aut(Q) =
Aut(M) = G, and (5)p o u = ¢ for all u € Aut(Q). Then applying the first
lemma, there is an OML with (1) J < Q < L, (2) C(L) = B, and (3)Aut(L) =
Aut(Q) = G. U

Taking into account the state spaces, we prove the following
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THEOREM 6.2. Let J be an OML admitting at least one statB,a nontrivial
Boolean algebraG a group andS a compact convex subset of a locally convex
Hausdorff linear space. Then there is an OMlsuch that

VJ=L,

(2) C(L) = B,

(3) Aut(L) = G,

(4) 8(L) is affinely homeomorphic t8.

Proof. According to Theorem 1.5, we may restrict attentionBo% 2 and
consider it as a produ@ = B; x B, of two nontrivial Boolean algebras. Applying
Theorem 1.5 in the case of the trivial automorphism group, we construct an OML
Lysuchthat/ < L1, C(Ly) = By, Lyisrigid, and$(L,) is affinely homeomarphic
to S.

Take a stateless OML from Proposition 1.3, and a simple OML which is
not isomorphic to a subalgebra of an intervallgf and form the horizontal sum
Jo = J@®Ia®T. We apply the previous theorem t, B, and G and obtain
an OML L, such that/, < L,, C(Ly) = By, andAut(L,) = G. Note further
that §(L,) = ¥ as L, contains a stateless subalgeliraFurther, the proof of
the previous theorem shows that for each nonzero central elamentC(L,),
the interval[O, ¢],, contains a subalgebra isomorphic to a quotienty-gfhence
contains a subalgebra isomorphicTto

Take the producl. = L, x L,. We will verify conditions (1)—(4) of the the-
orem for L. As J is a subalgebra of botl, and L,, we haveJ < L, hence
condition (1). Also,C(L) = C(L1 x Ly) = C(L1) x C(Ly) = By x B, =
B, giving condition (2). AsL, is stateless, it follows that each staton L =
L1 x L, satisfiess(x,y) = s(x,0), hence there is an affine homeomorphism
betweens$(L) and 8(L1), yielding condition (4). It remains only to verify con-
dition (3).

We claim thata (1, 0) = (1, 0) for eacha € Aut(L), showing that each €
Aut(L) is of the forma = a; x a, for somew; € Aut(L;) and somex, €
Aut(L;), and hence providing condition (3). Considering inverses, it suffices to
showea (1, 0) < (1, 0) foreache € Aut(L). ButT is notisomorphic to a subalgebra
of an interval of{ (0, 0), (1, 0)], and is isomorphic to a subalgebra of an interval of
[(O, 0, (c, d)], for each centraic, d) with d £ 0. a
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