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1. Basic Definitions and Historical Overview of the Problem

Orthomodular lattices appear – besides their algebraical importance – as event
structures of quantum mechanical systems. They allow to develop a generalized
probability theory which admits the phenomenon of noncompatibility: Two events
a, b that can be observed separately need not be jointly observable.

DEFINITION 1.1. Anorthomodular lattice(abbr.OML) is a latticeLwith a least
and a greatest element (denoted by 0, 1, respectively) and with a unary operation′
(orthocomplementation) satisfying the following properties for alla, b ∈ L:

(1) (a′)′ = a,
(2) a ≤ b H⇒ b′ ≤ a′,
(3) a ∨ a′ = 1,
(4) a ≤ b H⇒ b = a ∨ (b ∧ a′).
Here we always work with OMLs that arenontrivial, i.e., 0 6= 1. When necessary,
we shall distinguish the bounds of OMLs by indices, e.g., 0L,1L. An elementa
of an OML L is called anatom if there is nob ∈ L satisfying 0< b < a.
We denote byA(L) the set of all atoms ofL. We say thatL is atomisticif each
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element ofL can be expressed as a join of atoms. Two elementsa, b of an OML
are calledorthogonal(in symbolsa ⊥ b) if a ≤ b′. If we require in Definition 1.1
the existence of joins only for orthogonal pairs of elements (and dually for meets),
we obtain the definition of anorthomodular poset(abbr.OMP). Typical examples
of OMLs are Boolean algebras and lattices of projections in Hilbert spaces. We
refer to [6, 18] for basic facts on OMLs and OMPs.

LetL be an OML. ABoolean subalgebraof L is a subalgebra which – with the
operations inherited fromL – becomes a Boolean algebra. Two elementsa, b ∈ L
are calledcompatibleif they are contained in a Boolean subalgebra ofL. The set
C(L) = {a ∈ L : a is compatible to allx ∈ L} is a Boolean subalgebra called the
centerof L.

DEFINITION 1.2. LetL be an OML. A mappingm : L→ [0,1] is called astate
onL if the following conditions are satisfied:

(1) m(1) = 1,
(2) m(a ∨ b) = m(a)+m(b) whenevera ⊥ b.
We denote byS(L) thestate space(i.e., the set of all states) of an OMLL. In con-
trast to Boolean algebras and lattices of projections in Hilbert spaces, the following
situation is possible:

PROPOSITION 1.3 [4]. There exists a finite OML which isstateless, i.e., it does
not admit any state.

In the physical interpretation, the center represents the classical part of the system.
The state space represents all possible states of the system. The automorphism
group is also of importance, because it determines the symmetries. It is natural to
ask whether there is a kind of dependence between these attributes of the event
structure of a quantum system (OML). As a motivation, in OMLs of projections in
von Neumann algebras the state space determines the center uniquely [1]. We ask
if a dependence of this type holds also for OMLs. Moreover, we pose our question
under the additional requirement that a given subsystem is embedded. Our main
result is to show there is no dependence between the above-mentioned attributes of
OMLs.

Before stating the main theorem, let us make an overview of the long history of
the problem. We use some of these preceding partial solutions, too.

The fact that an arbitrary Boolean algebra can occur as the center of an OML is
obvious.

The state spaces were characterized by the following theorem due to Shultz (see
[19] and also [8, 11] for simplified proofs):

THEOREM 1.4. For every OMLL, the state spaceS(L) is a compact convex
subset of the space of real functionals onL with the product(= weak) topology.
Conversely, every compact convex subset of a locally convex topological linear
space is affinely homeomorphic to the state space of some OML.
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The fact that any group can be represented as the automorphism group of an
OML was first mentioned by Kalmbach in [7]. A clear proof based on graph-
theoretical methods was given by Kallus and Trnková [5]. Their construction also
allows to embed an arbitrary atomistic OML as a subalgebra. This result was
generalized to the nonatomistic case in [15]. (There is an alternative way of this
generalization: Following [2], every OML can be embedded into an atomistic one
in an automorphism-preserving manner. Then the construction from [5] can be
applied.) For concrete (= set-representable) OMLs an analogous result was proved
in [16]. OMLs with given group of automorphisms and given group of affine
homeomorphisms of the state space are constructed in [20].

As the first result concerning the interplay of the attributes of OMLs, P. Pták
[17] proved the existence of OMLs with given centers and state spaces. In [14],
this result was extended by embedding an arbitrary OML as a subalgebra. The
independence of the center, the state space, the automorphism group and a subal-
gebra was proved in [9], but in full generality only for orthomodular posets. The
problem remained open for OMLs. In particular, it was not clear if OMLs with
given centers (without any atom) and given nontrivial automorphism groups exist.
The partial results of [9] for OMLs which we use here are formulated as follows:

THEOREM 1.5. Let J be an OML admitting at least one state,B a nontrivial
Boolean algebra,G a group andS a compact convex subset of a locally convex
Hausdorff linear space. IfG is the trivial group orB contains an atom, then there
is an OMLL such that

(1) J ≤ L,
(2) C(L) ∼= B,
(3) Aut(L) ∼= G,
(4) S(L) is affinely homeomorphic toS.

Here we give the answer for OMLs in the general case. Although we use the partial
results of [5, 9] whenever possible, we needed completely new techniques at some
steps.

To make our historical survey complete, it should be mentioned that analogous
questions forσ -complete OMLs andσ -additive states are even more complicated.
Partial results – the independence of the center, the state space and a subalgebra –
were developed in [1, 12, 13, 18].

2. Preliminaries

In this section we present some necessary notions and constructions used in the
sequel.

DEFINITION 2.1. LetL be an OML. Fora, b ∈ L, a ≤ b, we define theinterval
[a, b]L = {c ∈ L : a ≤ c ≤ b}.
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We always consider an interval[a, b]L with the partial ordering inherited fromL:

PROPOSITION 2.2. Let L be an OML and lete ∈ L \ {0}. We endow the in-
terval K = [0, e]L with the partial ordering≤K inherited fromL and with the
orthocomplementation′K defined bya′K = a′L ∧L e. ThenK is an OML.

The latter proposition can be generalized to all (bounded) intervals, but we need it
only for the intervals of the form[0, e]L. These intervals areprincipal idealsin L.

DEFINITION 2.3. LetF be a family of OMLs. We take the Cartesian product
L =∏K∈F K and we endow it with the partial ordering≤L and orthocomplemen-
tation ′L defined pointwise, i.e., for alla, b ∈ L, a = (aK)K∈F , b = (bK)K∈F , we
define

a ≤L b ⇐⇒ ∀K ∈ F : aK ≤K bK,
a = b′L ⇐⇒ ∀K ∈ F : aK = (bK)′K.

ThenL becomes an OML called theproductof the familyF .

An OML is called reducibleif it is isomorphic to a product of nontrivial OMLs;
otherwise, it is calledirreducible. A nontrivial OML is irreducible iff its center is
the two-element Boolean algebra. An OML is calledsimple if it does not allow
a nontrivial congruence. If an OML is simple, then it is irreducible. The reverse
implication need not hold.

DEFINITION 2.4. LetF be a family of OMLs. We make a familyG of copies
of OMLs from F which are disjoint except that they have the same least element,
0, and the same greatest element, 1. Thus, for eachK,M ∈ G, K 6= M, we have
K ∩M = {0,1}. We take the unionL = ⋃

G and we endow it with the partial
ordering≤L and orthocomplementation′L defined by

a ≤L b ⇐⇒ ∃K ∈ G : (a, b ∈ K, a ≤K b),
a = b′L ⇐⇒ ∃K ∈ G : (a, b ∈ K, a = b′K).

ThenL becomes an OML called thehorizontal sumof the family F , denoted⊕
K∈F K, or in the case thatF has two membersK1,K2, asK1⊕K2.

A horizontal sum of a familyF of OMLs is callednontrivial if F contains at
least 2 OMLs with more than 2 elements. Then its center is trivial. We call an
OML totally irreducible if it is irreducible and cannot be expressed as a nontrivial
horizontal sum.

DEFINITION 2.5. LetK,L be OMLs. A mappingϕ:K → L is called ahomo-
morphismif it satisfies the following conditions:
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(1) ϕ(0) = 0,
(2) ϕ(a′) = ϕ(a)′ for all a ∈ K,
(3) ϕ(a ∨ b) = ϕ(a) ∨ ϕ(b) for all a, b ∈ K.

If ϕ is bijective and bothϕ and ϕ−1 are homomorphisms, thenϕ is called an
isomorphism. If ϕ:K → ϕ(K) is an isomorphism, thenϕ is called anembedding.
If K ⊆ L and the identity onK is an embedding intoL, thenK is asubalgebraof
L; in symbolsK ≤ L.

We use the notation∼= to denote isomorphisms of OMLs as well as group isomor-
phisms. Notice that isomorphisms of OMLs preserve centers and possible decom-
positions to products and horizontal sums.

For an OMLL, we denote byAut(L) the group of all automorphismsϕ:L→ L

and byidL the identity onL. An OML is calledrigid if its automorphism group is
trivial, i.e., Aut(L) = {idL}.

We shall use the following partial results from [5]:

THEOREM 2.6. LetK be an OML,G be a group. There is a totally irreducible
OMLL such thatK ≤ L, Aut(L) ∼= G.

THEOREM 2.7. There is a proper class of mutually non-isomorphic OMLs, each
of which is totally irreducible, rigid, and of height three.

3. An Example

In this section we present an explicit example of the simplest situation: a rigid
OML with an empty state space and a trivial (= two-element) center. To describe
it, we use hypergraphs called Greechie diagrams (see [4, 6]).

A hypergraphis a coupleH = (V ,E) consisting of a nonempty setV (of
vertices) and of a coveringE of V by nonempty subsets (edges). A loop of order
n in H (n ≥ 3) is ann-tuple of edgesE1, . . . , En ∈ E such that the intersections
E1 ∩ E2, . . . , En−1 ∩ En,En ∩ E1 are nonempty and mutually disjoint.

LetL be a finite OML and let us denote byA(L) the set of all atoms ofL. The
Greechie diagramof L (see [4]) is a hypergraphH = (V ,E) such thatV = A(L)
andE consists of all maximal subsets of mutually orthogonal elements ofA(L).

LOOP LEMMA (see [4, 6]).Let H = (V ,E) be a hypergraph satisfying the
following conditions:

(1) ∀E ∈ E : card(E) ≥ 3,
(2) ∀E,F ∈ E, E 6= F : card(E ∩ F) ≤ 1,
(3) there is no loop of order less than5 in H .

Then there is a unique OMLL such thatH is the Greechie diagram ofL.
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Figure 1. An OML admitting no states and many automorphisms.

Figure 2. A rigid OML admitting many states.

In figures, vertices of Greechie diagrams are denoted by small circles and edges
by line segments or smooth curves. States on a finite OML are in a one-to-one
correspondence with nonnegative evaluations of vertices of its Greechie diagram
such that for each edge the sum of evaluations of its vertices is 1.

The OML described by its Greechie diagram in Figure 1a, resp. b – “the web”
– admits no states. Indeed, all its vertices can be disjointly covered by 12, resp. 13
edges, so each states has to satisfy

12=
∑

a∈A(L)
s(a) = 13,

a contradiction. This OML admits many automorphisms.
The OML corresponding to the Greechie diagram in Figure 2 is rigid because

the three loops are of different order.
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Figure 3. A rigid OML admitting no states.

We connect the latter two examples by additional edges and obtain the “spider in
web” in Figure 3. It is the Greechie diagram of an OML admitting no states because
it contains the OML from Figure 1 as a subalgebra. As the “body of the spider”
(Figure 2) admits no nontrivial automorphisms and it fixes the automorphisms of
the whole structure, the resulting OML is rigid. No element different from 0,1 is
central, so the center is trivial, too.

We obtained an example demonstrating a solution of the simplest possible case
of our task. Before proving the general result, we shall formulate and prove two
lemmas.

4. The First Lemma

LEMMA 4.1. SupposeK,Q are nontrivial OMLs, andϕ:Q→ K is a homomor-
phism with

(1) Q irreducible,
(2) ϕ ◦ µ = ϕ for all µ ∈ Aut(Q),
(3) K is rigid.

Then, for any nontrivial Boolean algebraB, there is an OMLL with Q ≤ L,
Aut(L) ∼= Aut(Q), andC(L) ∼= B. Moreover, each interval beneath a central
element ofL contains a homomorphic image ofQ as a subalgebra.

Proof. Let X be the Stone space ofB and fix y ∈ X. According to The-
orem 2.7, there is a proper class of nonisomorphic rigid OMLs which are not
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decomposable to a horizontal sum. It follows that there is a family{MU | U ⊆
X is clopen andy /∈ U } of such nonisomorphic OMLs, none of which is isomor-
phic to a horizontal summand ofK. For eachx ∈ X with x 6= y let Tx be the
horizontal sum of{MU | x ∈ U andy /∈ U } andK, and setTy = Q.

CLAIM 1. For eachx 6= y, Tx is rigid.
Proof.Supposeλ: Tx → Tx is an automorphism. Thenλ takes horizontal sum-

mands ofTx to other horizontal summands ofTx. As no summand of the formMU

is isomorphic to any summand of the formMV with V 6= U , nor isomorphic to a
summand ofK, λ fixes each summand ofTx . As all the summands are rigid (see
condition (3)),λmust equal the identity.

CLAIM 2. For eachx, z ∈ X, Tx ∼= Tz impliesx = z.
Proof.If x 6= z, then there is a clopenU not containingy and containing exactly

one ofx, z. AssumeU containsx. SoMU is a horizontal summand ofTx, but not
of Tz.

Define a map8:
∏
x∈X Tx → K ×∏x∈X\{y} Tx by setting

(8f )(x) =
{
f (x) if x 6= y,
ϕ(f (y)) if x = y.

Note that8 is a homomorphism. We now define

L =
{
f ∈

∏
x∈X

Tx | for eachx ∈ X,8f is constant on a neighborhood ofx

}
.

CLAIM 3. For f, g ∈ L and x ∈ X, if f (x) = g(x), thenf and g agree on a
neighborhood ofx.

Proof. As f, g ∈ L, there is a neighborhoodN of x on which8f and8g are
constant, hence8f and8g agree onN . First consider the casex 6= y. We may
assumey /∈ N and hence8f agrees withf and8g agrees withg onN . If x = y,
then8f and8g take the common valuek onN , wherek is some element ofK.
Thenf andg have a common valuek onN \{y} and by assumption,f (y) = g(y).

CLAIM 4. L ≤∏x∈X Tx , so operations inL are coordinatewise.
Proof. Let f, g ∈ L andx ∈ X. LetN be a neighborhood ofx on which both

8f,8g are constant. Then8(f ∧ g) = 8f ∧ 8g (as8 is a homomorphism)
is also constant onN . SoL is closed under binary meets, and similarly is closed
under orthocomplementation, hence is a subalgebra.

CLAIM 5. Q is isomorphic to a subalgebra ofL.
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Proof.Let q ∈ Q and define0:Q→∏
x∈X Tx by setting

0(q)(x) =
{
ϕ(q) if x 6= y,
q if x = y.

Note (80(q))(x) = ϕ(q) for eachx ∈ X, so80(q) is constant onX, hence
0(q) ∈ L. As ϕ is a homomorphism,0(q ∧ r)(x) = 0(q)(x) ∧ 0(r)(x) and
0(q ′)(x) = (0(q)(x))′ for eachx ∈ X, hence0 is a homomorphism. Butq 6= r
implies0(q)(y) 6= 0(r)(y), hence0 is an embedding.

CLAIM 6. For anyx ∈ X and anyt ∈ Tx, there isf ∈ L with f (x) = t .
Proof. If x = y we take the element0(t) from above. Ifx 6= y we consider two

cases. First, ift ∈ MU for some clopen setU containingx but noty, let f be the
function with constant valuet onU and 0 elsewhere. Finally, ifx 6= y andt ∈ K,
choose a clopen neighborhoodV of x which does not containy and setf to be the
function with constant valuet onV and 0 elsewhere.

CLAIM 7. f ∈ C(L) iff f = χU for some clopenU ⊆ X (whereχU denotes the
characteristic function ofU ).

Proof. Surely eachχU is central and is inL. Conversely, supposef ∈ L and
f (x) 6= 0,1 for somex ∈ X. Note thatC(Tx) is trivial for eachx ∈ X. (By
condition (1),Ty = Q is assumed irreducible. Forx 6= y, Tx is a horizontal sum.
If X is a two element Boolean space andK = 2 we have only one horizontal
summandMU of Tx , but this can be chosen irreducible.) So, there is somet ∈ Tx
which does not commute withf (x). Use the above claim to produce a functiong
with g(x) = t . Thenf andg do not commute. Hence, the range off is contained
in {0,1}. A standard compactness argument showsf = χU for some clopen setU .

Any automorphismα:L → L clearly restricts to an automorphism ofC(L).
By Stone duality, associated to each such automorphismα is a homeomorphism
β:X→ X with α(χU) = χβ(U).
CLAIM 8. If f (x) = g(x), then(αf )(βx) = (αg)(βx).

Proof.By Claim 3, if f (x) = g(x), then for some clopen neighborhoodU of x
we havef ∧ χU = g ∧ χU . Henceα(f ∧ χU) = α(g ∧ χU), giving αf ∧ χβ(U) =
αg ∧ χβ(U), and in particular that(αf )(βx) = (αg)(βx).

CLAIM 9. The mapαx: Tx → Tβx defined byαx(f (x)) = (αf )(βx) is an isomor-
phism.

Proof.Using Claims 6 and 8 the mapαx is well defined. Asαx(f (x)∧ g(x)) =
αx((f ∧ g)(x)) = α(f ∧ g)(βx) = (αf )(βx)∧ (αg)(βx) = αx(f (x))∧αx(g(x))
the mapαx preserves binary meets. Similarly, it preserves orthocomplementation,
hence is a homomorphism. We obtain its inverse if we repeat the argument with
α−1 in place ofα (as the homeomorphism associated withα−1 is β−1).
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CLAIM 10. 3: Aut(L)→ Aut(Q) defined by3(α) = αy is a group isomorphism.
Proof. Supposeα ∈ Aut(L) with β:X → X the associated homeomorphism.

Thenαx : Tx → Tβx is an isomorphism for eachx ∈ X, hence by Claim 2,β = idX.
The definition ofαx : Tx → Tx reduces toαx(f (x)) = (αf )(x). Thus, forα, δ
automorphisms ofL, (αy◦δy)(f (y)) = αy((δf )(y)) = (αδf )(y) = (α◦δ)y(f (y)),
showing3 is a group homomorphism. Supposeα 6= idL. Then(αf )(x) 6= f (x)

for somef ∈ L andx ∈ X, henceαx 6= idTx . But, by Claim 1,Tx is rigid for each
x 6= y, sox = y. This shows3 is an embedding. Finally, letµ:Q → Q be an
automorphism. Defineα:L→∏

x∈T Tx by setting

(αf )(x) =
{
f (x) if x 6= y,
µ(f (y)) if x = y.

By condition (2),8(αf ) = 8f , henceα:L→ L. Clearlyα is an automorphism,
andαy = µ. Hence3 is a group isomorphism.

Claim 10 establishesAut(L) ∼= Aut(Q), Claim 5 establishes thatQ is isomorphic
to a subalgebra ofL, and Claim 7 establishesC(L) ∼= B. This concludes the proof
of the lemma. 2

5. The Second Lemma

LEMMA 5.1. For any nontrivial OMLM there exist nontrivial OMLsQ,K and
a surjective homomorphismϕ:Q→ K such that

(1) Q is irreducible,
(2) K is rigid,
(3) M ≤ Q,
(4) Aut(Q) ∼= Aut(M),
(5) ϕ ◦ µ = ϕ for all µ ∈ Aut(Q).

Proof.Using Theorem 2.6, we can find totally irreducible OMLsH andK such
that (i)M ≤ H ≤ K, (ii) H is of height at least four, (iii)Aut(H) ∼= Aut(M), and
(iv) K is rigid. Using Theorem 2.7, we can find a totally irreducible, rigid OMLR
of height 3 such thatR is not isomorphic to a subalgebra of an interval ofK.

Recursively define a sequence of OMLsPn for n ∈ N by setting

P1 = R ⊕H and Pn+1 = R ⊕ (K × Pn).
Forn ∈ N putQn = K × Pn, soQn+1 = K × (R ⊕Qn), and letϕn:Qn → K be
the natural projection onto the first coordinate.

Next, for eachn ≤ m we will define a mapλnm:Qn → Qm. For eachn ∈ N
let λnn be the identity map onQn, and defineλn,n+1:Qn → K ×Qn ⊆ Qn+1 by
setting

λn,n+1(k, p) = (k, (k, p)).
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Then forn < m setλnm = λm−1,m ◦ · · · ◦ λn,n+1. Note that eachλn,n+1, hence all
λn,m for n ≤ m are embeddings.

As λmk ◦ λnm = λnk for eachn ≤ m ≤ k, the OMLsQn, together with the
mapsλnm, form a directed family [3, Chapter 3, Sec. 21] of OMLs. We form the
direct limit (also called the inductive limit) of this family (see also [15]), obtaining
an OMLQ and mapsλn∞:Qn → Q for eachn ∈ N. The following claims are
standard properties of direct limits.

CLAIM 1. For all n ≤ m, λm∞ ◦ λnm = λn∞. Further, as eachλnm is an embed-
ding, theλn∞ are also embeddings.

CLAIM 2. For eachq ∈ Q there isn ∈ N with q ∈ λm∞(Qm) for all m ≥ n.

CLAIM 3. Asϕm ◦ λnm = ϕn for all n ≤ m, there exists a unique homomorphism
ϕ:Q→ K with ϕ ◦ λn∞ = ϕn for eachn ∈ N.

It is the OMLQ and the mapϕ:Q→ K that will be used to establish the lemma.
We proceed to verify their properties.

CLAIM 4. Q is irreducible.
Proof. Supposeq ∈ C(Q). Thenq = λn∞(k, p) for somen ∈ N and some

(k, p) ∈ Qn. As λn∞ = λn+1,∞ ◦ λn,n+1 andλn+1,∞ is an embedding, we must
haveλn,n+1(k, p) = (k, (k, p)) is central inQn+1 = K × (R ⊕ Qn). As bothK
andR ⊕Qn are irreducible, there are only four central elements inQn+1, of these
only the bounds 0,1 are in the image ofλn,n+1. HenceC(Q) = {0,1}.

This verifies the first condition required by the lemma. The second, thatK is rigid,
is satisfied by our choice ofK. The third is given by

CLAIM 5. M is isomorphic to a subalgebra ofQ.
Proof. In our choices ofH andK, we required thatM ≤ H ≤ K. ThusM is

isomorphic to a subalgebra ofK×(R⊕H) = Q1. The result follows asλ1∞:Q1→
Q is an embedding.

It remains to establish the final two conditions of the lemma involving automor-
phisms. For eachα ∈ Aut(H), define recursively mapsαn:Qn→ Qn by setting

α1(k, p) =
{
(k, α(p)) if p ∈ H ,
(k, p) if p ∈ R

and

αn+1(k, p) =
{
(k, αn(p)) if p ∈ Qn,
(k, p) if p ∈ R.

Note, eachαn is an automorphism ofQn andαn+1 ◦ λn,n+1 = λn,n+1 ◦ αn for each
n ∈ N. Then by a standard argument for direct limits we have
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CLAIM 6. For eachα ∈ Aut(H) there is a unique automorphism3(α):Q→ Q

with3(α) ◦ λn∞ = λn∞ ◦ αn for eachn ∈ N.

CLAIM 7. 3: Aut(H)→ Aut(Q) is a group embedding.
Proof.Let α, β ∈ Aut(H). By an obvious inductionαn ◦ βn = (α ◦ β)n for each

n ∈ N. Therefore3(α) ◦ 3(β) ◦ λn∞ = 3(α) ◦ λn∞ ◦ βn = λn∞ ◦ αn ◦ βn =
λn∞ ◦ (α ◦ β)n for eachn ∈ N. By the previous claim3(α) ◦ 3(β) = 3(α ◦ β),
showing3 is a group homomorphism. Ifα 6= idH , then3(α) is not the identity
map ofQ, hence3 is an embedding.

Noting thatϕ ◦3(α) ◦ λn∞ = ϕ ◦ λn∞ ◦ αn = ϕn ◦ αn = ϕn we easily obtain

CLAIM 8. For eachα ∈ Aut(H), ϕ ◦3(α) = ϕ.

Thus, if we show that3 mapsAut(H) ontoAut(Q), the remaining two conditions
of the lemma, thatAut(M) ∼= Aut(Q) and thatϕ ◦ µ = ϕ for all µ ∈ Aut(Q) will
be satisfied (recallH was chosen withAut(H) ∼= Aut(M)). Showing that3 is onto
will require some effort. For convenience, we letqn denote the element(0K,1Pn)
of Qn = K × Pn for n ∈ N.

CLAIM 9. For eachn ∈ N, λn∞ restricts to an isomorphism between[0, qn]Qn
and[0, λn∞(qn)]Q.

Proof.Fork ∈ N, λk,k+1(qk) = (0, (0,1)). Hence, ifx ∈ Qk+1 = K×(R⊕Qk)

with x ≤ λk,k+1(qk), thenx is in the range ofλk,k+1. Thus, forz ≤ qk, we have
λk,k+1[0, z]Qk = [0, λk,k+1(z)]Qk+1, and by an obvious induction,λkj [0, z]Qk =[0, λkj (z)]Qj for eachk ≤ j .

To prove the claim, note it is enough to show forn ≤ m and x ∈ Qm that
λm∞(x) ≤ λn∞(qn) impliesλm∞(x) ∈ λn∞[0, qn]Qn . But λm∞(x) ≤ λn∞(qn) =
λm∞λnm(qn) impliesx ≤ λnm(qn), hencex ∈ λnm[0, qn]Qn .

CLAIM 10. If µ ∈ Aut(Q) andq ∈ Q, thenϕ(q) = 0 impliesϕ ◦ µ(q) = 0.
Proof. Choosen so thatq,µ(q) ∈ λn∞(Qn). Sayq = λn∞(x). As ϕ ◦ λn∞ =

ϕn, we haveϕn(x) = 0, sox ≤ qn = (0K,1Pn). Consider the mapf = ϕ ◦ λn∞:
Qn → K. We claim thatf (qn) = 0, hencef (x) = 0. Indeed, as the principal
ideal ofQn generated byqn is isomorphic toPn, the principal ideal ofK generated
by f (qn) contains a homomorphic image ofPn as a subalgebra. ButPn is a non-
trivial horizontal sum, hence simple, so any homomorphic image ofPn is either
isomorphic toPn or is a one-element OML. AsR is a subalgebra ofPn, but not
isomorphic to a subalgebra of any interval ofK, we must have that the principal
ideal ofK generated byf (qn) is trivial, hencef (qn) = 0 as required.

CLAIM 11. If Pn ∼= Pm, thenn = m.
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Proof. Assumen ≤ m. Proceed by induction onn. If n = 1, thenP1 is a
horizontal sum of two irreducible summands, and for anym > 1, Pm = R ⊕
(K × Pm−1) is the horizontal sum of one irreducible and one reducible summand.
Assumen > 1, hencem > 1. ThenPn = K × (R ⊕ Pn−1) andPm = K ×
(R ⊕ Pm−1). ThereforePn−1

∼= Pm−1, and the result follows from the inductive
hypothesis.

CLAIM 12. If n,m ∈ N and Pn is isomorphic to the principal ideal ofQm

generated byx ∈ Qm, thenn ≤ m andx = λnm(qn).
Proof.By induction onm. Assumem = 1. If Pn is isomorphic to the principal

ideal generated by(k, p) ∈ Q1 = K × (R ⊕ H), then asP1 is irreducible either
k = 0 or p = 0. Then, asR is a subalgebra ofPn, but not isomorphic to a
subalgebra of a principal ideal of eitherH orK, nor isomorphic to a subalgebra of
a proper principal ideal ofR (asR is of height three), we have(k, p) = q1. Hence
Pn ∼= P1, which impliesn = 1.

Assumem > 1 and that the principal ideal ofQm = K×(R⊕Qm−1) generated
by x is isomorphic toPn. By the above reasoning, it follows thatx = (0, p) for
somep ∈ Qm−1. If p 6= 1Qm−1, then the principal ideal ofQm−1 generated byp
is isomorphic to the principal ideal ofQm generated by(0, p), hence toPn. Thus,
we may apply the inductive hypothesis (withp in place ofx) to obtainn ≤ m− 1
andp = λn,m−1(qn), hence(0, p) = λnm(qn). If p = 1Qm−1, thenx = qm and
Pn ∼= Pm, giving n = m.

CLAIM 13. If µ ∈ Aut(Q), thenµ restricts to an automorphism of[0, λn∞(qn)]Q
for eachn ∈ N.

Proof. Let q = λn∞(qn) and supposeµ(q) = λm∞(x) for somem ∈ N and
x ∈ Qm. Then asϕ(q) = ϕn(qn) = 0, Claim 10 givesϕµ(q) = ϕm(x) = 0, hence
x ≤ qm. Two applications of Claim 9 then give[0, x]Qm ∼= [0, µ(q)]Q ∼= [0, q]Q ∼=
[0, qn]Qn ∼= Pn. Hence, by Claim 12,x = λnm(qn) andµ(q) = q.

CLAIM 14. If µ ∈ Aut(Q) restricts to the identity on[0, λ1∞(q1)]Q, thenµ
restricts to the identity on[0, λn∞(qn)]Q for eachn ∈ N.

Proof.By Claims 9 and 13, for eachn ∈ N the mapµn = λ−1
n∞ ◦ µ ◦ λn∞ is an

automorphism of[0, qn]Qn . One easily checks thatλn,n+1 ◦µn = µn+1 ◦ λn,n+1 for
eachn ∈ N. In view of Claim 9 it is enough to showµn = id for eachn ∈ N. We
proceed by induction onn.

The claim assumesµ1 = id. Supposen > 1. AsQn = K × (R ⊕ Qn−1),
the interval[0, qn]Qn is equal to{0} × (R ⊕Qn−1). AsR is rigid andR 6∼= Qn−1,
it follows thatµn restricts to the identity on{0} × R. It remains to show thatµn
restricts to the identity on{0} × Qn−1 = {0} × (K × Pn−1). For anyp ∈ Pn−1

we haveµn(0, (0, p)) = µnλn−1,n(0, p) = λn−1,nµn−1(0, p), so the inductive
hypothesis givesµn(0, (0, p)) = (0, (0, p)). As the automorphismµn respects
orthocomplements in[0, qn]Qn , it follows thatµn also fixes(0, (1,0)), hence asK
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is rigid,µn(0, (k,0)) = (0, (k,0)) for eachk ∈ K. Then for any(k, p) ∈ Qn−1 we
haveµn(0, (k, p)) = µn(0, (k,0)) ∨ µn(0, (0, p)) = (0, (k, p)).

CLAIM 15. If µ ∈ Aut(Q) restricts to the identity on[0, λ1∞(q1)]Q, thenµ =
idQ.

Proof. We first note thatq ∈ Q andϕ(q) = 0 imply there is somen ∈ N
with q ∈ [0, λn∞(qn)]Q, so by the previous claimµ(q) = q. For the general case,
consider any elementq ∈ Q and choosen so thatq andµ(q) are inλn∞(Qn).
As Qn = K × Pn, there arek, k̂ ∈ K andp, p̂ ∈ Pn with q = λn∞(k, p) and
µ(q) = λn∞(k̂, p̂). Thenq = λn+1,∞(k, (k, p)) andµ(q) = λn+1,∞(k̂, (k̂, p̂)). We
obtainµ(q) = µλn+1,∞(k, (k, p)) = µλn+1,∞(k, (0,0)) ∨ µλn+1,∞(0, (k, p)) =
µλn+1,∞(k, (0,0)) ∨ λn+1,∞(0, (k, p)), where the final equality follows as
ϕλn+1,∞(0, (k, p)) = 0. Comparing the result withµ(q) = λn+1,∞(k̂, (k̂, p̂)) we
obtain the inequality(0, (k, p)) ≤ (k̂, (k̂, p̂)) giving (k, p) ≤ (k̂, p̂). Thusq ≤ µq
for all q ∈ Q, and asµ is an automorphism of an OML,µ = idQ.

We are now in a position to prove the final result required to establish the lemma.

CLAIM 16. 3: Aut(H)→ Aut(Q) is onto.
Proof. Let µ ∈ Aut(Q). By Claims 9 and 13,µ1 = λ−1

1∞ ◦ µ ◦ λ1∞ is an
automorphism of[0, q1]Q1 = {0} × (R ⊕ H). Thus, there is an automorphism
α ∈ Aut(H) with µ1(0, h) = (0, α(h)) for all h ∈ H . Then3(α) andµ agree on
[0, λ1∞(q1)]Q, hence3(α) ◦ µ−1

1 restricts to the identity on this interval. By the
previous claim3(α) ◦ µ−1 = idQ, hence3(α) = µ. 2

6. Conclusion

We may combine the two lemmas to the following

THEOREM 6.1. LetJ be a nontrivial OML,B a nontrivial Boolean algebra and
G a group. Then there is an OMLL such that

(1) J ≤ L,
(2) C(L) ∼= B,
(3) Aut(L) ∼= G.

Proof. By [15] there is an OMLM with J ≤ M andAut(M) ∼= G. By the
second lemma, there are nontrivial OMLsQ,K and a homomorphismϕ:Q→ K

satisfying (1)Q is irreducible, (2)K is rigid, (3) J ≤ M ≤ Q, (4) Aut(Q) ∼=
Aut(M) ∼= G, and (5)ϕ ◦ µ = ϕ for all µ ∈ Aut(Q). Then applying the first
lemma, there is an OMLL with (1) J ≤ Q ≤ L, (2)C(L) ∼= B, and (3)Aut(L) ∼=
Aut(Q) ∼= G. 2
Taking into account the state spaces, we prove the following
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THEOREM 6.2. Let J be an OML admitting at least one state,B a nontrivial
Boolean algebra,G a group andS a compact convex subset of a locally convex
Hausdorff linear space. Then there is an OMLL such that

(1) J ≤ L,
(2) C(L) ∼= B,
(3) Aut(L) ∼= G,
(4) S(L) is affinely homeomorphic toS.

Proof. According to Theorem 1.5, we may restrict attention toB 6∼= 2 and
consider it as a productB = B1×B2 of two nontrivial Boolean algebras. Applying
Theorem 1.5 in the case of the trivial automorphism group, we construct an OML
L1 such thatJ ≤ L1,C(L1) ∼= B1,L1 is rigid, andS(L1) is affinely homeomorphic
to S.

Take a stateless OMLI from Proposition 1.3, and a simple OMLT which is
not isomorphic to a subalgebra of an interval ofL1, and form the horizontal sum
J2 = J ⊕ I ⊕ T . We apply the previous theorem toJ2, B2 andG and obtain
an OML L2 such thatJ2 ≤ L2, C(L2) ∼= B2, andAut(L2) ∼= G. Note further
that S(L2) = ∅ asL2 contains a stateless subalgebraI . Further, the proof of
the previous theorem shows that for each nonzero central elementc ∈ C(L2),
the interval[0, c]L2 contains a subalgebra isomorphic to a quotient ofJ2, hence
contains a subalgebra isomorphic toT .

Take the productL = L1 × L2. We will verify conditions (1)–(4) of the the-
orem forL. As J is a subalgebra of bothL1 andL2, we haveJ ≤ L, hence
condition (1). Also,C(L) = C(L1 × L2) = C(L1) × C(L2) ∼= B1 × B2 =
B, giving condition (2). AsL2 is stateless, it follows that each states on L =
L1 × L2 satisfiess(x, y) = s(x,0), hence there is an affine homeomorphism
betweenS(L) andS(L1), yielding condition (4). It remains only to verify con-
dition (3).

We claim thatα(1,0) = (1,0) for eachα ∈ Aut(L), showing that eachα ∈
Aut(L) is of the formα = α1 × α2 for someα1 ∈ Aut(L1) and someα2 ∈
Aut(L2), and hence providing condition (3). Considering inverses, it suffices to
showα(1,0) ≤ (1,0) for eachα ∈ Aut(L). ButT is not isomorphic to a subalgebra
of an interval of[(0,0), (1,0)]L and is isomorphic to a subalgebra of an interval of
[(0,0, (c, d)]L for each central(c, d) with d 6= 0. 2
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