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Every lattice with 1 and 0 is embeddable in the lattice of topologies
of some set by an embedding which preserves the 1 and 0

John Harding∗, Alex Pogel

New Mexico State University, Las Cruces, NM 88001-8003, USA

Received 13 July 1998; received in revised form 10 February 1999

Abstract

We prove the result of the title, solving an open problem of Steven Watson (problem 172 in Open
Problems in Topology). 2000 Elsevier Science B.V. All rights reserved.
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From the axioms defining a topological space, it is trivial to show that the collection
TopX of all topologies on a setX is closed under intersections, hence forms a complete
lattice under set inclusion. The largest and smallest elements of this lattice (henceforth
called the 1 and 0) are the discrete and indiscrete topologies respectively. While it has long
been known that every lattice can be homomorphically embedded into the latticeTopX for
some setX [4, Theorem 1.9], Watson asked whether the result could be strengthened as
follows:

Problem. Can every lattice with 1 and 0 be homomorphically embedded in the lattice of
topologies on some set?

This problem is listed as Problem 104 of Watson’s articleProblems I wish I could solve
[6], which appeared in the bookOpen Problems in Topology(the problem is the 172nd
problem in the book). After stating the problem he indicates that it is“the most important
problem in this section”, and clearly explains that the required embedding must map the 1
and 0 of the given lattice to the 1 and 0 of the lattice of topologies.
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Theorem. Every lattice with1 and0 can be homomorphically embedded into the lattice
of topologies of some setX by an embedding which maps the1 and0 of the given lattice
to the1 and0 of TopX.

Proof. Given any setX, the collectionEqX of all equivalence relations onX is closed
under intersections, hence forms a complete lattice under set inclusion⊆. By the dual of
EqX we shall mean the lattice formed by taking⊇ as the partial ordering of the equivalence
relations onX. Consider the map which associates to each equivalence relationθ onX the
topology onX generated by taking the blocks ofθ as basic open sets. It is well known
[4, Theorem 1.9], and easy to verify, that this map homomorphically embeds the dual of
EqX into TopX and further maps the 1 and 0 of the dual ofEqX to the 1 and 0 ofTopX,
respectively.

By considering duals, it will suffice to show that each lattice has an appropriate
homomorphic embedding into a latticeEqX for some setX. If one does not care about
preserving 1 and 0, as in [4, Theorem 1.9], this result is exactly Whitman’s Theorem [7]. To
find such an embedding that does preserve 1 and 0 we use the celebrated Grätzer–Schmidt
Theorem [3] which states that every algebraic lattice is isomorphic to the congruence lattice
of some general algebra.

SupposeL is a lattice with largest and least elements 1 and 0. ThenL can be
homomorphically embedded into the lattice of all non-empty idealsI(L) of L [1] by the
map taking an elementx ∈ L to the principal ideal generated byx. Surely this map takes
the 1 and 0 ofL to the 1 and 0 ofI(L). AsI(L) is an algebraic lattice, the Grätzer–Schmidt
Theorem provides thatI(L) is isomorphic to the lattice of all congruences of some general
algebraA. As the congruence lattice ofA is a sublattice ofEqA which contains the 1 and
0 of EqA, the result follows. 2

It is natural to ask whether the setX in the above theorem could be chosen finite if
the given lattice is finite. Again, this question can be reduced to determining whether a
given finite lattice has an appropriate embedding intoEqX for some finite setX. Neither
Whitman’s Theorem nor the Grätzer–Schmidt Theorem will help with this question, as
they produce infinite sets (algebras) even for finite lattices. However, in another celebrated
result, Pudlák and T˚uma have proved [5] that every finite lattice can be homomorphically
embedded intoEqX for some finite setX. This shows that every finite lattice can be
homomorphically embedded into the lattice of topologies of some finite set, a observation
already made in [2]. Pudlák and T˚uma further state [5, p. 94], without proof, that their
methods can be extended to provide an embedding which preserves 1 and 0. This statement
implies that every finite lattice can be homomorphically embedded into the lattice of
topologies of some finite setX by an embedding which maps the 1 and 0 of the given
lattice to the 1 and 0 ofTopX.
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