On the set representation of an orthomodular poset * John Harding and Pavel Pták

Abstract

Let P be an orthomodular poset and let B be a Boolean subalgebra of P. A mapping $s: P \to \langle 0, 1 \rangle$ is said to be a centrally additive B-state if it is order preserving, satisfies s(a') = 1 - s(a), is additive on couples that contain a central element, and restricts to a state on B. It is shown that, for any Boolean subalgebra B of P, P possesses an abundance of two-valued centrally additive B-states. This answers positively a question raised in [12, Open question, p. 13]. As a consequence one obtains a somewhat better set representation of orthomodular posets and a better extension theorem than in [11, 12]. Further improvement in the Boolean vein is hardly possible as the concluding example shows.

Key words: orthomodular poset, Boolean algebra, state, set representation AMS Classification: 06C15, 81P10

Our notation is standard. We use OMP to abbreviate orthomodular poset, OML to abbreviate orthomodular lattice, Z to denote the centre of an orthomodular poset, \subset for set inclusion, and $\langle 0, 1 \rangle$ for the real unit interval. We remind the reader that a subset B of an orthomodular poset P is called a Boolean subalgebra of P if B is closed under orthocomplementation and finite orthogonal joins and B forms a Boolean algebra under these inherited operations. It is well known that any two elements of B also have a join (resp., a meet) in P and that the join (resp., the meet) taken in B coincides with the join (resp., the meet) taken in P. For general background on orthomodular posets the reader should consult [10], on orthomodular lattices [1, 6], and for various papers related to set representations of orthomodular posets [2, 5, 7, 8, 9, 13].

Definition 1 Let P be an OMP and $s: P \to (0, 1)$ be a map that satisfies

(1) s(0) = 0,
(2) s(a') = 1 − s(a) for all a ∈ P,
(3) if a ≤ b then s(a) ≤ s(b).

We say s is a state if it satisfies

^{*}The second author acknowledges the support of grant 201/00/0331 of the Grant Agency of the Czech Republic and project VS96049 of the Czech Ministry of Education.

(4) if $a \le b'$, then $s(a \lor b) = s(a) + s(b)$.

We say s is a centrally additive state if it satisfies

(4') if $a \leq b'$ and $b \in Z$, then $s(a \lor b) = s(a) + s(b)$.

If B is a Boolean subalgebra of P we say s is a B-state if it satisfies

(4") if $a \leq b'$ and $a, b \in B$, then $s(a \vee b) = s(a) + s(b)$.

Centrally additive states are obtained by weakening the additivity requirement for states to those orthogonal pairs where at least one element belongs to the centre, and *B*additive states are obtained by weakening the additivity requirement for states to those orthogonal pairs where both elements belong to the subalgebra *B*. Note that a centrally additive state is more than just a *B*-additive state for *B* being the Boolean algebra *Z*. We shall call a state two-valued if its range is $\{0, 1\}$. The following notion is key to the study of two-valued centrally additive states.

Definition 2 Let P be an OMP. We say $I \subset P$ is a central ideal if

- (1) $b \in I$ and $a \leq b$ imply $a \in I$,
- (2) if $a \in I$ then $a' \notin I$ for every $a \in P$,
- (3) if $a \leq b'$, $a, b \in I$, and $b \in Z$ then $a \lor b \in I$,
- (4) I contains a prime ideal of Z.

Lemma 3 Let I be a central ideal of P and $a' \notin I$. Then

 $J = \{x \in L \mid x \le m \lor a \text{ for some } m \in I \cap Z\} \cup I$

is a central ideal of P containing I and the element a.

Proof: Let $Q = I \cap Z$. By assumption (4) Q contains a prime ideal of the centre, hence by assumption (2) Q is a prime ideal of the centre.

As J is the union of two order ideals, it is an order ideal. Hence J satisfies the first condition.

For the second condition suppose $x, x' \in J$. Obviously not both $x, x' \in I$. If $x \leq m_1 \lor a$ and $x' \leq m_2 \lor a$, then $1 = (m_1 \lor m_2) \lor a$, giving $a' \leq m_1 \lor m_2$. As $m_1 \lor m_2$ belongs to Q, we have the contradiction $a' \in I$. We are left with the possibility that $x \in I$ and $x' \leq m \lor a$ for some $m \in Q$. This implies $m' \land a' \leq x$, hence $m' \land a' \in I$. As $m \in Q$ and Iis a central ideal we see that $m \lor (m' \land a') = m \lor a' \in I$, yielding the contradiction $a' \in I$. Note that the second condition implies $J \cap Z = I \cap Z$ since $I \cap Z$ is a prime ideal of Z.

For the third condition suppose $x, y \in J$, $x \leq y'$ and $y \in Z$. Then $y \in Q$. If $x \in I$, then as I is a central ideal we have $x \lor y \in I$. Otherwise $x \leq m \lor a$ for some $m \in Q$. Then $x \lor y \leq m \lor a \lor y = (m \lor y) \lor a$ and since both $m, y \in Q$ it follows that $x \lor y \in J$.

Finally, the fourth condition follows trivially as I contains a prime ideal of Z.

Corollary 1 For I a central ideal of P these are equivalent.

- (1) I is a maximal central ideal.
- (2) For each $a \in P$ exactly one of a, a' belongs to I.

The connection between maximal central ideals and two-valued centrally additive states can now be made clear.

Proposition 4 Let P be an OMP and B be a Boolean subalgebra of P. For $s : P \to \{0, 1\}$ these are equivalent.

- (1) s is a centrally additive B-state.
- (2) $s^{-1}(0)$ is a maximal central ideal which contains a prime ideal of B.

For $I \subset P$ these are equivalent.

- (3) I is a maximal central ideal which contains a prime ideal of B.
- (4) $I = s^{-1}(0)$ for some two-valued centrally additive B-state s.

Proof: (1) \Rightarrow (2) Set $I = s^{-1}(0)$. As *s* restricts to a state on *Z*, $I \cap Z$ is a prime ideal of *Z*. Similarly as *s* restricts to a state on *B*, $I \cap B$ is a prime ideal of *B*. Obviously *I* is a downset and for each $a \in P$ exactly one of a, a' belongs to *I*. Finally, if $x, y \in I$, $x \leq y'$ and $y \in Z$, then as *s* is centrally additive $s(x \lor y) = s(x) + s(y) = 0$ yielding $x \lor y \in I$.

 $(2) \Rightarrow (1)$ Set $I = s^{-1}(0)$. As $0 \in I$ we have s(0) = 0, and as I is a downset s is order preserving. As I is maximal, exactly one of a, a' belongs to I for each $a \in P$, so s(a') = 1 - s(a). Assume $x \leq y'$ with either $x, y \in B$ or $y \in Z$. To show $s(x \lor y) = s(x) + s(y)$ it suffices to show this under the assumption that $x, y \in I$. The result follows from the assumptions that $I \cap B$ is a prime ideal of and that I is a central ideal.

 $(3) \Rightarrow (4)$ Define $s: P \rightarrow \{0, 1\}$ by setting s(x) = 0 if $x \in I$ and s(x) = 1 if $x \notin I$. Then $I = s^{-1}(0)$. That s is a centrally additive B-state then follows from the equivalence of (1) and (2).

 $(4) \Rightarrow (3)$ This follows directly from the equivalence of (1) and (2).

The following result is crucial for the representation theorem.

Lemma 5 Let L be an OMP. Let B be a Boolean subalgebra of L containing Z and let $a, b \in L$ with $a \not\leq b$. Then there is a central ideal I with $a', b \in I$ such that $I \cap B$ is a prime ideal of B.

Proof: Set $X = \{x \in B \mid a \leq x\} \cup \{y \in B \mid b' \leq y\} \cup \{z \in Z \mid a \leq z \lor b\}$. We first claim that X generates a proper filter of B. As each of the three sets involved in the definition of X is closed under finite meets, it suffices to show that for $x, y \in B$ and $z \in Z$ with $a \leq x, b' \leq y, a \leq z \lor b$ we have $x \land y \land z \neq 0$. Assume to the contrary that $x \land y \land z = 0$. We want to derive the contradiction $a \leq b$. Certainly $a \leq z \lor b$ implies by the centrality of z that $a \land z' \leq b \land z'$. Also $x \land y \land z = 0$ implies $z \leq x' \lor y'$. As $a \leq x$ and $z \leq x' \lor y'$ we have $a \land z \leq x \land (x' \lor y') = x \land y' \leq y' \leq b$, so $a \land z \leq b \land z$. As $a \land z \leq b \land z$ and $a \land z' \leq b \land z'$, the centrality of z yields $a \leq b$.

Since X generates a proper filter, there is a prime ideal Q of B which is disjoint from X. Let $I_0 = \{x \in L \mid x \leq p \text{ for some } p \in Q\}$. We claim that I_0 is a central ideal. The first condition is trivial from the definition. The second follows as I_0 is the downset generated by a proper ideal of B. The third condition also follows $-I_0$ is closed under all finite joins. The fourth follows as I_0 contains a prime ideal of B and the centre is contained in B. We next want to show that $a, b' \notin I_0$. Indeed, if $a \in I_0$ then $a \leq x$ for some $x \in Q$. But then $x \in X \cap Q$ – a contradiction. Similarly, if $b' \in I_0$ then $b' \leq y$ for some $y \in Q$ and $y \in X \cap Q$ – a contradiction. Let us set

$$I_1 = \{ x \in L \mid x \le m \lor b \text{ for some } m \in I_0 \cap Z \} \cup I_0.$$

By lemma 3, I_1 is a central ideal of L. We claim that $a \notin I_1$. Indeed, $a \in I_1$ would imply that $a \leq z \lor b$ for some $z \in I_0 \cap Z$. But this z would then belong to $X \cap Q$ which is absurd. As $a \notin I_1$, we apply lemma 3 again to extend I_1 to a central ideal containing both a', b. This completes the proof.

Theorem 6 Let P be an OMP, B be a Boolean subalgebra of P, and $a \not\leq b$ be elements of P. Then there is a centrally additive B-state $s : P \to \{0, 1\}$ such that s(a) = 1 and s(b) = 0.

Proof: Taking the subalgebra generated by $B \cup Z$ if necessary, we may assume without loss of generality that B contains the centre of P. Use lemma 5 to produce a central ideal I with $a', b \in I$ such that $I \cap Z$ is a prime ideal of B. By a standard Zorn's lemma argument extend I to a maximal central ideal M. By proposition 4 there is a centrally additive B-state $s : P \to \{0, 1\}$ with $M = s^{-1}(0)$. Then $a', b \in M$ yield s(a) = 1 and s(b) = 0.

Theorem 7 Let P be an OMP and let B be a Boolean subalgebra of P. Then there is a set, S, and a mapping $\sigma: P \to \exp S$ into the power set of S such that, for any $a, b \in L$,

- (1) $a \leq b$ if and only if $\sigma(a) \subset \sigma(b)$,
- (2) $\sigma(a') = S \sigma(a),$
- (3) if $a, b \in B$ then $\sigma(a \lor b) = \sigma(a) \cup \sigma(b)$ and $\sigma(a \land b) = \sigma(a) \cap \sigma(b)$,

(4) if $a \in Z$, then $\sigma(a \lor b) = \sigma(a) \cup \sigma(b)$ and $\sigma(a \land b) = \sigma(a) \cap \sigma(b)$.

Proof: The proof closely follows the Boolean patterns and we therefore omit the details. Let S be the set of all two-valued centrally additive B-states on P. Define $\sigma: P \to \exp S$ by setting $\sigma(a) = \{s \in S \mid s(a) = 1\}$.

The "topological" version of the above representation theorem is also in force. Again, the technique is similar to the Boolean case. The resulting Stone space will however be a closure space only (see [12] for details; recall that a closure space (see [3]) differs from a topological space in that the union of two closed sets need not be closed).

Theorem 8 Let P be an OMP and let B be a Boolean subalgebra of P. Then there exists a compact Hausdorff closure space C and a mapping $\sigma: L \to Clop(C)$ to the collection Clop(C) of all clopen subspaces of C such that

- (1) $a \leq b$ if and only if $\sigma(a) \subset \sigma(b)$,
- (2) $\sigma(a') = S \sigma(a),$
- (3) if $a, b \in B$ then $\sigma(a \lor b) = \sigma(a) \cup \sigma(b)$ and $\sigma(a \land b) = \sigma(a) \cap \sigma(b)$,
- (4) if $a \in Z$, then $\sigma(a \lor b) = \sigma(a) \cup \sigma(b)$ and $\sigma(a \land b) = \sigma(a) \cap \sigma(b)$.

Further, if P is an OML then the map σ is onto Clop(C).

Proof: Let S and σ be as in the previous theorem. Let C be the closure space whose underlying set is S and whose basic closed sets are $\{\sigma(a)|a \in P\}$. As each $\sigma(a)$ and its complement are closed, each $\sigma(a)$ is clopen. Given distinct states $s, t \in S$ there is $a \in P$ with $s(a) \neq t(a)$ hence $\sigma(a)$ is a clopen set separating these points. Therefore C is Hausdorff. As the state space S is compact under the subspace topology inherited from $\langle 0, 1 \rangle^P$, and each $\sigma(a)$ is closed in this subspace topology, the collection $\{\sigma(a)|a \in P\}$ has the finite intersection property, and it follows that C also is compact. Conditions (1) through (4) of the theorem are established in the previous result. For the further remark assume P is an OML. Let $A \subset S$ be a clopen set of C. Using the compactness of C and the fact that A is open, we have $A = \sigma(a_1) \cup \cdots \cup \sigma(a_n)$ for some $a_1, \ldots, a_n \in P$. But A is closed so for some $T \subset P$ we have $A = \bigcap\{\sigma(a)|a \in T\}$. It follows from (1) that $A \subset \sigma(a_1 \lor \cdots \lor a_n) \subset \bigcap\{\sigma(a)|a \in T\}$ hence equality. This shows σ is onto.

Our next theorem generalizes the extension property for Boolean states.

Theorem 9 Let P be an OMP and B_1, B_2 be Boolean subalgebras of P. Let $s : B_1 \rightarrow \langle 0, 1 \rangle$ be a (Boolean) state on B_1 . Then there is a centrally additive B_2 -state $t : P \rightarrow \langle 0, 1 \rangle$ that restricts to s on B_1 .

Proof: Assume first s is two-valued. From well known properties of states on Boolean algebras, s can be extended to a two-valued state on the Boolean subalgebra of P generated by $B_1 \cup Z$, so we may assume without loss of generality that B_1 contains Z. Also, from the form of the problem, we may assume that B_2 contains Z. Let $J = s^{-1}(0)$, a prime ideal of B_1 . Note that J contains a prime ideal of Z. Using the prime ideal theorem, there is a prime ideal K of B_2 containing $\{x \in B_2 | x \leq j \text{ for some } j \in J\}$. Then K contains $J \cap B_2$. Hence $K \cap Z$ contains $J \cap B_2 \cap Z = J \cap Z$ and as both are prime ideals of Z we have $K \cap Z = J \cap Z$. Let

$$I = \{ x \in P | x \le y \text{ for some } y \in J \cup K \}.$$

We claim I is a central ideal. Obviously I is a downset. Suppose $x, x' \in I$. Then as both J, K are closed under finite joins and neither contains 1 we have that $x \leq j$ for some $j \in J$ and $x' \leq k$ for some $k \in K$. Then $k' \leq j$. But this would imply $k' \in K$ contrary to K being a prime ideal. Knowing that $I \supset J, K$ it follows that I contains $J \cap Z = K \cap Z$ a prime ideal of the Z, and as we have shown that I never contains an element and its orthocomplement, $I \cap Z = J \cap Z = K \cap Z$. Suppose $x, y \in I$ with $x \leq y'$ and $y \in Z$. If $x \leq j$ for some $j \in J$, then as $y \in I \cap Z = J \cap Z$ we have $j, y \in J$ hence $j \lor y \in J$ and as $x \lor y \leq j \lor y$ we have $x \lor y \in I$. If $x \leq k$ for some $k \in K$ the argument is similar. Therefore I is a central ideal of P. Taking $t : P \to \{0,1\}$ the two valued centrally additive state associated with I we have t extends s since $I \supset J$ and t is a B_2 state since I contains a prime ideal of B_2 . We have proved every two-valued state s on B_1 can be extended to a two-valued centrally additive B_2 -state on P. The general result then follows from the compactness and convexity of the space of all centrally additive B_2 -states on P using a standard argument found in [12].

In the conclusion of this note, let us show by example that our results are in a sense best possible. Let P be an OMP and B be a Boolean subalgebra of P. Let us call a mapping $s: P \to \langle 0, 1 \rangle$ a strong B-state if

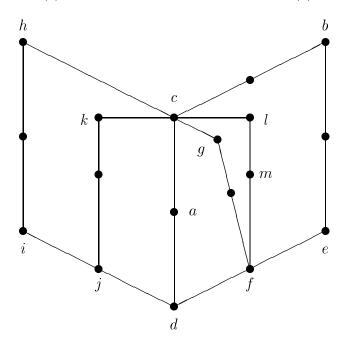
 $(1) \ s(0) = 0,$

(2) s(a') = 1 - s(a) for any $a \in P$,

- (3) if $a \leq b$ then $s(a) \leq s(b)$, and
- (4"') if $a \leq b'$ and $b \in B$, then $s(a \vee b) = s(a) + s(b)$.

It turns out that there is no hope for a representation theorem via these states – there are finite OMP's which do not have an order determining set of two-valued strong B-states. We will show it using the Greechie paste technique (see [4]).

Example 10 Let us consider the OMP, P, given by the Greechie diagram indicated below. Let us consider elements a, b therein. Then $a \leq b'$. Let B be the maximal Boolean subalgebra of P containing the atom a. Then there is no two-valued strong B-state with s(a) = 1 and s(b') = 0. **Proof**: If s(a) = 1, then s(c) = s(d) = 0 (the elements c, a, d constitute all atoms of B). Suppose s(b') = 0. Then s(b) = 1. Since $e \leq b'$, we see that s(e) = 0. It implies that



s(f) = 1, and therefore s(g) = 0. As s(c) = s(g) = 0, we infer that s(h) = 1. This yields s(i) = 0, and therefore s(j) = 1. As a consequence, s(k) = 0. Since s(c) = s(k) = 0, we have s(l) = 1. But s(f) = s(l) = 1 - a contradiction. Thus, there is no two-valued strong *B*-state on *P* with s(a) = 1 and s(b') = 0.

References

- [1] L. Beran: Orthomodular Lattices (Algebraic Approach), Academia (Prague), 1984.
- [2] J. Binder and P. Pták: A representation of orthomodular lattices, Acta Univ. Carolin, – Math. Phys. 31 (1990), 21–26.
- [3] E. Cech: *Topological Spaces*, J. Wiley-Interscience Publ., New York, (1966).
- [4] R. J. Greechie: Orthomodular lattices admitting no states, J. Combin. Theory Ser. A 10 (1971), 119–132.
- [5] L. Iturrioz: A representation theory for orthomodular lattices by means of closure spaces, Acta Math. Hungar. 47 (1986), 145–151.

- [6] G. Kalmbach: Orthomodular Lattices, Academic Press, London 1983.
- [7] R. Mayet: Une dualité pour les ensembles ordonnés orthocompleméntés, C. R. Acad. Sci. Paris S r. I 294 (1982), 63-65.
- [8] P. Ovchinnikov: Exact topological analogs to orthoposets, Proc. Amer. Math. Soc. 125 (1997), no. 10, 2839–2841.
- [9] P. Pták: Weak dispersion-free states and the hidden variables hypothesis, J. Math. Phys. 24 (1983), 839-840.
- [10] P. Pták, S. Pulmannová: Orthomodular Structures as Quantum Logics, Kluwer Academic Publishers (1991).
- [11] P. Pták, J. D. M. Wright: On the concreteness of quantum logics, Aplikace matematiky 30 (1985), 274–285.
- [12] J. Tkadlec: Partially additive states on orthomodular posets, Coll. Math., vol. 62, (1991), 7–14.
- [13] N. Zierler and M. Schlessinger: Boolean embeddings of orthomodular sets and quantum logic, Duke Math. J. 32 (1965), 251-262.

John Harding Dept. of Mathematical Sciences New Mexico State University Las Cruces NM 88003 USA email: jharding@nmsu.edu Pavel Pták Dept. of Mathematics Czech Technical University Faculty of Electrical Engineering Technická 2 16627 Praha 6, Czech Republic email: ptak@math.feld.cvut.cz