
On the set representation of an orthomodular poset �John Harding and Pavel Pt�akAbstractLet P be an orthomodular poset and let B be a Boolean subalgebra of P .A mapping s:P ! h0; 1i is said to be a centrally additive B-state if it is orderpreserving, satis�es s(a0) = 1 � s(a), is additive on couples that contain a centralelement, and restricts to a state on B. It is shown that, for any Boolean subalgebraB of P , P possesses an abundance of two{valued centrally additive B-states. Thisanswers positively a question raised in [12, Open question, p. 13]. As a consequenceone obtains a somewhat better set representation of orthomodular posets and abetter extension theorem than in [11, 12]. Further improvement in the Boolean veinis hardly possible as the concluding example shows.Key words: orthomodular poset, Boolean algebra, state, set representationAMS Classi�cation: 06C15, 81P10Our notation is standard. We use OMP to abbreviate orthomodular poset, OML toabbreviate orthomodular lattice, Z to denote the centre of an orthomodular poset, � forset inclusion, and h0; 1i for the real unit interval. We remind the reader that a subsetB of an orthomodular poset P is called a Boolean subalgebra of P if B is closed underorthocomplementation and �nite orthogonal joins and B forms a Boolean algebra underthese inherited operations. It is well known that any two elements of B also have a join(resp., a meet) in P and that the join (resp., the meet) taken in B coincides with the join(resp., the meet) taken in P . For general background on orthomodular posets the readershould consult [10], on orthomodular lattices [1, 6], and for various papers related to setrepresentations of orthomodular posets [2, 5, 7, 8, 9, 13].De�nition 1 Let P be an OMP and s : P ! h0; 1i be a map that satis�es(1) s(0) = 0,(2) s(a0) = 1� s(a) for all a 2 P ,(3) if a � b then s(a) � s(b).We say s is a state if it satis�es�The second author acknowledges the support of grant 201/00/0331 of the Grant Agency of the CzechRepublic and project VS96049 of the Czech Ministry of Education.1



(4) if a � b0, then s(a _ b) = s(a) + s(b).We say s is a centrally additive state if it satis�es(4') if a � b0 and b 2 Z, then s(a _ b) = s(a) + s(b).If B is a Boolean subalgebra of P we say s is a B-state if it satis�es(4") if a � b0 and a; b 2 B, then s(a _ b) = s(a) + s(b).Centrally additive states are obtained by weakening the additivity requirement forstates to those orthogonal pairs where at least one element belongs to the centre, and B-additive states are obtained by weakening the additivity requirement for states to thoseorthogonal pairs where both elements belong to the subalgebra B. Note that a centrallyadditive state is more than just a B-additive state for B being the Boolean algebra Z.We shall call a state two-valued if its range is f0; 1g. The following notion is key to thestudy of two-valued centrally additive states.De�nition 2 Let P be an OMP. We say I � P is a central ideal if(1) b 2 I and a � b imply a 2 I,(2) if a 2 I then a0 =2 I for every a 2 P ,(3) if a � b0, a; b 2 I, and b 2 Z then a _ b 2 I,(4) I contains a prime ideal of Z.Lemma 3 Let I be a central ideal of P and a0 =2 I. ThenJ = fx 2 L j x � m _ a for some m 2 I \ Zg [ Iis a central ideal of P containing I and the element a.Proof : Let Q = I \Z. By assumption (4) Q contains a prime ideal of the centre, henceby assumption (2) Q is a prime ideal of the centre.As J is the union of two order ideals, it is an order ideal. Hence J satis�es the �rstcondition.For the second condition suppose x; x0 2 J . Obviously not both x; x0 2 I. If x � m1_aand x0 � m2 _ a, then 1 = (m1 _ m2) _ a, giving a0 � m1 _ m2. As m1 _ m2 belongsto Q, we have the contradiction a0 2 I. We are left with the possibility that x 2 I andx0 � m_ a for some m 2 Q. This implies m0 ^ a0 � x, hence m0 ^ a0 2 I. As m 2 Q and Iis a central ideal we see that m_ (m0 ^ a0) = m_ a0 2 I, yielding the contradiction a0 2 I.Note that the second condition implies J \ Z = I \ Z since I \ Z is a prime ideal of Z.For the third condition suppose x; y 2 J , x � y0 and y 2 Z. Then y 2 Q. If x 2 I,then as I is a central ideal we have x _ y 2 I. Otherwise x � m _ a for some m 2 Q.Then x _ y � m _ a _ y = (m _ y) _ a and since both m; y 2 Q it follows that x _ y 2 J .Finally, the fourth condition follows trivially as I contains a prime ideal of Z.2



Corollary 1 For I a central ideal of P these are equivalent.(1) I is a maximal central ideal.(2) For each a 2 P exactly one of a; a0 belongs to I.The connection between maximal central ideals and two-valued centrally additivestates can now be made clear.Proposition 4 Let P be an OMP and B be a Boolean subalgebra of P . For s : P ! f0; 1gthese are equivalent.(1) s is a centrally additive B-state.(2) s�1(0) is a maximal central ideal which contains a prime ideal of B.For I � P these are equivalent.(3) I is a maximal central ideal which contains a prime ideal of B.(4) I = s�1(0) for some two-valued centrally additive B-state s.Proof : (1))(2) Set I = s�1(0). As s restricts to a state on Z, I \ Z is a prime ideal ofZ. Similarly as s restricts to a state on B, I \ B is a prime ideal of B. Obviously I is adownset and for each a 2 P exactly one of a; a0 belongs to I. Finally, if x; y 2 I, x � y0and y 2 Z, then as s is centrally additive s(x _ y) = s(x) + s(y) = 0 yielding x _ y 2 I.(2))(1) Set I = s�1(0). As 0 2 I we have s(0) = 0, and as I is a downset s is orderpreserving. As I is maximal, exactly one of a; a0 belongs to I for each a 2 P , so s(a0) =1 � s(a). Assume x � y0 with either x; y 2 B or y 2 Z. To show s(x _ y) = s(x) + s(y)it su�ces to show this under the assumption that x; y 2 I. The result follows from theassumptions that I \ B is a prime ideal of and that I is a central ideal.(3))(4) De�ne s : P ! f0; 1g by setting s(x) = 0 if x 2 I and s(x) = 1 if x =2 I.Then I = s�1(0). That s is a centrally additive B-state then follows from the equivalenceof (1) and (2).(4))(3) This follows directly from the equivalence of (1) and (2).The following result is crucial for the representation theorem.Lemma 5 Let L be an OMP. Let B be a Boolean subalgebra of L containing Z and leta; b 2 L with a 6� b. Then there is a central ideal I with a0; b 2 I such that I \ B is aprime ideal of B.
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Proof : Set X = fx 2 B j a � xg[fy 2 B j b0 � yg[fz 2 Z j a � z _ bg. We �rst claimthat X generates a proper �lter of B. As each of the three sets involved in the de�nitionof X is closed under �nite meets, it su�ces to show that for x; y 2 B and z 2 Z witha � x; b0 � y; a � z _ b we have x^ y^ z 6= 0. Assume to the contrary that x^ y^ z = 0.We want to derive the contradiction a � b. Certainly a � z _ b implies by the centralityof z that a ^ z0 � b ^ z0. Also x ^ y ^ z = 0 implies z � x0 _ y0. As a � x and z � x0 _ y0we have a ^ z � x ^ (x0 _ y0) = x ^ y0 � y0 � b, so a ^ z � b ^ z. As a ^ z � b ^ z anda ^ z0 � b ^ z0, the centrality of z yields a � b.Since X generates a proper �lter, there is a prime ideal Q of B which is disjoint fromX. Let I0 = fx 2 L j x � p for some p 2 Qg. We claim that I0 is a central ideal. The �rstcondition is trivial from the de�nition. The second follows as I0 is the downset generatedby a proper ideal of B. The third condition also follows { I0 is closed under all �nitejoins. The fourth follows as I0 contains a prime ideal of B and the centre is contained inB. We next want to show that a; b0 62 I0. Indeed, if a 2 I0 then a � x for some x 2 Q.But then x 2 X \ Q { a contradiction. Similarly, if b0 2 I0 then b0 � y for some y 2 Qand y 2 X \Q { a contradiction. Let us setI1 = fx 2 L j x � m _ b for some m 2 I0 \ Zg [ I0:By lemma 3, I1 is a central ideal of L. We claim that a 62 I1. Indeed, a 2 I1 would implythat a � z _ b for some z 2 I0 \ Z. But this z would then belong to X \ Q which isabsurd. As a 62 I1, we apply lemma 3 again to extend I1 to a central ideal containingboth a0; b. This completes the proof.Theorem 6 Let P be an OMP, B be a Boolean subalgebra of P , and a 6� b be elementsof P . Then there is a centrally additive B-state s : P ! f0; 1g such that s(a) = 1 ands(b) = 0.Proof : Taking the subalgebra generated by B [Z if necessary, we may assume withoutloss of generality that B contains the centre of P . Use lemma 5 to produce a centralideal I with a0; b 2 I such that I \ Z is a prime ideal of B. By a standard Zorn's lemmaargument extend I to a maximal central ideal M . By proposition 4 there is a centrallyadditive B-state s : P ! f0; 1g with M = s�1(0). Then a0; b 2 M yield s(a) = 1 ands(b) = 0.Theorem 7 Let P be an OMP and let B be a Boolean subalgebra of P . Then there is aset, S, and a mapping �:P ! expS into the power set of S such that, for any a; b 2 L,(1) a � b if and only if �(a) � �(b),(2) �(a0) = S � �(a),(3) if a; b 2 B then �(a _ b) = �(a) [ �(b) and �(a ^ b) = �(a) \ �(b),4



(4) if a 2 Z, then �(a _ b) = �(a) [ �(b) and �(a ^ b) = �(a) \ �(b).Proof : The proof closely follows the Boolean patterns and we therefore omit the details.Let S be the set of all two-valued centrally additive B-states on P . De�ne �:P ! expSby setting �(a) = fs 2 S j s(a) = 1g.The "topological" version of the above representation theorem is also in force. Again,the technique is similar to the Boolean case. The resulting Stone space will however be aclosure space only (see [12] for details; recall that a closure space (see [3]) di�ers from atopological space in that the union of two closed sets need not be closed).Theorem 8 Let P be an OMP and let B be a Boolean subalgebra of P . Then there existsa compact Hausdor� closure space C and a mapping �:L ! Clop(C) to the collectionClop(C) of all clopen subspaces of C such that(1) a � b if and only if �(a) � �(b),(2) �(a0) = S � �(a),(3) if a; b 2 B then �(a _ b) = �(a) [ �(b) and �(a ^ b) = �(a) \ �(b),(4) if a 2 Z, then �(a _ b) = �(a) [ �(b) and �(a ^ b) = �(a) \ �(b).Further, if P is an OML then the map � is onto Clop(C).Proof : Let S and � be as in the previous theorem. Let C be the closure space whoseunderlying set is S and whose basic closed sets are f�(a)ja 2 Pg. As each �(a) andits complement are closed, each �(a) is clopen. Given distinct states s; t 2 S there isa 2 P with s(a) 6= t(a) hence �(a) is a clopen set separating these points. Therefore C isHausdor�. As the state space S is compact under the subspace topology inherited fromh0; 1iP , and each �(a) is closed in this subspace topology, the collection f�(a)ja 2 Pghas the �nite intersection property, and it follows that C also is compact. Conditions (1)through (4) of the theorem are established in the previous result. For the further remarkassume P is an OML. Let A � S be a clopen set of C. Using the compactness of C andthe fact that A is open, we have A = �(a1) [ � � � [ �(an) for some a1; : : : ; an 2 P . ButA is closed so for some T � P we have A = Tf�(a)ja 2 Tg. It follows from (1) thatA � �(a1 _ � � � _ an) � Tf�(a)ja 2 Tg hence equality. This shows � is onto.Our next theorem generalizes the extension property for Boolean states.Theorem 9 Let P be an OMP and B1; B2 be Boolean subalgebras of P . Let s : B1 !h0; 1i be a (Boolean) state on B1. Then there is a centrally additive B2-state t : P ! h0; 1ithat restricts to s on B1.
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Proof : Assume �rst s is two-valued. From well known properties of states on Booleanalgebras, s can be extended to a two-valued state on the Boolean subalgebra of P gener-ated by B1 [ Z, so we may assume without loss of generality that B1 contains Z. Also,from the form of the problem, we may assume that B2 contains Z. Let J = s�1(0), aprime ideal of B1. Note that J contains a prime ideal of Z. Using the prime ideal theo-rem, there is a prime ideal K of B2 containing fx 2 B2jx � j for some j 2 Jg. Then Kcontains J \B2. Hence K \Z contains J \B2 \Z = J \Z and as both are prime idealsof Z we have K \ Z = J \ Z. LetI = fx 2 P jx � y for some y 2 J [Kg:We claim I is a central ideal. Obviously I is a downset. Suppose x; x0 2 I. Then as bothJ;K are closed under �nite joins and neither contains 1 we have that x � j for somej 2 J and x0 � k for some k 2 K. Then k0 � j. But this would imply k0 2 K contrary toK being a prime ideal. Knowing that I � J;K it follows that I contains J \ Z = K \ Za prime ideal of the Z, and as we have shown that I never contains an element and itsorthocomplement, I \ Z = J \ Z = K \ Z. Suppose x; y 2 I with x � y0 and y 2 Z. Ifx � j for some j 2 J , then as y 2 I \ Z = J \ Z we have j; y 2 J hence j _ y 2 J andas x _ y � j _ y we have x _ y 2 I. If x � k for some k 2 K the argument is similar.Therefore I is a central ideal of P . Taking t : P ! f0; 1g the two valued centrally additivestate associated with I we have t extends s since I � J and t is a B2 state since I containsa prime ideal of B2. We have proved every two-valued state s on B1 can be extended toa two-valued centrally additive B2-state on P . The general result then follows from thecompactness and convexity of the space of all centrally additive B2-states on P using astandard argument found in [12].In the conclusion of this note, let us show by example that our results are in a sensebest possible. Let P be an OMP and B be a Boolean subalgebra of P . Let us call amapping s:P ! h0; 1i a strong B-state if(1) s(0) = 0,(2) s(a0) = 1� s(a) for any a 2 P ,(3) if a � b then s(a) � s(b), and(4"') if a � b0 and b 2 B, then s(a _ b) = s(a) + s(b).It turns out that there is no hope for a representation theorem via these states {there are �nite OMP's which do not have an order determining set of two-valued strongB-states. We will show it using the Greechie paste technique (see [4]).Example 10 Let us consider the OMP, P , given by the Greechie diagram indicated below.Let us consider elements a; b therein. Then a 6� b0. Let B be the maximal Booleansubalgebra of P containing the atom a. Then there is no two-valued strong B-state withs(a) = 1 and s(b0) = 0. 6



Proof : If s(a) = 1, then s(c) = s(d) = 0 (the elements c; a; d constitute all atoms of B).Suppose s(b0) = 0. Then s(b) = 1. Since e � b0, we see that s(e) = 0. It implies thatu u u u
u
uuuuu

u uu uuu
h c b

efd

HHHHHHHHHHHH������������
������������HHHHHHHHHHHH CCCCCCC

CCCHHHH
ji

k lmga uu

s(f) = 1, and therefore s(g) = 0. As s(c) = s(g) = 0, we infer that s(h) = 1. This yieldss(i) = 0, and therefore s(j) = 1. As a consequence, s(k) = 0. Since s(c) = s(k) = 0, wehave s(l) = 1. But s(f) = s(l) = 1 { a contradiction. Thus, there is no two-valued strongB-state on P with s(a) = 1 and s(b0) = 0.References[1] L. Beran: Orthomodular Lattices (Algebraic Approach), Academia (Prague), 1984.[2] J. Binder and P. Pt�ak: A representation of orthomodular lattices, Acta Univ. Carolin,{ Math. Phys. 31 (1990), 21{26.[3] E. Cech: Topological Spaces, J. Wiley-Interscience Publ., New York, (1966).[4] R. J. Greechie: Orthomodular lattices admitting no states, J. Combin. Theory Ser. A10 (1971), 119{132.[5] L. Iturrioz: A representation theory for orthomodular lattices by means of closurespaces, Acta Math. Hungar. 47 (1986), 145{151.7
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