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Functional monadic Heyting algebras

Guram Bezhanishvili and John Harding

Abstract. We show every monadic Heyting algebra is isomorphic to a functional monadic
Heyting algebra. This solves a 1957 problem of Monteiro and Varsavsky [9].

1. Introduction

In 1955 Halmos [5] introduced monadic algebras as algebraic counterparts of the
one-variable fragment of classical predicate calculus. A monadic algebra (abbrevi-
ated: MA) is a Boolean algebra B with an additional unary operation ∇ satisfying
(i) ∇0 = 0, (ii) a ≤ ∇a, and (iii) ∇(∇a∧b) = ∇a∧∇b. Roughly, ∇ is the algebraic
counterpart of the existential quantifier ∃.1

Primary examples of MAs arise by considering a complete Boolean algebra B,
a set X , and defining the operation ∇ on the Boolean algebra BX of all functions
f : X → B by setting

(∇f)(x) =
∨

y∈X
f(y).

We call a MA functional if it is a subalgebra of one arising in this manner from
some B,X .2

In [5,6] Halmos provided a representation theorem for MAs by showing that every
MA is isomorphic to a functional MA. Using the close connection between functional
MAs and algebraic models of classical predicate calculus, Halmos’ representation
theorem shows MAs do serve as algebraic counterparts of the one-variable fragment
of classical predicate calculus.

In 1957 Monteiro and Varsavsky [9] introduced monadic Heyting algebras to serve
the same purpose for intuitionistic predicate calculus as Halmos’ MAs for classical
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1In fact Halmos used the symbol ∃ rather than ∇. Our use of ∇ is for consistency with later

notation introduced by Monteiro and Varsavsky.
2Halmos’ definition of functional MAs is slightly different but equivalent to ours (see Remark 2.9

in Preliminaries). Our preference is motivated by the transparency of the above definition as well
as its consistency with later terminology of Monteiro and Varsavsky.
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predicate calculus. A monadic Heyting algebra (abbreviated: MHA) is a Heyting
algebra H with two additional unary operations ∆,∇ satisfying certain conditions
listed in the preliminaries below. Note that two operations are required as the
intuitionistic quantifiers ∀, ∃ are not inter-definable through the other intuitionistic
connectives.

Primary examples of MHAs arise by considering a complete Heyting algebra H ,
a set X , and defining operations ∆,∇ on the Heyting algebra HX of all functions
f : X → H by setting

(∆f)(x) =
∧

y∈X
f(y) and (∇f)(x) =

∨

y∈X
f(y).

A MHA is called functional if it is a subalgebra of one arising in this manner from
some H,X .

It is natural to seek a representation theorem for MHAs by asking whether every
MHA is isomorphic to a functional MHA. Indeed, Monteiro and Varsavsky posed
this as an open problem in their 1957 paper [9] after showing Halmos’ techniques
were not applicable to MHAs. This problem has also been considered in [8,10,12].

Here we provide a representation theorem for MHAs by showing that every
MHA is isomorphic to a functional MHA. This solves the problem of Monteiro and
Varsavsky. As our techniques are also applicable to MAs, we obtain a new proof,
and slight strengthening, of Halmos’ representation theorem. Additionally, as a
by-product of our representation theorem, we obtain a new proof that MHAs are
the algebraic counterparts of the one-variable fragment of intuitionistic predicate
calculus. This was first proved by Bull [3], and later using different techniques by
Ono and Suzuki [11].

2. Preliminaries

A Heyting algebra is an algebra (H,∧,∨,→, 0, 1) where (H,∧,∨, 0, 1) is a boun-
ded distributive lattice and → is a binary operation on H satisfying x ≤ a → b iff
a∧x ≤ b. It is well known that these conditions can be written equationally, hence
the class of all Heyting algebras forms a variety. A Heyting algebra homomorphism
that is also one-one is called a Heyting algebra embedding.

Definition 2.1. A V-formation of Heyting algebras is a quintuplet (H,H1, H2,

f1, f2) consisting of Heyting algebras H,H1, H2 and Heyting algebra embeddings
f1 : H → H1 and f2 : H → H2. An amalgam of the V-formation is a triple (A, g1, g2)



Vol. 48, 2002 Functional monadic Heyting algebras 3

consisting of a Heyting algebra A and Heyting algebra embeddings g1 : H1 → A

and g2 : H2 → A satisfying g1 ◦ f1 = g2 ◦ f2.

H A

H1

H2

f1

f2

g1

g2

�����

����� �����

�����

The amalgam is a superamalgam if for every a1 ∈ H1, a2 ∈ H2 and 1 ≤ i 
= j ≤ 2,
gi(ai) ≤ gj(aj) implies there exists a ∈ H with gi(ai) ≤ gifi(a) = gjfj(a) ≤ gj(aj).

Theorem 2.2. Every V-formation of Heyting algebras has a superamalgam.

This result was proved independently by Day [4] and Maksimova [7].

Definition 2.3. A regular completion of a Heyting algebra H is a pair (H, i)
consisting of a complete Heyting algebra H and a Heyting algebra embedding
i : H → H such that i preserves all existing meets and joins from H .

Theorem 2.4. Every Heyting algebra has a regular completion.

Proof. It is well known that the MacNeille completion of any lattice preserves all
existing meets and joins [1]. It is also well known that the MacNeille completion
of a Heyting algebra is a Heyting algebra and that the associated embedding is a
Heyting algebra embedding [1]. �

In order to define a MHA, we first introduce the notions of interior and closure
operators on a Heyting algebra. An interior operator on a Heyting algebra H is
a map ∆: H → H such that (i) ∆1 = 1, (ii) ∆a ≤ a, (iii) ∆a = ∆∆a, and
(iv) ∆(a ∧ b) = ∆a ∧ ∆b. A closure operator on H is a map ∇ : H → H such that
(i) ∇0 = 0, (ii) a ≤ ∇a, (iii) ∇a = ∇∇a, and (iv) ∇(a ∨ b) = ∇a ∨∇b. We say an
element a ∈ H is open if a = ∆a, and closed if a = ∇a.
Definition 2.5. A monadic Heyting algebra (abbreviated: MHA) is a triple (H,∆,
∇) where H is a Heyting algebra, ∆ is an interior operator on H , ∇ is a closure
operator on H , and the following conditions hold:

(i) ∆∇a = ∇a,
(ii) ∇∆a = ∆a,
(iii) ∇(∇a ∧ b) = ∇a ∧∇b.
It is obvious from the definition that the class of all MHAs forms a variety. It is

also worth mentioning that ∆(∆a ∨ b) = ∆a ∨ ∆b, which is the dual to condition
(iii), need not be satisfied in every MHA. The following well known result will be
of use [9].
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Proposition 2.6. For a MHA (H,∆,∇), an element a ∈ H is open iff it is closed.
Further, the set B = {a ∈ H | a = ∆a} = {a ∈ H | a = ∇a} is closed under the
operations ∧,∨,→, 0, 1,∆,∇.

Proof. Using the identities ∆∇a = ∇a and ∇∆a = ∆a one easily shows a is open
iff a is closed. For, if a is open, then ∇a = ∇∆a = ∆a = a, hence a is closed, and
the converse is similar. As B is the set of closed elements, it follows from general
properties of closure operators that B is closed under ∧,∨, 0, 1. To show B is closed
under → take a, b ∈ B. We must show ∇(a → b) = a → b. Clearly ∇(a → b) ≥
a → b as ∇ is a closure operator. Using the identity ∇(∇a ∧ b) = ∇a ∧ ∇b and
the fact a = ∇a, b = ∇b we have a ∧ ∇(a → b) = ∇a ∧ ∇(a → b) = ∇(∇a ∧
(a → b)) = ∇(a ∧ (a → b)) ≤ ∇b = b. It follows that ∇(a → b) ≤ a → b, hence
equality. Finally, it is obvious that ∆,∇ restrict to the identity map on B. �

Although we won’t need it, one can show more. Given an element a ∈ H , there
is a largest element in B beneath a, and a least element in B above a. Conversely,
given a Heyting algebra H , a subalgebra B of H with the above properties uniquely
determines a MHA structure on H in which B is the set of open, hence closed,
elements [9].

Definition 2.7. For a complete Heyting algebra H and a set X , define operations
∆,∇ on the Heyting algebra HX of all functions f : X → H by setting

(∆f)(x) =
∧

y∈X
f(y) and (∇f)(x) =

∨

y∈X
f(y).

The resulting algebra (HX ,∆,∇) is known to be a MHA and we call this the full
functional MHA determined by H,X .

Definition 2.8. We say that a MHA is functional if it is a subalgebra of a full
functional MHA.

Remark 2.9. The above definition of functional MHAs is due to Monteiro and
Varsavsky [9]. It is not a direct analog of the definition of functional MAs given by
Halmos, but rather a simplification of Halmos’ approach. Roughly, Halmos noted
one could produce a MA by taking a subalgebra S of BX even when B is not
complete provided that for each f ∈ S the range of f has a join in B and that the
constant function evaluating to this join belongs to S. Using the well-known fact
that the MacNeille completion of a Boolean algebra is Boolean [1], it follows that
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a MA is functional in Halmos’ sense iff it is a subalgebra of a full functional MA.
Similar results hold for MHAs as the MacNeille completion of a Heyting algebra is
a Heyting algebra [1].

3. The main theorem

In this section we prove our main result that every MHA is isomorphic to a
functional MHA. Throughout (H,∆,∇) is a MHA and B = {a ∈ H | a = ∆a} =
{a ∈ H | a = ∇a}. By Proposition 2.6, B is a subalgebra of the Heyting algebra
H .

Definition 3.1. Define recursively for each n ≥ 0 Heyting algebras An and Heyting
algebra embeddings ψn, λn, ϕn as follows.

For n = 0 let (A0, ψ0, λ0) be a triple superamalgamating the V-formation (B,H,
H, idB, idB) (see Theorem 2.2).

B A0

H

H

idB

idB

ψ0

λ0

�����

����� �����

�����

Then set ϕ0 = ψ0|B = λ0|B.
For n > 0 let (An, ψn, λn) be a triple superamalgamating the V-formation (B,

An−1, H, ϕn−1, idB).

B An

An−1

H

ϕn−1

idB

ψn

λn

�����

����� �����

�����

Then set ϕn = ψn ◦ ϕn−1 = λn|B.

Definition 3.2. Consider the directed family generated by the diagram

A0
ψ1→ A1

ψ2→ A2 → · · ·

Let A, together with the maps χn : An → A, be the direct limit of this family.
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. . .

λ0 λ1 λ2

ψ1 ψ2

χ0 χ1 χ2

Note, as each An is a Heyting algebra, A is a Heyting algebra, and as each ψn
is a Heyting algebra embedding, each χn is a Heyting algebra embedding.

Lemma 3.3. For any a ∈ B and any m,n ∈ ω, χm ◦ λm(a) = χn ◦ λn(a).

Proof. We show for every n ∈ ω that χn ◦ λn(a) = χn+1 ◦ λn+1(a). Note, by the
definition of direct limit, χn+1 ◦ψn+1 = χn. Also, by Definition 3.1, ϕn = λn|B and
ψn+1 ◦ ϕn = λn+1|B. Therefore χn ◦ λn(a) = χn ◦ ϕn(a) = χn+1 ◦ ψn+1 ◦ ϕn(a) =
χn+1 ◦ λn+1(a). �

Lemma 3.4. Suppose x ∈ Am and a ∈ H.

(1) If χm(x) ≤ χn ◦ λn(a) for all n ∈ ω, then χm(x) ≤ χn ◦ λn(∆a) for all n ∈ ω.
(2) If χn ◦ λn(a) ≤ χm(x) for all n ∈ ω, then χn ◦ λn(∇a) ≤ χm(x) for all n ∈ ω.

Proof. (1) Under these assumptions χm+1 ◦ ψm+1(x) = χm(x) ≤ χm+1 ◦ λm+1(a),
and as χm+1 is a Heyting algebra embedding, ψm+1(x) ≤ λm+1(a). By Defini-
tion 3.1 the triple (Am+1, ψm+1, λm+1) superamalgamates the V-formation (B,Am,
H, ϕm, idB). Therefore, there exists b ∈ B with ψm+1(x) ≤ ψm+1 ◦ ϕm(b) =
λm+1(b) ≤ λm+1(a). As λm+1 is a Heyting algebra embedding, b ≤ a. Hence, as
b ∈ B, b ≤ ∆a. Also, as ψm+1 is a Heyting algebra embedding and ψm+1(x) ≤
ψm+1 ◦ ϕm(b), we have x ≤ ϕm(b) ≤ ϕm(∆a). Hence χm(x) ≤ χm ◦ ϕm(∆a). As
∆a belongs to B, the previous lemma yields χm(x) ≤ χn ◦ ϕn(∆a) for all n ∈ ω.

(2) is proved similarly. �
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Lemma 3.5. For any a ∈ H, {χn ◦λn(a) | n ∈ ω} has both a greatest lower bound
and a least upper bound in A. Further, for each k ∈ ω,

∧

n∈ω
χn ◦ λn(a) = χk ◦ λk(∆a) and

∨

n∈ω
χn ◦ λn(a) = χk ◦ λk(∇a).

Proof. Let k ∈ ω. For any n ∈ ω, Lemma 3.3 provides χk ◦ λk(∆a) = χn ◦ λn(∆a)
since ∆a ∈ B. But ∆a ≤ a, so χk ◦ λk(∆a) ≤ χn ◦ λn(a) for every n ∈ ω.
Thus χk ◦ λk(∆a) is a lower bound of {χn ◦ λn(a) | n ∈ ω}. Suppose y ∈ A

and y is a lower bound of {χn ◦ λn(a) | n ∈ ω}. Then, by basic properties of
direct limits, there is m ∈ ω and x ∈ Am with y = χm(x). By Lemma 3.4,
y = χm(x) ≤ χn ◦ λn(∆a) for all n ∈ ω, and in particular, y ≤ χk ◦ λk(∆a). This
proves

∧
n∈ω χn ◦ λn(a) = χk ◦ λk(∆a). The other statements follow similarly. �

Theorem 3.6. (Main Theorem) Every MHA is isomorphic to a functional MHA.

Proof. Given a MHA (H,∆,∇) let An, A, χn, λn be as above. Let A, together
with the map i : A → A, be a regular completion of A (see Theorem 2.4). Note
A is a Heyting algebra and i is a Heyting algebra embedding. Define the map
f : H → (A)ω by putting

f(a)(n) = i ◦ χn ◦ λn(a).

We prove f is a MHA embedding of the MHA (H,∆,∇) into the full functional
MHA ((A)ω,∆,∇). For each n ∈ ω, i ◦ χn ◦ λn is a composite of Heyting algebra
embeddings, hence is a Heyting algebra embedding. Since i ◦ χn ◦ λn is a Heyting
algebra homomorphism for each n ∈ ω, it follows that f is a Heyting algebra
homomorphism. As all, hence at least one, of the i ◦ χn ◦ λn is a Heyting algebra
embedding, f is a Heyting algebra embedding.

It remains to show that f preserves the monadic operations ∆,∇. Let a ∈ H

and k ∈ ω. Then

(∆f(a))(k) =
∧
n∈ω f(a)(n)

=
∧
n∈ω i ◦ χn ◦ λn(a)

= i(
∧
n∈ω χn ◦ λn(a))

= i(χk ◦ λk(∆a))
= f(∆a)(k).

In the third line we have used the fact that i : A → A preserves all existing meets
in A, and the fact, provided by Lemma 3.5, that {χn ◦ λn(a) | n ∈ ω} has a
meet in A. In the fourth line we use the fact, also provided by Lemma 3.5, that∧
n∈ω χn ◦ λn(a) = χk ◦ λk(∆a).
This shows ∆f(a) = f(∆a). One can similarly show ∇f(a) = f(∇a). �



8 G. Bezhanishvili and J. Harding Algebra univers.

4. Concluding remarks

In [5,6] Halmos proved every MA is isomorphic to a subalgebra of a full functional
MA (BX ,∇). However, the set X constructed in his proof was created from the set
of endomorphisms of a Boolean algebra, and could be uncountable. Later proofs of
this result by LeBlanc (described in [6]) and Varsavsky [13] also yielded uncountable
sets. We can slightly extend this result as follows.

Theorem 4.1. Every MA is isomorphic to a subalgebra of a full functional MA
(Bω,∇).

Proof. The proof of the main theorem relies on two facts; that every V-formation in
the variety of Heyting algebras has a superamalgam, and that every Heyting algebra
has a regular completion. Since it is well known that the variety of Boolean algebras
has superamalgams [7] and regular completions [1], we can apply our method also
to the variety of MAs. �

Our proof that every MHA is isomorphic to a subalgebra of a full functional
MHA (Hω,∆,∇) produces an infinite Heyting algebra H even when the original
Heyting algebra is finite. The following result, first stated in [9], shows this is
unavoidable. Let (3,∆,∇) be the MHA defined by setting the Heyting algebra 3
to be the three-element chain {0, a, 1} and setting ∆x = 0 for x 
= 1, ∇x = 1 for
x 
= 0, ∆1 = 1, ∇0 = 0.

Proposition 4.2. If (HX ,∆,∇) is a full functional MHA and (3,∆,∇) is isomor-
phic to a subalgebra of (HX ,∆,∇), then both H and X are infinite.

Proof. Consider the identity ¬¬∆x = ∆¬¬x where ¬ denotes pseudocomplement.
This identity does not hold in (3,∆,∇) as ¬¬∆a = 0 and ∆¬¬a = 1. We show
this identity holds in any full functional MHA (HX ,∆,∇) in which either H or X
is finite. Suppose f ∈ HX . As either H or X is finite, the range of f is a finite
subset {a1, . . . , an} of H . Then, the definition of ∆ yields

(¬¬∆f)(x) = ¬¬
n∧

i=1

ai =
n∧

i=1

¬¬ai = (∆¬¬f)(x),

as ¬¬∧n
i=1 ai =

∧n
i=1 ¬¬ai holds in every Heyting algebra.3 �

We remark that our results will not apply to all subvarieties of MHAs. For con-
venience, we call a variety V of MHAs functional if every algebra in V is isomorphic
to a subalgebra of a full functional MHA belonging to V.

3It is the failure of ¬¬
∧

I
ai =

∧
I
¬¬ai for I infinite that allows one to falsify the identity

¬¬∆x = ∆¬¬x in a functional MHA.
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Theorem 4.3. There are continuum many varieties of MHAs that are not func-
tional.

Proof. Let V be a variety of MHAs and α = β an identity in the language of Heyting
algebras such that (i) for each (H,∆,∇) ∈ V, α = β is satisfied in B = {x ∈ H |
x = ∆x}, and (ii) there is (M,∆,∇) ∈ V with α = β not satisfied in M . We claim
V is not functional. Suppose (HX ,∆,∇) is a full functional MHA in V. Then
B = {f ∈ HX | f = ∆f} is exactly the Heyting algebra of all constant functions
from X to H , hence B is isomorphic to H . Thus H , and hence HX , satisfies α = β.
Therefore (M,∆,∇) cannot be isomorphic to a subalgebra of (HX ,∆,∇). Hence
V is not functional.

There are continuum many varieties of MHAs satisfying the identity ∆x = ¬¬∆x
and not contained in the variety of MAs [2]. Any such V satisfies conditions (i)
and (ii) above with respect to the identity x = ¬¬x. This yields the result. �

Remark 4.4. In contrast to Theorem 4.3 there are partial positive results on
functional varieties of MHAs. It is known from Maksimova [7] that there are exactly
eight varieties of Heyting algebras with the property that every V-formation in the
variety has superamalgam in the variety. These varieties are:

V1 = the trivial variety;
V2 = the variety of Boolean algebras;
V3 = the variety generated by the three-element chain 3;
V4 = the variety generated by all chains;
V5 = the variety generated by the algebra which is obtained by adjoining a

new top to the four element Boolean algebra;
V6 = the variety generated by the algebras which are obtained by adjoining

a new top to Boolean algebras;
V7 = the variety satisfying the identity ¬x ∨ ¬¬x = 1;
V8 = the variety of all Heyting algebras.

Most of these varieties are of interest in the study of intermediate logics. For
example, V4 corresponds to the well-known logic of Gödel and Dummett, and V7

corresponds to the logic of the weak excluded middle. It may also be of interest to
study MHAs (H,∆,∇) where H is restricted to lie in one of these eight varieties.

Suppose (H,∆,∇) is a MHA and H ∈ Vi, i = 1, . . . , 8. The algebras An, A
constructed in Section 3 can also be chosen to lie in Vi. In the proof of our main
theorem, we required not only that the variety of Heyting algebras had superamal-
gams, but also that it admitted regular completions. This latter fact may not be
available for the varieties Vi (we do not know the status of this question4).

4The authors have recently shown the only varieties of HAs that are closed under MacNeille
completions are the trivial variety, the variety of Boolean algebras, and the variety of all HAs.
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However, if we modify the proof of the main theorem and consider the map
g : H → Aω defined by g(a)(n) = χn ◦ λn(a), we can show that the image of g
is a functional MHA in the sense of Halmos (see Remark 2.9), and its Heyting
reduct again belongs to Vi. In other words the variety of all monadic Vi algebras
is functional in the sense of Halmos.
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