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Remarks on Concrete Orthomodular Lattices1

John Harding2

An orthomodular lattice (OML) is called concrete if it is isomorphic to a collection of
subsets of a set with partial ordering given by set inclusion, orthocomplementation given
by set complementation, and finite orthogonal joins given by disjoint unions. Interesting
examples of concrete OMLs are obtained by applying Kalmbach’s construction K (L) to
an arbitrary bounded lattice L . This note provides several results regarding Kalmbach’s
construction, concrete OMLs, and the relationship between the notions. First, we provide
order-theoretic and categorical characterizations of the OML K (L) in terms of the
bounded lattice L . Second, we provide an identity satisfied by each OML K (L), but
not valid in every concrete OML. This shows that the class of OMLs of the form K (L)
do not generate the variety of all concrete OMLs. Finally, we show that every concrete
OML can be embedded into a concrete OML in which every element is a join of two or
fewer atoms.
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1. INTRODUCTION

A collection X of subsets of a set X is called a class (Gudder, 1979), or partial
field (Godowski, 1981), of sets if (i) ∅ and X belong to X , (ii) A ∈ X ⇒ X − A ∈
X , and (iii) if A, B ∈ X and A ∩ B = ∅, then A ∪ B ∈ X . A class of sets naturally
forms an orthomodular poset (abbreviated: OMP) when equipped with the partial
ordering of set containment and orthocomplementation of set complementation.
An OMP is called concrete if it is isomorphic to one obtained from a class of sets.
An orthomodular lattice (abbreviated: OML) is called concrete if it is concrete
when considered as an OMP.

Primary results on concrete OMLs were obtained by Godowski (Godowski,
1981) in the early 1980s. Recall that a finitely additive state on an OML L is
a map s : L → [0, 1] that satisfies s(x ∨ y) = s(x) + s(y) for each pair of ele-
ments x , y in L with x ≤ y′. A state is called two-valued, or dispersion-free,
if its range is {0, 1}. Godowski (1981) showed that an OML is concrete if, and
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only if, for any x , y ∈ L with x �≤ y there is a two-valued state s with s(x) = 1
and s(y) = 0. This is often expressed by saying that the OML has a full set of
two-valued states. An analogous result is easily seen to hold for concrete OMPs.
More surprisingly, Godowski (1981) also showed that the class of concrete OMLs
is closed under homomorphic images, subalgebras, and products, and therefore
forms a variety of OMLs. To date, numerous studies have been made of concrete
OMPs and OMLs (Godowski and Greechie, 1984; Ovchinnikov and Sultanbekov,
1998; Pták, 2000; Navara, 1993), and of varieties of OMLs defined through prop-
erties of their state spaces (Godowski, 1982; Mayet, 1985, 1986; Mayet and Pták,
2000).

At approximately the same time as Godowski’s work, Kalmbach (1977) gave
a method to construct an OML from a bounded lattice. Roughly, the idea is to glue
together the Boolean algebras generated by the chains of a bounded lattice L to
form an OML that we denote K (L). The main application of this construction was
to show that every lattice can be embedded into an OML, thereby showing that
the variety of OMLs satisfies no non-trivial lattice identities. A number of other
applications have also been found for this interesting construction (Harding, 1991;
Kalmbach, 1983; Svozil, 1998). In one such investigation, Harding observed the
basic property relating OMLs of the form K (L) to the variety of concrete OMLs –
every OML of the form K (L) is concrete. The first complete proof of this fact was
given by Mayet and Navara (1995). Kalmbach’s construction can also be applied
to a bounded poset P , producing a concrete OMP we denote K (P).

Our purpose here is to establish several (somewhat unrelated) results about
Kalmbach’s construction, concrete OMLs, and the relationship between the no-
tions. First, we provide order-theoretic and categorical characterizations of the
OML K (L). Second, we give an identity valid in all OMLs of the form K (L), but
not valid in all concrete OMLs. This shows that the OMLs of the form K (L) do
not generate the variety of concrete OMLs. Third, we show that every concrete
OML can be embedded into a concrete OML in which each element is a join of
two or fewer atoms.

This paper is organized in the following manner. The second section provides
the basics of Kalmbach’s construction, and the third gives our abstract character-
izations of K (L). The fourth section gives an identity valid in all OMLs of the
form K (L), but not in all concrete OMLs. The fifth, and final, section deals with
embedding concrete OMLs into concrete atomic OMLs.

For general background on OMPs and OMLs the reader should consult
(Kalmbach, 1983; Pták and Pulmannová, 1991).

2. KALMBACH’S CONSTRUCTION

In this section, we give the basic definition of the OML K (L) constructed
from a bounded lattice L . At the heart of matters lie the following well-known
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results about Boolean algebras generated by chains (Balbes and Dwinger, 1974,
pp. 105–109).

Theorem 1. If C is a bounded chain, then up to isomorphism there is a unique
Boolean algebra that contains C as a bounded subchain and is generated by C.
Further, each element x of this Boolean algebra can be uniquely expressed as

x =
n∨

i=1

x2i ∧ x ′
2i−1

where x1, . . . , x2n are elements of C and satisfy x1 < · · · < x2n.

The Boolean algebra generated by a bounded chain C is usually called the free
Boolean extension of C and will be denoted here as B(C). This is a special case of
a more general theory of free Boolean extensions of bounded distributive lattices
(Balbes and Dwinger, 1974). A key result is that the free Boolean extension B(D)
of a bounded distributive lattice D is the reflective hull of D in the category of
Boolean algebras. Specializing this result to bounded chains yields the following.

Theorem 2. Suppose C is a bounded chain, i : C → B(C) is the natural em-
bedding, B is a Boolean algebra, and f : C → B preserves bounds and order.
Then there is a unique Boolean algebra homomorphism f ∗ : B(C) → B with
f ∗ ◦ i = f .

By Theorem 1, there is a bijection between the elements of a Boolean algebra
generated by a bounded chain C and the finite, even-length subchains of C . This
allows for a synthetic construction of a Boolean algebra generated by C from the
collection of such subchains of C . It is this idea that is exploited and generalized
in Kalbach’s construction.

Definition 3. For P a bounded poset, define

K (P) = {x |x is a finite, even-length chain in P}.
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Define a relation ≤ on K (P) as follows. If x = {x1, . . . , x2n} and
y = {y1, . . . , y2m} are elements of K (P) with x1 < · · · < x2n and y1 < · · · < y2m ,
set

x ≤ y ⇔ for each i ≤ n there is j ≤ m with y2 j−1 ≤ x2i−1 < x2i ≤ y2 j .

Define a unary operation ⊥ on K (P) by setting x⊥ to be the symmetric
difference of the set x and the set {0, 1}.

Definition 4. For P a bounded poset define a map i : P → K (P) by setting

i(p) =
{ {0, p} if p �= 0

∅ if p = 0

Remark As every bounded lattice L is also a bounded poset, we unambigu-
ously use K (L) to mean the application of the earlier construction to the bounded
lattice L .

In Kalmbach’s original paper (Kalmbach, 1977) this construction was con-
sidered only as it applied to a bounded lattice L . The following result, in the lattice
setting, is due to Kalmbach (1977). A proof can be found either in her original paper,
or using notation similar to the notation used here, in (Harding, 1991). We note that
an alternate proof given by Kalmbach (1983) is flawed. The proof in the bounded
poset setting is essentially a small fragment of the proof in the lattice setting.

Theorem 5. If P is a bounded poset, then K (P) is an OMP and i : P → K (P)
is an order-embedding that preserves bounds. If L is a bounded lattice, then K (L)
is an OML and i : L → K (L) is a bounded lattice embedding.

Remark For C a bounded chain, K (C) is equal to the free Boolean extension
B(C) of C . However, if D is a bounded distributive lattice that is not a chain, one
can show that K (C) is not equal to the free Boolean extension B(D) of D.

The following example may be instructive.

Example In the following diagram, a lattice L is at left, and the OML K (L) is
at right.
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The least element of the OML K (L) at right is the empty chain, and the greatest
element is the chain {0, 1}. The atoms of K (L), reading from left to right, are the
chains {0, a}, {a, b}, {b, 1}, {c, b}, {0, c}, {c, d}, and {d, 1}; while the coatoms,
again reading from left to right, are {a, 1}, {0, a, b, 1}, {0, b}, {0, c, b, 1}, {c, 1},
{0, c, d, 1}, and {0, d}. Note that the elements of K (L) indicated by larger circles
are the empty chain, {0, a}, {0, b}, {0, c}, {0, d}, and {0, 1}. These elements form
a bounded sublattice of K (L) that is isomorphic to L .

3. CHARACTERIZATIONS OF K (L)

In this section, we give abstract characterizations of K (L) and K (P). First, we
provide an order-theoretic characterization of K (L) along the lines of
Theorem 1.

Theorem 6. For L a bounded lattice and M an OML, M is isomorphic to K (L)
iff:

1. M has a bounded sublattice L ′ that is isomorphic to L.
2. For every block B of M, B ∩ L ′ is a chain that generates B.

That K (L) satisfies the earlier two conditions was established by Harding
(1991). For the other implication, we assume that M is an OML that contains L
as bounded sublattice, and that B ∩ L is a chain that generates B for each block B
of M . We use a sequence of lemmas to show that M is isomorphic to K (L). In the
following we freely use results about commutativity when making computations
in the OML M . All these results can be found in (Kalmbach, 1983).

Lemma 7. For each x in M there is a least element x in L that lies above x.

Proof: Note first that if x is an element of a Boolean algebra B that is generated
by a chain C , then Theorem 1 shows that there is a least element of C lying above
x . In fact, if x = ∨n

i=1x2i ∧ x ′
2i−1, where x1 < · · · < x2n are elements of C , then

x2n is the least element of C lying above x .
Let F = {a ∈ L|x ≤ a} and note that F is a filter of L . Using Zorn’s lemma,

we can find a maximal chain C in F . Then C ∪ {x} is a set of pairwise commuting
elements, hence is contained in a block B of M . Then, by our assumptions, B ∩ L
is a chain D of L that generates B, and by construction, C ⊆ D.

As x ∈ B and B is generated by a chain D, the earlier remarks show there is
a least element d ∈ D lying above x . Then d ≤ c for each c ∈ C , and as d ∈ F ,
it follows from the maximality of C that d ∈ C . Again using the maximality of
C , and the fact that F is a filter in L , we have d is the least element of L lying
above x . �
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Lemma 8. Suppose x = a ∧ b′ where a, b ∈ L with b < a. Then x = a.

Proof: Let x = c. Note that a ∈ L and x ≤ a implies x ≤ a, hence c ≤ a. Also,
as x ≤ x we have a ∧ b′ ≤ c. Taking the join of both sides of this expression with
a′ gives b′ ≤ c ∨ a′. Thus, b commutes with c ∨ a′ and clearly, b commutes with
a. Therefore, b commutes with a ∧ (c ∨ a′), and as c ≤ a this latter expression
equals c.

So a, b, c are pairwise commuting, hence contained in some block B. As
x = a ∧ b′ we have that x also belongs to B. Then as B ∩ L is a chain that gen-
erates B, our earlier comments show that a is the least member of B ∩ L lying
above x . In particular, we have a ≤ c. As we have already seen c ≤ a, we have
a = c = x . �

Lemma 9. Suppose x1, . . . , x2n are elements of L with x1 < · · · < x2n. Then for
x = ∨n

i=1x2i ∧ x ′
2i−1 we have x = x2n.

Proof: Surely x ≤ x2n and therefore x ≤ x2n . But x2n ∧ x ′
2n−1 ≤ x , and therefore

x2n ∧ x ′
2n−1 ≤ x . It then follows from the previous lemma that x2n ≤ x . �

Lemma 10. Suppose x1, . . . , x2n and y1, . . . , y2m belong to L and that x1 <
· · · < x2n and y1 < · · · y2m and n ≤ m. Set

x =
n∨

i=1

x2i ∧ x ′
2i−1 and y =

m∨
j=1

y2 j ∧ y′
2 j−1.

If x = y, then n = m and xi = yi for each 1 ≤ i ≤ 2n.

Proof: The proof is by induction on n. If n = 0 then x is the join of the empty
family, hence x = 0. But if m > 0 then as y1 < y2 the orthomodular law provides
y2 ∧ y′

1 �= 0, a contradiction. Thus, m = 0 and the claim is verified.
Suppose n ≥ 1, and therefore m ≥ 1. As x = y we have x = y, and there-

fore by the previous result that x2n = y2m . It follows that x2n ∧ x ′ = y2m ∧ y′.
Note

if n = 1 and x1 = 0 then x2n ∧ x ′ = 0,

if n = 1 and x1 �= 0 then x2n ∧ x ′ = x1 ∧ 0′,

if n > 1 and x1 = 0 then x2n ∧ x ′ = (x2n−1 ∧ x ′
2n−2) ∨ · · · ∨ (x3 ∧ x ′

2),

if n > 1 and x1 �= 0 then x2n ∧ x ′ = (x2n−1 ∧ x ′
2n−2) ∨ · · · ∨ (x1 ∧ 0′).

Of course, similar statements apply to y2m ∧ y′.
In any of the earlier cases, the previous lemma (or the trivial fact that 0 = 0)

gives that x2n ∧ x ′ = x2n−1. As x2n ∧ x ′ = y2m ∧ y′ we then have x2n−1 = y2m−1.
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Therefore, x ∧ (x2n ∧ x ′
2n−1)′ = y ∧ (y2m ∧ y′

2m−1)′. Note

x ∧ (x2n ∧ x ′
2n−1)′ = (x2n−2 ∧ x ′

2n−3) ∨ · · · ∨ (x2 ∧ x ′
1),

y ∧ (y2m ∧ y′
2m−1)′ = (y2m−2 ∧ y′

2m−3) ∨ · · · ∨ (y2 ∧ y′
1).

with the understanding that the right side of either of these equations could be the
join of the empty family (if n = 1 or m = 1) and therefore be zero.

The inductive hypothesis gives n − 1 = m − 1 and xi = yi for each 1 ≤ i ≤
2(n − 1). Therefore, n = m, and as we have shown x2n = y2m and x2n−1 = y2m−1,
we have xi = yi for each 1 ≤ i ≤ 2n. �

Definition 11. Define � : K (L) → M by setting

�(x) =
n∨

i=1

x2i ∧ x ′
2i−1 if x = {x1, . . . , x2n} where x1 < · · · < x2n.

Note the operations on the right of the equality sign are operations in the
OML M applied to the elements x1, . . . , x2n which belong to L . Note also that
�(∅) is the join of the emptyset, hence equal to zero.

Theorem 12. The map � : K (L) → M is an isomorphism.

Proof: The map � is clearly well defined and the previous lemma shows �

is one-to-one. Suppose a ∈ M . Then there is a block B of M that contains the
element a. As B ∩ M is a chain that generates B, by Theorem 1 we can find
x1 < · · · < x2n in this chain with a = ∨n

i=1 x2i ∧ x ′
2i−1. Setting x = {x1, . . . , x2n}

we have �(x) = a. Thus, � is onto, hence a bijection.
Suppose that x , y ∈ K (L) with x = {x1, . . . , x2n} and y = {y1, . . . , y2m}

where x1 < · · · < x2n and y1 < · · · < y2m . If x ≤ y in K (L) then for each 1 ≤
i ≤ n there is 1 ≤ j ≤ m with y2 j−1 ≤ x2i−1 < x2i ≤ y2 j . But this implies that
in M we have x2i ∧ x ′

2i−1 ≤ y2 j ∧ y′
2 j−1, and therefore that �(x) ≤ �(y). So � is

order preserving.
Conversely, working with the same elements x , y as in the previous paragraph,

suppose �(x) ≤ �(y). Then �(x) and �(y) commute, and therefore belong to
some block B of M . Let C = B ∩ M and note that by assumption C is a chain
that generates B. By the uniqueness of the representations of x and y in terms of
chains of elements of L given by the previous lemma, we have that x1, . . . , x2n and
y1, . . . , y2m must all belong to C . Having reduced matters to the Boolean setting,
it then follows easily, and is well known (Balbes and Dwinger, 1974), that for each
1 ≤ i ≤ n there is 1 ≤ j ≤ m with y2 j−1 ≤ x2i−1 < x2i ≤ y2 j . Therefore, x ≤ y,
showing that � is an order-isomorphism, and hence a bounded lattice isomorphism.
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Finally, that �(x ′) = �(x)′ is a simple computation based on the definition of
complementation in K (L). �

Remark Theorem 6 does not generalize directly to the setting of bounded posets
as is seen by the following example.

The figure at left is the bounded poset P . The figure at right is K (P), with the
large dots indicating how P sits inside. The figure in the middle is an OMP M that
contains a bounded subposet P ′ (indicated by large dots) that is isomorphic to P .
Note that each block B of M intersects P ′ in a chain that generates B, yet M is not
isomorphic to K (P). The trouble begins with the failure of Lemma 7 as the atom
in the center of M has no least element of P ′ lying above it. Perhaps Theorem 6
could be generalized to the setting of bounded posets by including the regularity
(Harding, 1998; Pták and Pulmannová, 1991) of M as well as the conclusion of
Lemma 10 as assumptions. We have not investigated this question thoroughly as
it lies somewhat outside of our interests.

We next turn our attention to a categorical characterization of K (P) along the
lines of Theorem 2. We first need to introduce some terminology.

Definition 13. An OMP-homomorphism is a map f : M → Q between OMPs
that preserves bounds, orthocomplementation, order, and finite orthogonal joins.

Theorem 14. Let P be a bounded poset, M be an OMP, f : P → M preserve
bounds and order, and i : P → K (P) be as in Definition 4.. Then there exists a
unique OMP-homomorphism f ∗ : K (P) → M with f ∗ ◦ i = f .
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Proof: Suppose C is a bounded subchain of P . Then C generates a Boolean sub-
algebra of K (P) and this Boolean algebra is literally equal to K (C). Note that the
restriction f |C preserves bounds and order. As the image of f |C is a chain of M , it
generates a Boolean subalgebra B of M . Therefore, by Theorem 2 there is a unique
Boolean algebra homomorphism ( f |C)∗ : K (C) → B with ( f |C)∗ ◦ (i |C) = f |C .
One sees easily that ( f |C)∗ is in fact the unique OMP-homomorphism from K (C)
to M with this property.

Suppose C and D are bounded subchains of P and that x belongs to both K (C)
and K (D). Then x = {x1, . . . , x2n} for some family of elements x1 < · · · < x2n

belonging to both C and D. As ( f |C)∗ is a Boolean algebra homomorphism
satisfying ( f |C)∗ ◦ (i |C) = f |C , we have ( f |C)∗(x) = ∨n

i=1 f (x2i ) ∧ f (x2i−1)′.
As a similar comment applies to ( f |D)∗ we have that ( f |C)∗ and ( f |D)∗ agree
on the intersection of their domains.

Consider functions as sets of ordered pairs. As each element of K (P) be-
longs to K (C) for some bounded subchain C of P , the remarks of the pre-
vious paragraph show that f ∗ = ∪{( f |C)∗| C is a bounded subchain of P} is a
well-defined function from K (P) to M . Clearly, f ∗ preserves bounds and or-
thocomplementation. Suppose that x , y belong to K (P). If x ≤ y then there is
a bounded subchain C of P with x , y belonging to K (C). It then follows that
( f |C)∗(x) ≤ ( f |C)∗(y) and therefore that f ∗(x) ≤ f ∗(y). Similarly, if x , y are
orthogonal, then f ∗(x ∨ y) = f ∗(x) ∨ f ∗(y). We therefore have that f ∗ is an
OMP-homomorphism.

As ( f |C)∗ ◦ (i |C) = f |C for each bounded subchain C of P , it follows that
f ∗ ◦ i = f . Suppose that g : K (P) → M is an OMP-homomorphism with g ◦
i = f . If C is a bounded subchain of P then the image of C under f generates
a Boolean subalgebra B of M . We easily see that g|K (C) is a Boolean algebra
homomorphism from K (C) into B and that (g|K (C)) ◦ (i |C) = f |C . It follows
from Theorem 2 that g|K (C) is equal to ( f |C)∗ for each bounded subchain C of
P , hence g = f ∗. �

Definition 15. Let POS be the category of bounded posets whose morphisms are
order-preserving maps that preserve bounds. Let OMP be the category of OMPs
whose morphisms are OMP-homomorphisms.

By general considerations, the following is a direct consequence of
Theorem 14.

Theorem 16. Kalmbach’s construction provides a functor K : POS →
OMP that is left-adjoint to the functor U : OMP → POS that forgets
orthocomplementation.

Remark If we consider the category OML of OMLs and OML-homo-
morphisms, and the category LAT of lattices and lattice homomorphisms, the
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situation in regards to Kalmbach’s construction does not work out so nicely. In-
deed, Kalmbach’s construction does not even provide a functor from LAT to OML
as is seen by the following example.

There is a bounded lattice homomorphism from the lattice L , depicted at the
left, to the two-element lattice 2. But there is no OML-homomorphism from K (L),
depicted at right, to K (2) = 2 as K (L) is the OML usually called M O2, which is
simple.

Of course, the functor from OML to LAT that forgets orthocomplementation
does have a left-adjoint – and this is the functor that associates to a lattice L the
OML freely generated by L . But the OML freely generated by L is not given by
K (L), and a description of its structure is almost a completely open question.

One can however salvage something from the previous theorem in the setting
of OMLs. As the application of Kalmbach’s construction to a bounded lattice L
yields an OML K (L), the earlier result specializes to show Kalmbach’s construc-
tion provides a left-adjoint to the functor from the category of lattices and lattice
homomorphisms to the category of OMLs and OMP-homomorphisms that forgets
orthocomplementation.

4. AN IDENTITY

In this section we provide a identity valid in each OML K (L) but not valid in
all concrete OMLs. This identity may provide insight into the structure of OMLs
K (L).

Definition 17. For elements x , y of an OML L define the commutator com(x , y)
by

com(x , y) = (x ∨ y) ∧ (x ∨ y′) ∧ (x ′ ∨ y) ∧ (x ′ ∨ y′).

For elementary properties of commutators see (Kalmbach, 1983).

We say a and b are comparable if either a ≤ b or b ≤ a. We write a ∼ b to
indicate a, b are comparable and a �∼ b to indicate they are incomparable.



Remarks on Concrete Orthomodular Lattices 2159

Proposition 18. For x , y ∈ K (L) with x = {x1, . . . , x2n} and y = {y1, . . . , y2m}
com(x , y) =

∨
{{xi ∧ y j , xi ∨ y j }| 1 ≤ i ≤ 2n, 1 ≤ j ≤ 2m and xi �∼ y j }.

Proof: Set w = ∨{{xi ∧ y j , xi ∨ y j }|1 ≤ i ≤ 2n, 1 ≤ j ≤ 2m and xi �∼ y j }
and suppose w = {w1, . . . w2r } with w1 < · · · < w2r .

Suppose xi �∼ y j . If x ∨ y = {z1, . . . , z2t } with z1 < · · · < z2t then there are
p, q with z2p−1 ≤ xi ≤ z2p and z2q−1 ≤ y j ≤ z2q . But xi �∼ y j so p = q, giv-
ing z2p−1 ≤ xi ∧ y j < xi ∨ y j ≤ z2p. Thus, {xi ∧ y j , xi ∨ y j } ≤ x ∨ y. A simi-
lar argument shows {xi ∧ y j , xi ∨ y j } ≤ x ′ ∨ y, x ∨ y′, x ′ ∨ y′, and therefore that
{xi ∧ y j , xi ∨ y j } ≤ com(x , y). This shows that w ≤ com(x , y).

For the other inequality, we first show that x ∪ w and y ∪ w are chains. If xi is
incomparable to some y j , then for some p we have w2p−1 ≤ xi ∧ y j < xi ∨ y j ≤
w2p. So if xi is incomparable to some member of y, then xi is comparable to each
member of w . If xi is comparable to each element of y, then as xi is comparable
to each member of x , it follows that xi is comparable to each xk ∧ y j and to each
xk ∨ y j . As the elements of w belong to the sublattice generated by the xk ∧ y j

and xk ∨ yk (Harding, 1991), it follows that xi is comparable to each member of
w . Therefore, x ∪ w is a chain, and by symmetry, y ∪ w is a chain. Therefore, x
and y commute with w .

As w commutes with x , y it also commutes with everything in the subalgebra
generated by x , y (Kalmbach, 1983). Therefore, com(x , y) = (com(x , y) ∧ w) ∨
(com(x , y) ∧ w ′) = com(x ∧ w , y ∧ w) ∨ com(x ∧ w ′, y ∧ w ′).

As x ∪ w is a chain, the elements of x ∧ w ′ all belong to x ∪ w , and similarly
the elements of y ∧ w ′ all belong to y ∪ w . We claim that all the elements of x ∧ w ′

are comparable to all the elements of y ∧ w ′, so (x ∧ w ′) ∪ (y ∧ w ′) is a chain. As
x ∪ w and y ∪ w are chains, it is sufficient to show that if xi �∼ y j then either xi

is not an element of x ∧ w ′ or y j is not an element of y ∧ w ′. But xi �∼ y j implies
xi ∧ y j < xi , y j < xi ∨ y j , and as {xi ∧ y j , xi ∨ y j } ≤ w , this shows that xi does
not belong to x ∧ w ′ and y j does not belong to y ∧ w ′.

As all elements of x ∧ w ′ are comparable to all elements of y ∧ w ′ we have
that x ∧ w ′ and y ∧ w ′ commute, hence com(x ∧ w ′, y ∧ w ′) = 0. Thus, from
the earlier remarks, com(x , y) = com(x ∧ w , x ∧ y). As com(x ∧ w , y ∧ w) ≤
(x ∧ w) ∨ (y ∧ w) ≤ w we have com(x , y) ≤ w as required. �

Definition 19. Let x , y ∈ K (L). Call xi ∈ x and y j ∈ y maximally incomparable
if xi and y j are incomparable, xi is the maximal member of x that is incomparable
to y j , and y j is the maximal member of y that is incomparable to xi . Minimally
incomparable elements are defined dually.

Proposition 20. If x , y ∈ K (L), then each member of com(x , y) may be ex-
pressed as the join of a maximally incomparable pair of elements of x , y or as the
meet of a minimally incomparable pair of elements of x , y.
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Proof: Suppose x = {x1, . . . , x2n} where x1 < . . . < x2n , y = {y1, . . . , y2m}
where y1 < · · · < y2m and com(x , y) = {w1, . . . , w2r } where w1 < · · · < w2r .

Consider the relation �∼ of incomparability on x ∪ y. For any element xi that
is incomparable to some member of y define x+

i and x−
i to be the largest and

least members of x that are related to xi in the transitive closure �∼∗ of �∼. If y j is
incomparable to some member of x we define y+

j and y−
j similarly.

Suppose xi �∼ y j . Define i0 = i , j0 = j . Let xi1 be the largest member of x that
is incomparable to y j0 and note xi0 ≤ xi1 . let y j1 be the maximal member of y with
y j1 incomparable to xi1 and note y j0 ≤ y j1 . Let xi2 be maximal in x with xi2 incompa-
rable to y j1 and so forth. This produces two increasing sequences xi0 ≤ xi1 ≤ xi2 ≤
· · · and y j0 ≤ y j1 ≤ y j2 ≤ · · ·. As x , y are finite chains, these sequences eventually
stabilize, and one can see that they stabilize at x+

i and y+
j . This implies that x+

i and
y+

j are maximally incomparable. One similarly sets xi−1 to be least in x incompa-
rable to y j0 and so forth to produce sequences xi0 ≥ xi−1 ≥ xi−2 ≥ · · · and y j0 ≥
y j−1 ≥ y j−2 ≥ · · · that stabilize at the minimally incomparable pair x−

i and y−
j .

It follows from Proposition 18 that for each pair of incomparable elements
xs , yt there is some p with w2p−1 ≤ xs , yt ≤ w2p. As xi0 , y j0 are incomparable,
there is p with w2p−1 ≤ xi0 , y j0 ≤ w2p. As xi1 and yi0 are also incomparable, they
are both are bounded by w2p−1 and w2p. As xi1 and y j1 are incomparable, they also
are bounded by w2p−1 and w2p. In this manner we obtain that each member of
the sequences . . . xi−1 , xi0 , xi1 , . . . and . . . , y j−1 , y j0 , y j1 , . . . are bounded below by
w2p−1 and above by w2p. In particular, w2p−1 ≤ x−

i , y−
j and x+

i , y+
j ≤ w2p. This

then yields that {xi ∧ y j , xi ∨ y j } ≤ {x−
i ∧ y−

j , x+
i ∨ y+

j } ≤ com(x , y).
It follows from Proposition 18 and the remarks in the preceding paragraph

that com(x , y) = ∨{{x−
i ∧ y−

j , x+
i ∨ y+

j }|xi �∼ y j }. As x+
i , y+

j are maximally in-
comparable we have that x+

i ∨ y+
j is comparable to each element of x and y, and

as x−
i , y−

i are minimally incomparable we have x−
i ∧ x−

j is comparable to each
element of x , y. Therefore, the set of all elements of the form x−

i ∧ y−
j or x+

i ∨ y+
j

form a chain. From the earlier description of com(x , y) it follows that all the ele-
ments in com(x , y) are in the sublattice generated by this chain (Harding, 1991),
hence belong to this chain, and therefore are of the form x+

i ∨ y+
j or x−

i ∧ y−
j . �

We shall require several technical lemmas. In each of these lemmas we assume
that x , y, z are elements of K (L) with x = {x1, . . . , x2n} where x1 < . . . < x2n ,
y = {y1, . . . , y2m} where y1 < . . . < y2m , and z = {z1, . . . , z2u} where z1 < . . . <
z2u .

Lemma 21. Assume (i) xi , y j are maximally incomparable in x , y, (ii) xi ∨
y j is an element of com(x , y), (iii) xi ∨ y j , zk are maximally incomparable in
com(x , y), z, and (iv) x p, zq are maximally incomparable in x , z. Then xi ∨ y j ∨
zk ∼ x p ∨ zq .
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Proof: Consider several cases. If q < k then as x p, zq are maximally incompa-
rable, x p ≤ zk , so x p ∨ zq ≤ zk ≤ xi ∨ y j ∨ zk . If k < q then as xi ∨ y j , zk are
maximally incomparable xi ∨ y j ≤ zq , so xi ∨ y j ∨ zk ≤ zq ≤ x p ∨ zq . If q = k
and i < p then as xi , y j are maximally incomparable, y j ≤ x p, so xi ∨ y j ≤ x p,
giving xi ∨ y j ∨ zk ≤ x p ∨ zq . If q = k and p ≤ i then x p ≤ xi , so x p ∨ zq ≤
xi ∨ y j ∨ zk . �

Lemma 22. Assume (i) xi , y j are maximally incomparable in x , y, (ii) xi ∨
y j is an element of com(x , y), (iii) xi ∨ y j , zk are maximally incomparable in
com(x , y), z, and (iv) x p, zq are minimally incomparable in x , z. Then xi ∨ y j ∨
zk ∼ x p ∧ zq .

Proof: Consider several cases. If p ≤ i then x p ≤ xi so x p ∧ zq ≤ xi ∨ y j ∨ zk .
If q ≤ k then zq ≤ zk so x p ∧ zq ≤ xi ∨ y j ∨ zk . Assume i < p and k < q. As
i < p and xi , y j are maximally incomparable, we have y j ≤ x p, hence xi ∨ y j ≤
x p. Also, as k < q and x p, zq are minimally incomparable, we have zk ≤ x p.
Combining these observations gives xi ∨ y j ∨ zk ≤ x p. But as k < q, xi ∨ y j and
zk being maximally incomparable gives xi ∨ y j ∨ zk ≤ zq . Thus, xi ∨ y j ∨ zk ≤
x p ∧ zq . �

Lemma 23. Assume (i) xi , y j are minimally incomparable in x , y, (ii) xi ∧
y j is an element of com(x , y), (iii) xi ∧ y j , zk are maximally incomparable in
com(x , y), z, and (iv) x p, zq are maximally incomparable in x , z. Then (xi ∧ y j ) ∨
zk ∼ x p ∨ zq .

Proof: Consider several cases. If k < q then as xi ∧ y j , zk are maximally in-
comparable, then xi ∧ y j ≤ zq , so (xi ∧ y j ) ∨ zk ≤ zq ≤ x p ∨ zq . If q < k then
as x p, zq are maximally incomparable, x p ≤ zk , so x p ∨ zq ≤ zk ≤ (xi ∧ y j ) ∨ zk .
If q = k and i ≤ p then xi ∧ y j ≤ x p, so (xi ∧ y j ) ∨ zk ≤ x p ∨ zq . If q = k and
p < i then as xi , y j are minimally incomparable, x p ≤ y j , so x p ≤ xi ∧ y j so
x p ∨ zq ≤ (xi ∧ y j ) ∨ zk . �

Lemma 24. Assume (i) xi , y j are minimally incomparable in x , y, (ii) xi ∧
y j is an element of com(x , y), (iii) xi ∧ y j , zk are maximally incomparable in
com(x , y), z, and (iv) x p, zq are minimally incomparable in x , z. Then (xi ∧ y j ) ∨
zk ∼ x p ∧ zq .

Proof: Consider several cases. If p < i then as xi , y j are minimally incompa-
rable, x p ≤ y j , so x p ≤ xi ∧ y j , giving x p ∧ zq ≤ (xi ∧ y j ) ∨ zk . If q ≤ k then
zq ≤ zk , so x p ∧ zq ≤ (xi ∧ y j ) ∨ zk . Assume i ≤ p and k < q . As i ≤ p we have
xi ≤ x p, hence xi ∧ y j ≤ x p. Also, as k < q and x p, zq are minimally incompara-
ble, we have zk ≤ x p. Combining these observations gives (xi ∧ y j ) ∨ zk ≤ x p. As
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k < q , xi ∧ y j and zk being maximally incomparable gives xi ∧ y j ≤ zq , hence
(xi ∧ y j ) ∨ zk ≤ zq . Therefore, (xi ∧ y j ) ∨ zk ≤ x p ∧ zq . �

Theorem 25. K (L) satisfies com(com(com(x , y), z), com(x , z)) ≈ 0.

Proof: As the commutator of two elements equals 0 if, and only if, the elements
commute, and two elements of K (L) commute if, and only if, their elements form
a chain, it is enough to show each element of the chain com(com(x , y), z) is
comparable to each element of the chain com(x , z).

There are four possibilities for an element of com(com(x , y), z), it must
be of one of the forms (i) (xi ∨ y j ) ∨ zk , (ii) (xi ∧ y j ) ∨ zk , (iii) (xi ∨ y j ) ∧ zk or
(iv) (xi ∧ y j ) ∧ zk . Here there are further assumptions on the elements xi , y j being
maximally incomparable in x , y if xi ∨ y j appears in the expression, and so forth.
There are two possibilities for an element of com(x , z), it must be of one of the
forms (a) x p ∨ zq where x p, zq are maximally incomparable, or (b) x p ∧ zq where
x p, zq are minimally incomparable.

This gives a total of 8 possible combinations for an element of com(com(x , y),
z) and an element of com(x , z). In the four lemmas earlier, we have considered
case (i) and (a), case (i) and (b), case (ii) and (a), and case (ii) and (b). The other
four cases follow by symmetry. �

Theorem 26. The variety generated by the OMLs of the form K (L) forms a
proper subvariety of the variety of concrete OMLs.

Proof: As every OML of the form K (L) is concrete (Mayet and Navara, 1995), in
view of Theorem 25 it is only necessary to produce a concrete OML that does not
satisfy the identity com(com(com(x , y), z), com(x , z)) ≈ 0. Consider the OML
known as the 5-loop whose Greechie diagram (Kalmbach, 1983) is shown later
(twice). For convenience we use L5 to denote this OML.

The diagram at left indicates how L5 can be realized as a collection of sets.
Take the 10 subsets of X = {a, b, c, d , e, f, g, h, i, j} in the diagram at left, their
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complements in X , as well as ∅ and X . The resulting collection of 20 sets is closed
under set complementation and finite orthogonal joins, hence forms a class of sets.
This class of sets is isomorphic to L5, so L5 is a concrete OML.

Consider the atoms x , y, z of L5 shown in the diagram at right. The commu-
tator com(x , y) is the coatom that lies above both x , y and its orthocomplement
is the atom shown in the diagram at right. Similar comments hold for com(x , z).
In any OML we have com(p, q) = com(p′q). Therefore, com(com(x , y), z) is
the coatom lying above both com(x , y)′ and z, hence is equal to y′. This then
shows that com(com(com(x , y), z), com(x , z)) is the coatom lying above both y
and com(x , z)′, hence is equal to z′. In particular, L5 does not satisfy the earlier
identity. �

Remark For each n ≥ 3 construct a bounded lattice C2n by adding a top and
bottom element to the poset known as an n-crown. The lattices C6, C8 and C10 are
shown from left to right in the following diagram.

One can check that K (C6) is the OML known as the 6-loop L6, that K (C8)
is the 8-loop L8, and so forth. In general, for any n ≥ 3, the even-length loop L2n

is obtained by applying Kalmbach’s construction to the bounded lattice C2n . It is
not difficult to convince oneself that an odd-length loop L2n+1 can not be obtained
as K (L) for any bounded lattice L . The results of this section have shown that L5

not only is not of the form K (L), but does not belong to the variety generated by
the OMLs of the form K (L).

Remark It seems plausible that the results of this section could be extended to
show that for each n ≥ 2, the odd-length loop L2n+1 does not belong to the variety
VK generated by OMLs of the form K (L). This would have certain implications
for the equational theory of this variety that we now describe.

Let µ be a non-principal ultrafilter over the natural numbers N. Then the
ultraproduct

∏
µ L2n+5 is the OML L formed by taking the horizontal sum of

some large number (say κ) copies of the OML depicted in the following diagram,
at left. The infinite cardinal κ depends on the ultrafilter µ. One can then see that
L is obtained as K (F) where F is the lattice obtained by taking κ disjoint copies



2164 Harding

of the poset shown at right (known as an infinite fence) and then adding a top and
bottom to the result.

Then, if our results can be extended as supposed, we would have a family of
concrete OMLs that do not belong to VK , but whose ultraproduct does belong to
VK . It is well known (Chang and Keisler, 1990) that this implies the variety VK

cannot be defined by a finite set of identities, i.e. that VK is not finitely based.
Godowski (1981) showed that the variety of concrete OMLs is not finitely based.
If our results can be extended as supposed, the fact that the OMLs L2n+5 are all
concrete would further imply that VK is not even finitely based with respect to the
variety of concrete OMLs. This means that even given infinitely many identities
required to define the variety of concrete OMLs, one requires infinitely many
additional identities to define the variety VK .

Remark We note that the variety VK generated by the OMLs of the form K (L)
where L is a bounded lattice is, in fact, generated by the OMLs of the form K (F)
where F is a finite lattice. To see this, we must show that any identity s ≈ t that fails
in some K (L) with L a bounded lattice fails in some K (F) with F a finite lattice.

Suppose that s, t are ortholattice terms, L is a bounded lattice, x1, . . . , xn

are elements of K (L), and sK (L)(x1, . . . , xn) �= t K (L)(x1, . . . , xn) where sK (L) and
t K (L) are the interpretations of the terms s, t in the OML K (L). Let S be the
subset of L consisting of all elements of the chains x1, . . . , xn as well as all
elements of L that occur at any stage in the evaluation of sK (L)(x1, . . . , xn) and
t K (L)(x1, . . . , xn). Then S is a finite subset of L that we consider as a finite partial
subalgebra of L . As the class of bounded lattices has the finite embedding property
(Grätzer, 1979) there is a finite lattice F containing S as a partial subalgebra.
From the description of joins, meets, and orthocomplementation given in (Harding,
1991), it follows that the evaluation of s and t at x1, . . . , xn in K (L) agrees with
the evaluation of these terms in K (F), i.e. sK (L)(x1, . . . , xn) = sK (F (x1, . . . , xn)
and t K (L)(x1, . . . , xn) = t K (F)(x1, . . . , xn). Therefore, the failure of s ≈ t in K (L)
produces a failure of this identity in K (F).

This shows that the variety VK is generated by its finite members. However,
we do not know that VK has a decidable equational theory (solvable free word
problem) as we do not know that VK can be defined by a recursively enumerable
set of identities. It seems completely open whether the variety Concrete is generated
by its finite members, or whether it has a decidable equational theory.
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5. ATOMIC CONCRETE OMLS

Using the coatom construction of Bruns and Kalmbach (1973), one can show
that every OML can be embedded into an OML in which each element is a join of
two or fewer atoms. The reader should consult Harding (2002) for a proof of this
result, and for an account of its somewhat muddy history. In this section we show
that this result, and its proof, remain valid in the setting of concrete OMLs. The
key result is the following.

Lemma 27. If L is a concrete OML and x ∈ L, then there is a concrete OML
L(x) such that (i) L ≤ L(x), (ii) each atom of L is an atom of L(x), and (iii) x is
a join of two or fewer atoms in L(x).

Proof: If x is either 0 or an atom of L set L(x) = L . Otherwise, let S be the
section [0, x ′] ∪ [x , 1] of L and use Greechie’s “paste job” (Greechie, 1968) to
paste L and S × 2 along the isomorphic sections [0, x ′] ∪ [x , 1] of L and ([0, x ′] ×
{0}) ∪ ([x , 1] × {1}) of S × 2. This produces an OML L(x) that we next describe
in somewhat informed terms (for a more precise treatment of the “paste job” see
(Greechie, 1968)).

To form L(x) take the union of L and S × 2 and “identify” the intervals
[0, x ′] and [x , 1] of L with the intervals [0, x ′] × {0} and [x , 1] × {1} of S × 2
respectively. The ordering of L(x) is defined to be the union of the orderings on
L and S × 2, i.e. for a, b ∈ L(x) we have a ≤ b if, and only if, either a, b both
belong to L and a lies under b in L , or both a, b belong to S × 2 and a lies
under b in S × 2. The orthocomplement of L(x) is defined so that it extends the
orthocomplementations on both L and S × 2.

The situation is depicted in the following diagram, with the L shaded with
diagonal lines and S × 2 shaded with vertical lines. We note that (i) L is a subal-
gebra of L(x), (ii) each atom of L is an atom of L(x), and (iii) that (0, 1) and (x , 0)
are atoms of L(x) that join to the element (x , 1) of L(x) that is identified with the
element x . Thus, it remains only to show that the OML L(x) is concrete.



2166 Harding

Recall that Godowski (1981) showed that an OML is concrete if, and only if,
it has a full set of two-valued states. The crucial ingredient in showing that L(x)
is concrete is to show that two-valued states on L can be extended in certain
ways to two-valued states on L(x). In the following we assume s : L → {0, 1} is
a two-valued state on L . We then define a map s1 : L(x) → {0, 1} by setting

s1(a) =
{

s(a) if a ∈ L
s(a1) if a ∈ S × 2 and a = (a1, a2)

Further, if s(x) = 1 we define a map s2 : L(x) → {0, 1} by setting

s2(a) =
{

s(a) if a ∈ L
a2 if a ∈ S × 2 and a = (a1, a2)

To see that s1 and s2 are well defined, suppose a, b ∈ L with a ≤ x ′ and
x ≤ b, so that a is identified with (a, 0) and b is identified with (b, 1) in L(x). The
definition of s1 provides directly that s1(a) = s1((a, 0)) and s1(b) = s1((b, 1)),
thus s1 is well defined. Also, if s(x) = 1, then s(a) = 0 and s(b) = 1, showing that
s2(a) = s2((a, 0)) and s2(b) = s2((b, 1)), thus s2 is well defined.

Clearly, s1 and s2 restrict to the state s on L , and one sees easily that s1 and
s2 both restrict to states on S × 2. But for any p, q ∈ L(x) with p ≤ q ′ we have
that either p, q both belong to L or they both belong to S × 2. It then follows from
the fact that s1 and s2 restrict to states on the subalgebras L and S × 2 of L(x) that
s1 and s2 are states on L(x).

As L is concrete, it has a full set of two-valued states. So for each p, q ∈ L
with p �≤ q, there is a two-valued state sp,q on L with sp,q (p) = 1 and sp,q (q) = 0.
To show L(x) is concrete assume a, b ∈ L(x) with a �≤ b. By considering various
cases we will show there is a two-valued state s on L(x) with s(a) = 1 and s(b) = 0.

Case 1. a, b ∈ L.
Use s1

a,b for s.

Case 2. a, b ∈ S × 2.
If a1 �≤ b1 use s1

a1,b1
for s. Otherwise, as a1 ≤ b1 and a �≤ b we have a2 �≤ b2,

so a2 = 1 and b2 = 0. Choose a two-valued state on L taking value 1 at x , say
sx ,x ′ , so we may form s2

x ,x ′ . Then use s2
x ,x ′ for s.

Case 3. a ∈ L − (S × 2) and b ∈ (S × 2) − L with b = (b1, b2).
Suppose b2 = 0. As a �∈ S × 2 we have a �≤ x ′, so we may form sa,x ′ . As

sa,x ′ (x ′) = 0 we have sa,x ′ (x) = 1, and therefore we may form s2
a,x ′ , and this serves

as s. If b2 = 1, then as b �∈ L we have b1 �≥ x , hence b1 ≤ x ′. As shown earlier,
a �≤ x ′, so a �≤ b1. We then use s1

a,b1
for s.
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Case 4. a ∈ (S × 2) − L with a = (a1, a2) and b ∈ L − (S × 2).
If a2 = 0 then as a �∈ L we have a1 �≤ x ′, hence x ≤ a1. As b �∈ S × 2 we

have x �≤ b. Then use s1
x ,b for s. If a2 = 1, then as a �∈ L we have x �≤ a1, hence

a1 ≤ x ′. As before, b �∈ S × 2 gives x �≤ b. Therefore, we may form sx ,b and as
sx ,b(x) = 1, we may form s2

x ,b and use this for s.

We have shown that L(x) has a full set of two-valued states, and therefore is
a concrete OML. This completes the proof of our lemma. �

Theorem 28. If L is a concrete OML, then there is a concrete OML L̂ such that
(i) L ≤ L̂, (ii) each atom of L is an atom of L̂, and (iii) each element of L̂ is a join
of two or fewer atoms of L̂.

Proof: The proof follows that given by Harding (2002). One first shows that for
any concrete OML L there is a concrete OML L∗ such that (i) L ≤ L∗, (ii) each
atom of L is an atom of L∗, and (iii) each element of L is a join of two or fewer atoms
of L∗. To accomplish this let (xα)κ be an indexing over a cardinal κ of the elements
of L . Define recursively L0 = L , Lα+1 = Lα(xα), and Lα = (∪β<α Lα)(xα) for α a
limit ordinal. Then set L∗ = Lκ . One then recursively defines a countable sequence
of OMLs by setting L0 = L and Ln+1 = (Ln)∗. Finally, define L̂ = ∪n Ln . Then, as
by Harding (2002), L̂ is an OML with properties (i), (ii), and (iii). It remains only to
show that L̂ is concrete. But this follows as the union of a chain of concrete OMLs
must be concrete, since the class of concrete OMLs form a variety (therefore, the
failure of an identity in the union of a chain must occur already in some member
of the chain). �
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