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Abstract. In this note we provide a topological description of the Mac-

Neille completion of a Heyting algebra similar to the description of the Mac-

Neille completion of a Boolean algebra in terms of regular open sets of its

Stone space. We also show that the only varieties of Heyting algebras that

are closed under MacNeille completions are the trivial variety, the variety of

all Boolean algebras, and the variety of all Heyting algebras.

1. Introduction

Based on Dedekind’s construction of the reals by cuts of the rationals,
MacNeille [8] gave a method to embed an arbitrary poset P into a complete
lattice. This completion is known in the literature under many names including
the MacNeille completion, the completion by cuts, the minimal completion, and
the normal completion. It is briefly described as follows. For P a poset and
A ⊆ P , let L(A) be the collection of all lower bounds of A, U(A) be the col-
lection of all upper bounds of A, and call A a normal ideal of P if A = LU(A).
Then the collection P ∗ of all normal ideals of P is a complete lattice with

∧

I Ni =
⋂

I Ni and
∨

I Ni = LU(
⋃

I Ni). Throughout, we call the lattice P ∗ the MacNeille
completion of P .

There is natural embedding α : P → P ∗ defined by setting α(p) = ↓p where
↓ p = {x ∈ P |x ≤ p} is the principal ideal of P generated by p. The map α has
many desirable order theoretic properties. Each element of P ∗ can be expressed
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as a join and as a meet of elements of the image of α, a fact often expressed by
saying that the image of α is join and meet dense in P ∗. Further, α preserves
all existing joins and meets in P , a fact often expressed by saying that α is a
regular embedding. Therefore, if P is a lattice, then α preserves all binary meets
and joins, hence is a lattice embedding.

Unfortunately there are many algebraic properties that are not preserved by
MacNeille completions. For instance, it is well known that the MacNeille com-
pletion of a distributive lattice (abbreviated: DL) need not be distributive [1, 6].
There are, however, interesting classes of lattices that are known to be closed un-
der MacNeille completions. These include Boolean algebras (abbreviated: BAs)
and Heyting algebras (abbreviated: HAs) [1].

In this paper we shall also consider co-Heyting algebras (abbreviated: co-HAs)
and bi-Heyting algebras (abbreviated: bi-HAs). A co-HA is a lattice whose dual
lattice is a HA and a bi-HA is a lattice that is both a HA and a co-HA. In the
literature co-HAs are also known as dual Heyting algebras or Brouwerian algebras
and bi-HAs are also known as double Heyting algebras or semi-Boolean algebras.
As the MacNeille completion of the dual of a lattice L is isomorphic to the dual of
the MacNeille completion of L, it follows that the classes of co-HAs and bi-HAs
are closed under MacNeille completions.

There is an elegant topological characterization of the MacNeille completion
of a Boolean algebra that plays a significant role in many areas of mathematics.
Given a BA B, it is well known that B is isomorphic to the BA of all clopen
sets of its Stone space X [13]. One can then recognize the MacNeille completion
B∗, up to isomorphism, as the BA of all regular open, or equivalently, all regular
closed sets of the Stone space X [1].

MacNeille completions play an important role in logic. As the variety of BAs
is closed under MacNeille completions, it admits a regular completion. Rasiowa
and Sikorski [11] used this fact to show completeness of classical predicate calcu-
lus with respect to its algebraic semantics. The closure of the varieties of HAs
and bi-HAs under MacNeille completions was used in a similar way to establish
completeness of intuitionistic and symmetric intuitionistic predicate calculi with
respect to their algebraic semantics (see Rasiowa [10] and Rauszer [12]).

To determine the completeness of predicate intermediate logics with respect
to their algebraic semantics one wishes to determine which varieties of Heyting
algebras admit regular completions. The obvious starting point is to determine
which varieties of HAs are closed under MacNeille completions. In this note we
show the only varieties of HAs that are closed under MacNeille completions are
the trivial variety, the variety of all BAs, and the variety of all HAs.
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The paper is organized in the following fashion. In section 2 we give the basics
of MacNeille completions of HAs. In section 3 we provide topological versions of
MacNeille completions of DLs, HAs, co-HAs, and bi-HAs analogous to the result
that the MacNeille completion of a BA is isomorphic to the regular open sets of
its Stone space. Finally, in section 4 we characterize the varieties of HAs that are
closed under MacNeille completions.

2. MacNeille completions of HAs

In this section we provide basic results about MacNeille completions of HAs.
Most of the material in this section is well known. It is presented here both for
the convenience of the reader and because some aspects of our approach differ
from those usually found in the literature and are required in the sequel.

Lemma 2.1. For A a HA and N an ideal of A, the following are equivalent:

(1) N is a normal ideal.
(2) N is closed under existing joins.

Proof. (1)⇒ (2) Suppose N is a normal ideal, S ⊆ N and
∨

S = a. If u ∈ U(N),
then a ≤ u, so a ∈ LU(N). Since N is a normal ideal, a ∈ N .

(2) ⇒ (1) Suppose N is an ideal that is closed under existing joins. We must
show N = LU(N). It is obvious that N ⊆ LU(N). Conversely, suppose a ∈
LU(N). Set Na = {n ∈ N |n ≤ a}. We first show a =

∨

Na. Let b ∈ U(Na).
If n ∈ N , then n ∧ a ∈ Na. So, n ∧ a ≤ b, implying n ≤ a → b. Therefore,
a → b ∈ U(N). As a ∈ LU(N), it follows that a ≤ a → b, hence a ≤ b. Thus,
a =

∨

Na. Since N is closed under existing joins, it follows that a ∈ N . £

Remark. In any lattice a normal filter is closed under existing meets. We give an
example of a HA A and a filter F in A with F closed under existing meets, but
F not normal. Let B be the finite and cofinite subsets of the natural numbers.
Then define A = {(x, y) ∈ B × 2|y = 1 ⇒ x cofinite} and F = {(x, y) ∈ A|x ⊇
evens and y = 1}.

Lemma 2.2. Let A be a HA and let M and N be normal ideals of A. Set

K = {k ∈ A|k ∧m ∈ N for all m ∈ M}.

Then

(1) K is a normal ideal of A.
(2) K is the largest normal ideal whose intersection with M is contained in N .
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Proof. (1) By Lemma 2.1 it is enough to show that K is an ideal that is closed
under existing joins. That K is an ideal follows directly from the facts that A

is distributive and N is an ideal. Suppose S ⊆ K and a =
∨

S. We must show
a ∈ K. Let m ∈ M . Then a ∧m = (

∨

S) ∧m =
∨

{s ∧m|s ∈ S}. As S ⊆ K,
s∧m ∈ N for each s ∈ S. Therefore, a∧m is the join of a subset of N . Since N

is normal, a ∧m ∈ N by Lemma 2.1. Thus, a ∈ K. (2) We show more, that K

is the largest downset whose intersection with M is contained in N . To see this,
suppose D is a downset with D ∩M ⊆ N . Let a ∈ D. For each m ∈ M we have
that a ∧m ∈ D ∩M ⊆ N . So, a ∈ K. That K ∩M ⊆ N follows similarly. £

Theorem 2.3. For A a HA define →∗ on the MacNeille completion A∗ of A by
setting

M →∗ N = {k ∈ A|k ∧m ∈ N for all m ∈ M}.
Then A∗ is a HA with implication →∗ and α : A → A∗ is a HA-embedding.

Proof. By Lemma 2.2 →∗ is well defined. Lemma 2.2 also gives that M →∗ N

is the relative pseudocomplement of M with respect to N , and it is well known
that this implies A∗ is a Heyting algebra. To show that α is a HA-embedding
we must show α(a → b) = α(a) →∗ α(b). But α(a) →∗ α(b) = (↓a) →∗ (↓b) =
{k ∈ A|k ∧m ∈↓b for all m ∈↓a} = {k ∈ A|k ∧ a ≤ b} = {k ∈ A|k ≤ a → b} =
↓(a → b) = α(a → b). £

A more algebraic description of the operation →∗ is provided below.

Proposition 2.4. For A a HA and M, N normal ideals of A,

M →∗ N =
∧

{α(a → b)|α(a) ≤ M and N ≤ α(b)}.

Proof. By definition M →∗ N = {c|c∧a ∈ N for all a ∈ M}. As b ∈ N iff b ≤ u

for all u ∈ U(N) we have M →∗ N = {c|c ∧ a ≤ b for all a ∈ M, b ∈ U(N)} =
{c|c ≤ a → b for all a ∈ M, b ∈ U(N)} =

⋂

{↓(a → b)|a ∈ M, b ∈ U(N)}. Since
meets in the MacNeille completion are given by intersection, it then follows that
M →∗ N =

∧

{α(a → b)|α(a) ≤ M, N ≤ α(b)}. £

Remark. It is well known that the MacNeille completion of a lattice A may also be
realized as the lattice of normal filters of A partially ordered by ⊇. The previous
proposition states that for A a HA and x, y elements of the MacNeille completion,
x → y is the meet of all elements of the form a → b where a, b are elements of
A with a lying beneath x and b lying above y. Choosing to work with normal
ideals of a HA is a natural choice as the infinite meet required to compute x → y

corresponds to an intersection of normal ideals. One could work with normal
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filters of a HA, but then computing x → y would be somewhat problematic as
the meet of a family of normal filters is obtained by taking UL of their union.

However, if one is considering MacNeille completions of co-HAs, working with
normal filters is the natural choice. By a direct application of duality we obtain
that a filter F of a co-HA is normal iff it is closed under all existing meets.
Further, for x, y elements of the MacNeille completion we have x ← y is formed
by taking the join of all elements of the form a ← b where a, b are elements of
A with x lying beneath a and b lying beneath y. Working with normal filters is
now preferable as the join of normal filters is given simply by their intersection,
while the join of normal ideals is formed by taking LU of their union. Of course,
when working with bi-HAs neither normal ideals nor normal filters is a perfectly
convenient choice.

3. Topological characterization

In this section we provide a topological description of MacNeille completions
in terms of Priestley spaces [9]. We briefly describe our notation and conventions.
For A a DL let X be the set of all prime filters of A and for a ∈ A set φ(a) =
{x ∈ X|a ∈ x}. The Priestley space of A is the set X, partially ordered by set
inclusion, with the topology τ generated by the collection of all φ(a),−φ(a). It
is well known that τ is compact, Hausdorff, and has a basis of clopen sets. For
S ⊆ X define

↑S = {x ∈ X| there exists y ∈ S with y ≤ x},
↓S = {x ∈ X| there exists y ∈ S with x ≤ y}.

We call S an upset if S =↑S and we call S a downset if S =↓S. The key fact is that
φ is an isomorphism from A onto the lattice of clopen upsets of X. Throughout
we use I and C for the interior and closure operators of τ .

Definition 1. For A a DL with Priestley space X and S ⊆ X define

JS to be the largest open upset contained in S,

DS to be the smallest closed upset containing S.

Remark. The set of all open upsets of X is the set of open sets of a topology τ1

on X, which is known as the spectral topology in the literature. By definition J
is the interior operator of this topology. Similarly, the set of all closed upsets of
X is the set of closed sets of a topology τ2 on X. By definition D is the closure
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operator of this topology. The following lemma provides further descriptions of
J,D and shows {φ(a)|a ∈ A} is a basis of open sets for τ1 and a basis of closed
sets for τ2.

Lemma 3.1. Let A be a DL with Priestley space X. Then for S ⊆ X

(1) JS = − ↓−IS.
(2) JS =

⋃

{φ(a)|φ(a) ⊆ S}.
(3) DS =↑CS.
(4) DS =

⋂

{φ(a)|S ⊆ φ(a)}.

Proof. For (1) and (2) we show

− ↓−IS ⊆
⋃

{φ(a)|φ(a) ⊆ S} ⊆ JS ⊆ − ↓−IS.

For the first containment suppose x ∈ − ↓−IS. Then x 6∈ ↓−IS so for each
y ∈ −IS we have x 6≤ y, hence the prime filter x is not contained in the prime
filter y. So, for each y ∈ −IS there is ay ∈ x with ay 6∈ y. Then

⋂

{φ(ay)|y ∈
−IS} ∩ (−IS) = ∅. By a standard compactness argument there is a ∈ A with
x ∈ φ(a) and φ(a) ⊆ IS. This shows the first containment. The second follows
as each φ(a) is an open upset, and the third as JS is an open upset and − ↓−IS
is the largest upset contained in IS.

For (3) and (4) we show

↑CS ⊆ DS ⊆
⋂

{φ(a)|S ⊆ φ(a)} ⊆↑CS.

The first containment follows as DS is both closed and an upset. The second
as each φ(a) is a closed upset. For the third, suppose x 6∈↑CS. Then for each
y ∈ CS we have y 6≤ x, so for each y ∈ CS there is ay ∈ A with ay ∈ y and ay 6∈ x.
Then

⋂

{−φ(ay)|y ∈ CS} ∩CS = ∅. By a standard compactness argument there
is a ∈ A with x 6∈ φ(a) and CS ⊆ φ(a). The third containment follows. £

Definition 2. For A a DL with Priestley space X define

I to be the ideal lattice of A partially ordered by ⊆,

F to be the filter lattice of A partially ordered by ⊇,

O to be the lattice of open upsets of X partially ordered by ⊆,

C to be the lattice of closed upsets of X partially ordered by ⊆.

We then define maps Γ : I → O and ∆ : F → C by setting

ΓI =
⋃

{φ(a)|a ∈ I},

∆F =
⋂

{φ(a)|a ∈ F}.
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Proposition 3.2. For A a DL with Priestley space X, each of I,F ,O, C is a
complete lattice and Γ, ∆ are lattice isomorphisms.

Proof. As each of I,F ,O, C is closed under either unions or intersections, each
is a complete lattice. For each a ∈ A, φ(a) is an open upset, so Γ is well defined.
For I, J ideals of A, obviously I ⊆ J implies ΓI ⊆ ΓJ , and as each φ(a) is
compact ΓI ⊆ ΓJ implies I ⊆ J . To see Γ is onto, suppose S is an open upset.
Then S = JS, and for I = {a|φ(a) ⊆ S}, Lemma 3.1 (2) gives S = JS = ΓI.
This shows Γ is an isomorphism. Next, ∆ is well defined since each φ(a) is a
closed upset. For F, G filters of A, surely F ⊇ G implies ∆F ⊆ ∆G, and as each
−φ(a) is compact, ∆F ⊆ ∆G implies F ⊇ G. To see ∆ is onto, suppose S is a
closed upset. Then S = DS, and for F = {a|S ⊆ φ(a)}, Lemma 3.1 (4) gives
S = DS = ∆F . So ∆ is an isomorphism. £

For A a DL with dual space X consider the following diagram.

O C

I F

Γ ∆

U

L

D

J

? ?

-
»

-
»

Here U, L are the maps taking upper bounds and lower bounds respectively.

Lemma 3.3. For A a DL with Priestley space X

(1) ∆U = DΓ.
(2) ΓL = J∆.

Proof. (1) For I an ideal of A note
⋃

{φ(a)|a ∈ I} ⊆ φ(b) iff b ∈ U(I). The
result follows by Lemma 3.1 (4). For F a filter of A note φ(b) ⊆

⋂

{φ(a)|a ∈ F}
iff b ∈ L(F ). The result follows by Lemma 3.1 (2). £
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Definition 3. For A a DL with Priestley space X set

NI = {I ∈ I|I = LUI},
NF = {F ∈ F|F = ULF},
RO = {S ∈ O|S = JDS},
RC = {S ∈ C|S = DJS}.

We partially order NI,RO and RC by set inclusion, NF by reverse set inclusion.

A Galois connection [2] between complete lattices P, Q is a pair of order invert-
ing maps f : P → Q and g : Q → P with p ≤ gf(p) and q ≤ fg(q) for all p ∈ P ,
q ∈ Q. The lattice GP of Galois closed elements of P is the set {p ∈ P |p = gf(p)}
with the partial ordering inherited from P , and the lattice GQ of Galois closed
elements of Q is the set {q ∈ Q|q = fg(q)} with the partial ordering inherited
from Q. Both GP and GQ are complete lattices, but not sublattices of P and Q.
Meets in GP and GQ agree with those in P and Q, but the join of a family {pi}I

in GP is gf(
∨

I pi) where
∨

I pi is the join in P , and the join of a family {qi}I in
GQ is fg(

∨

I qi) where
∨

I qi is the join in Q. Finally, the maps f, g restrict to
mutually inverse dual isomorphisms between GP and GQ.

Lemma 3.4. Let A be a DL with Priestley space X.

(1) L, U is a Galois connection between I and Fd.
(2) NI = GI and NF = (G(Fd))d.
(3) L, U restrict to mutually inverse isomorphisms between NI and NF .
(4) D,J is a Galois connection between O and Cd.
(5) RO = GO and RC = (G(Cd))d.
(6) D,J restrict to mutually inverse isomorphisms between RO and RC.
(7) Γ restricts to an isomorphism between NI and RO.
(8) ∆ restricts to an isomorphism between NF and RC.

Proof. Statements (1), (2) and (3) are well known. By Proposition 3.2, Γ : I →
O and ∆ : Fd → Cd are isomorphisms and Lemma 3.3 yields that ΓLU = JDΓ
and ∆UL = DJ∆. A standard argument then gives (4). The definitions of RO
and RC show that the underlying set of RO agrees with the underlying set of
GO and the underlying set of RC agrees with that of G(Cd). The orderings on
RO,GO and RC are ⊆ while that of G(Cd) is ⊇, hence (5) follows. Statement
(6) follows from general considerations of Galois connections. Using the fact that
ΓLU = JDΓ it follows that I ∈ NI iff ΓI ∈ RO, and (7) follows. Statement (8)
follows similarly as ∆UL = DJ∆. £
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Theorem 3.5. Let A be a DL with Priestley space X.
(1) RO and RC are isomorphic to the MacNeille completion of A.
(2) In RO,

∧

Si = J
⋂

Si and
∨

Si = JD
⋃

Si.
(3) In RC,

∧

Si = DJ
⋂

Si and
∨

Si = D
⋃

Si.

Proof. In the previous proposition we have shown NI is isomorphic to RO and
that RO is isomorphic to RC. This establishes (1). As RO = GO it follows that
meets in RO agree with meets in O and joins in RO are found by taking the
join in O and applying JD. By Definition 1 meets in O are formed by taking
intersection and applying J, and joins in O are given by union. This establishes
(2). As RC = (G(Cd))d, joins in RC agree with meets in Cd, and hence with joins
in C. Meets in RC are formed by taking joins in Cd and applying DJ, hence by
taking meets in C and applying DJ. By Definition 1, joins in C are formed by
taking union and applying D, and meets in C are given by intersection. This
establishes (3). £

Remark. The MacNeille completion of a BA A is isomorphic to the lattice of
regular open sets of the Stone space X of A. But a set S is regular open iff it
is a fixed point of the composition of the interior and closure operators on X.
By the previous theorem and Remark 3 the MacNeille completion of a DL A is
realized as the subsets S of the Priestley space of A which are fixed points of the
composition of an interior and closure operator, but it is the interior operator of
the topology τ1 and the closure operator of topology τ2 that are used. Of course,
if A is a BA, then τ1 and τ2 agree and are the Stone topology on X.

Lemma 3.6. Let A be a DL with Priestley space X, let a, b ∈ A and S ⊆ X.
If A is a HA then

(1) φ(a → b) = J(−φ(a) ∪ φ(b)).
(2) S clopen ⇒ ↓S is clopen.
(3) S an upset ⇒ CS = DS.

If A is a co-HA then
(1) φ(a ← b) = D(−φ(a) ∩ φ(b)).
(2) S clopen ⇒ ↑S is clopen.
(3) S an upset ⇒ IS = JS.

Proof. We show only the statements for HAs, the statements for co-HAs are
proved similarly. (1) By definition φ(a → b) is the largest clopen upset whose
intersection with φ(a) is contained in φ(b), hence φ(a → b) is the largest clopen
upset contained in −φ(a) ∪ φ(b). Therefore φ(a → b) ⊆ J(−φ(a) ∪ φ(b)). For
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the other containment suppose x ∈ J(−φ(a) ∪ φ(b)). Then by Lemma 3.1(1)
x ∈ − ↓−I(−φ(a)∪φ(b)), and as both φ(a), φ(b) are clopen, x 6∈↓(φ(a)∩−φ(b)). So
for each y ∈ φ(a)∩−φ(b) we have x 6≤ y, hence for each such y there is cy ∈ A with
x ∈ φ(cy) and y 6∈ φ(cy). Therefore

⋂

{φ(cy)|y ∈ φ(a)∩−φ(b)}∩φ(a)∩−φ(b) = ∅,
and compactness yields some c ∈ A with x ∈ φ(c) and φ(c) ∩ φ(a) ∩ −φ(b) = ∅.
So φ(c) ∩ φ(a) ⊆ φ(b) giving c ≤ a → b. Thus x ∈ φ(c) ⊆ φ(a → b). (2) As
every clopen set is a finite union of sets of the form φ(a)∩−φ(b), we may assume
S = φ(a) ∩ −φ(b). By (1) φ(a → b) = − ↓(φ(a) ∩ −φ(b)), and as φ(a → b) is
clopen, it follows that ↓(φ(a) ∩ −φ(b)) is clopen. (3) By definition, CS ⊆ DS. If
x 6∈ CS, then as the clopen sets are a base for the topology, there is a clopen set
K with x ∈ K and K ∩ S = ∅. As S is an upset, ↓K ∩ S = ∅ and by (2) ↓K is
clopen. So − ↓K is a clopen upset, hence equal to φ(a) for some a ∈ A. Then
x 6∈ φ(a) and S ⊆ φ(a). It then follows from Lemma 3.1(4) that x 6∈ DS. £

Remark. Esakia has shown that condition (2) for HAs and condition (2) for co-
HAs characterize the dual spaces of HAs and co-HAs among the dual spaces of
DLs. He has used this to build a duality theory for HAs and certain Priestley
spaces [3], a duality theory for co-HAs and certain Priestley spaces [4], and a
duality theory for bi-HAs and certain Priestley spaces [4] (for bi-HAs see also
Rauszer [12]).

Lemma 3.7. Let A be a DL with Priestley space X and let a ∈ A.

(1) If A is a HA and S ∈ RC, then S ∧ φ(a) = S ∩ φ(a).
(2) If A is a co-HA and S ∈ RO, then S ∨ φ(a) = S ∪ φ(a).

Here ∧ is taken in the lattice RC and ∨ is taken in the lattice RO.

Proof. We prove the first statement, the second is similar. By Theorem 3.5 and
Lemma 3.6 S ∧φ(a) = CJ(S ∩φ(a)). Since J(S ∩φ(a)) ⊆ S ∩φ(a) and this latter
set is closed, CJ(S ∩ φ(a)) ⊆ S ∩ φ(a). For the other inclusion it suffices to show
S ⊆ −φ(a) ∪ CJ(S ∩ φ(a)). As S ∈ RC we have S = CJS ⊆ C(−φ(a) ∪ JS)
= C(−φ(a) ∪ (JS ∩ φ(a)). As φ(a) is a clopen upset, φ(a) = Jφ(a). Hence
S ⊆ C(−φ(a)∪(JS∩Jφ(a))) = C(−φ(a)∪J(S∩φ(a))) = C(−φ(a))∪CJ(S∩φ(a)).
As φ(a) is clopen, S ⊆ −φ(a) ∪CJ(S ∩ φ(a)) as required. £

Remark. Algebraically the first part of the above lemma states that for N a
normal filter of a HA A and a ∈ A, the filter generated by {a} ∪ N is normal.
This follows from observing that b ∈ UL({a} ∪N) implies a → b ∈ UL(N). The
algebraic counterpart to the second part of the lemma states that for N a normal
ideal of a co-HA A and a ∈ A, the ideal generated by {a} ∪N is normal.
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Theorem 3.8. Let A be a DL with Priestley space X.

(1) RO and RC are isomorphic to the MacNeille completion of A.
(2) In RO,

∧

Si = J
⋂

Si and
∨

Si = JD
⋃

Si.
(3) In RC,

∧

Si = DJ
⋂

Si and
∨

Si = D
⋃

Si.

If A is a HA then

(1) RO = {S ∈ O|S = JCS} and RC = {S ∈ C|S = CJS}.
(2) In RO,

∧

Si = J
⋂

Si,
∨

Si = JC
⋃

Si, and S → T = J(−S ∪ T ).
(3) In RC,

∧

Si = CJ
⋂

Si,
∨

Si = C
⋃

Si, and S → T = CJ(−S ∪ T ).

If A is a co-HA then

(1) RO = {S ∈ O|S = IDS} and RC = {S ∈ C|S = DIS}.
(2) In RO,

∧

Si = I
⋂

Si,
∨

Si = ID
⋃

Si, and S ← T = ID(−S ∩ T ).
(3) In RC,

∧

Si = DI
⋂

Si,
∨

Si = D
⋃

Si, and S ← T = D(−S ∩ T ).

If A is a bi-HA then

(1) RO = {S ∈ O|S = ICS} and RC = {S ∈ C|S = CIS}.
(2) In RO,

∧

Si = I
⋂

Si,
∨

Si = IC
⋃

Si, S→T = I(−S ∪ T ), and S←T =
IC(−S ∩ T ).

(3) In RC,
∧

Si =CI
⋂

Si,
∨

Si =C
⋃

Si, S→T =CI(−S ∪ T ), and S←T =
C(−S ∩ T ).

Proof. Each of the statements about DLs is established in Theorem 3.5. For
HAs Lemma 3.6 gives D = C for upsets, and for co-HAs Lemma 3.6 gives J = I
for upsets, so for bi-HAs both D = C and J = I for upsets. This establishes all
the statements about meets and joins.

Suppose A a HA and S, T ∈ RO. We show S → T = J(−S ∪ T ). Note that
finite meets in RO are given by intersection. So for U ∈ RO, U ⊆ S → T iff
S∩U ⊆ T iff U ⊆ −S∪T . In particular, S → T ⊆ −S∪T and as S → T is an open
upset, S → T ⊆ J(−S∪T ). Each element in the MacNeille completion of A is the
join of the elements of A it dominates. Therefore S → T = JC

⋃

{φ(a)|φ(a) ⊆
−S∪T}, and by Lemma 3.1 S → T = JCJ(−S∪T ). But JC is a closure operator
on O, so J(−S ∪ T ) ⊆ JCJ(−S ∪ T ) = S → T ⊆ J(−S ∪ T ).

Suppose A is a HA and S, T ∈ RC. We show S → T = CJ(−S∪T ). Note that
finite meets in RC are not generally given by intersection, but Lemma 3.7 does
give S ∧φ(a) = S ∩φ(a) for a ∈ A. It follows that φ(a) ⊆ S → T iff S ∩φ(a) ⊆ T

iff φ(a) ⊆ −S ∪ T . Using the fact that each element of the MacNeille completion
is the join of the elements it dominates, S → T = C

⋃

{φ(a)|φ(a) ⊆ −S ∪ T}. So
by Lemma 3.1 S → T = CJ(−S ∪ T ).
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The corresponding statements for co-HAs are proved similarly. Finally, for A

a bi-HA, the descriptions of → and ← in RO and RC follow directly from the
above results as J = I and D = C for upsets in a bi-HA. £

Remark. A DL A is complete iff each normal ideal of A is principal. Using the fact
that Γ restricts to an isomorphism from NI to RO, it follows that A is complete
iff each member of RO is clopen, which is equivalent to DS being clopen for each
open upset S. Priestley calls such spaces extremally order disconnected [9]. For
A a HA, Lemma 3.6 shows A is complete iff CS is clopen for each open upset
S. For A a bi-HA, Lemma 3.6 shows A is complete iff each regular open upset
of the dual space of A is clopen, generalizing the well-known result for Boolean
algebras.

4. Varieties of HAs

In this section we prove the only varieties of HAs that are closed under Mac-
Neille completions are the trivial variety, the variety of all BAs, and the variety
of all HAs. Throughout we use the following notations: 1,2,3 are the one, two,
and three-element chains considered as HAs, N is the set of natural numbers and
X = N ∪ {∞}. For lattices A, B we use A⊕ B for the ordinal sum of A and B,
which is the lattice formed by placing the lattice B on top of the lattice A.

Definition 4. Define recursively HAs Ln as follows:

L0 = 3

Ln+1 = (Ln × · · · × Ln
︸ ︷︷ ︸

n+2 times

)⊕ 1

So x ∈ Ln+1 implies that x = 1 or x = (a0, . . . , an+1) for some a0, . . . , an+1 ∈ Ln.

Theorem 4.1. The variety generated by {Ln|n ≥ 0} is the variety of all HAs.

Proof. Define recursively

J0 = 2

Jn+1 = (Jn × · · · × Jn
︸ ︷︷ ︸

n+2 times

)⊕ 1

Then by induction we have Jn ≤ Ln. So the variety generated by {Jn|n ≥ 0} is
contained in the variety generated by {Ln|n ≥ 0}. But Jaskowski [7] has shown
that the Jn’s generate the variety of all HAs. £

Notation. Each Ln has a unique coatom, which we denote c.
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Definition 5. For each n ≥ 0 define

Sn = {f ∈ LX
n |f(∞) ∈ {0, c, 1}, f(∞) = 0 ⇒ f =a.e. 0, f(∞) 6= 0 ⇒ f =a.e. 1}.

Here f =a.e. 0 means f(x) = 0 except for finitely many values of x.

Proposition 4.2. For each n ≥ 0, Sn ≤ LX
n .

Proof. Note first that {0, c, 1} is a subalgebra of Ln isomorphic to 3. Therefore
if f, g ∈ Sn, then f(∞) and g(∞) belong to {0, c, 1}, hence (f ∧g)(∞), (f ∨g)(∞)
and (f → g)(∞) belong to {0, c, 1}. Note also that the constant function 0 and
the constant function 1 belong to Sn. We next show Sn is closed under ∧,∨.
Suppose f, g ∈ Sn. If (f ∧ g)(∞) = 0, then either f(∞) = 0 or g(∞) = 0. So
either f =a.e. 0 or g =a.e. 0, hence f ∧g =a.e. 0. If (f ∧g)(∞) 6= 0, then f(∞) 6= 0
and g(∞) 6= 0, so f =a.e. 1 and g =a.e. 1, hence f ∧ g =a.e. 1. So Sn is closed
under ∧. Showing Sn is closed under ∨ is similar. To show Sn is closed under
→ suppose f, g ∈ Sn. If (f → g)(∞) = 0, then f(∞) 6= 0 and g(∞) = 0. So
f =a.e. 1 and g =a.e. 0, hence f → g =a.e. 0. If (f → g)(∞) 6= 0, then as {0, c, 1}
is isomorphic to 3 it follows that either f(∞) = 0 or g(∞) 6= 0. If f(∞) = 0 then
f =a.e. 0 so f → g =a.e. 1, and if g(∞) 6= 0 then g =a.e. 1 so f → g =a.e. 1. £

Definition 6. For each n ≥ 0 define αn : Ln+1 → P(Sn) by setting

αn(1) = Sn

αn((a0, . . . , an+1)) = {f |f(∞) 6= 1 and m ≡ k mod (n + 2) ⇒ f(m) ≤ ak}.

In a sequence of lemmas we will show αn is a HA-embedding of Ln+1 into the
MacNeille completion S∗n of Sn.

Lemma 4.3. For any n ≥ 0, αn is a set mapping from Ln+1 to S∗n.

Proof. We must show αn(x) is a normal ideal of Sn for each x ∈ Ln+1. Clearly
αn(1) = Sn is a normal ideal of Sn. Suppose x = (a0, . . . , an+1). For m ∈ N, say
with m ≡ k mod (n + 2), define a function vm : X → Ln by setting

vm(y) =







ak if y = m

c if y = ∞
1 otherwise

Then vm ∈ Sn and vm is an upper bound of αn(x). But if f ∈ Sn and f ≤ vm

for each m ≥ 0, then f ∈ αn(x). Hence αn(x) = LU(αn(x)). £

Lemma 4.4. For each n ≥ 0, αn preserves finite meets.
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Proof. If x, y ∈ Ln+1 and either x or y equals 1, then as αn(1) = Sn it follows
that αn(x∧y) = αn(x)∧αn(y). Otherwise, x = (a0, . . . , an+1), y = (b0, . . . , bn+1)
and x ∧ y = (c0, . . . , cn+1) where ci = ai ∧ bi. Suppose f ∈ Sn and m ≡ k

mod (n + 2). Then as f(m) ≤ ck iff f(m) ≤ ak and f(m) ≤ bk it follows that
f ∈ αn(x ∧ y) iff f ∈ αn(x) ∩ αn(y). The result follows as meets in S∗n are given
by intersections. £

Lemma 4.5. For each n ≥ 0, αn preserves finite joins.

Proof. If x, y ∈ Ln+1 and either x or y equals 1, then as αn(1) = Sn it
follows that αn(x ∨ y) = αn(x) ∨ αn(y). Otherwise, x = (a0, . . . , an+1) and
y = (b0, . . . , bn+1). Suppose f ∈ αn(x∨y) and u ∈ U(αn(x)∪αn(y)). For a natural
number m ∈ N with m ≡ k mod (n + 2) consider the functions pm, qm : X → Ln

given by

pm(y) =
{

ak if y = m

0 otherwise
and qm(y) =

{

bk if y = m

0 otherwise

Then pm ∈ αn(x) and qm ∈ αn(y), hence u(m) ≥ ak∨bk ≥ f(m). We have shown
f(m) ≤ u(m) for all m ∈ N. If f(∞) = c, then f =a.e. 1, hence u =a.e. 1, and as
u ∈ Sn we have u(∞) is either c or 1. Thus f(∞) ≤ u(∞) and therefore f ≤ u.
This shows αn(x∨ y) ⊆ LU(αn(x)∪αn(y)) = αn(x)∨αn(y). The other inclusion
follows as αn is order preserving. £

Lemma 4.6. For each n ≥ 0, αn preserves implication →.

Proof. If x, y ∈ Ln+1 and either x or y equals 1, then as αn(1) = Sn it fol-
lows that αn(x → y) = αn(x) → αn(y). Also if x ≤ y, then as αn is order
preserving αn(x → y) = αn(x) → αn(y). Otherwise x = (a0, . . . , an+1) and
y = (b0, . . . , bn+1) and there is some 0 ≤ j ≤ n + 1 with aj 6≤ bj . It follows that
x → y = (c0, . . . , cn+1) where ci = ai → bi. Suppose f ∈ αn(x) → αn(y). For
m ∈ N with m ≡ k mod (n + 2) define rm : X → Ln by setting

rm(y) =
{

ak if y = m

0 otherwise

Then rm ∈ αn(x). So f ∧ rm ∈ (αn(x) → αn(y)) ∩ αn(x) ⊆ αn(y). This gives
f(m) ∧ rm(m) ≤ bk, and it follows that f(m) ∧ ak ≤ bk, hence f(m) ≤ ak → bk.
We have shown m ≡ k mod (n + 2) implies f(m) ≤ ck. As cj < 1, we have
f(m) < 1 for infinitely many m, and as f ∈ Sn it follows that f(∞) = 0.
Therefore f ∈ αn(x → y). This shows αn(x) → αn(y) ⊆ αn(x → y). The other
inclusion follows from general principles as αn is a lattice homomorphism between
HAs. £
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Lemma 4.7. For each n ≥ 0, αn is an embedding.

Proof. As αn is a HA homomorphism, it is sufficient to show x 6= 1 implies
αn(x) 6= Sn. But this follows directly from the definition of αn as x 6= 1 and
f ∈ αn(x) imply f(∞) 6= 1. £

Proposition 4.8. For each n ≥ 0, αn : Ln+1 → S∗n is a HA-embedding.

Proof. This is the content of the previous five lemmas. £

Theorem 4.9. The closure of {3} under H,S,P and MacNeille completions is
the variety of all HAs.

Proof. Let K be the smallest class of algebras containing 3 and closed under
H,S,P and MacNeille completions. By induction on n we show Ln ∈ K. For
n = 0 this is trivial as L0 = 3. Assume Ln ∈ K. We have shown in Proposition 4.8
that Ln+1 is isomorphic to a subalgebra of the MacNeille completion of Sn, and
we have shown in Proposition 4.2 that Sn is a subalgebra of a power LX

n of Ln.
Therefore Ln+1 ∈ K. It follows that {Ln|n ∈ N} ⊆ K, so by Theorem 4.1 K

contains the class of all HAs. But the class of all HAs is closed under H,S,P and
MacNeille completions, hence K equals the class of all HAs. £

Corollary 4.10. The only varieties of HAs that are closed under MacNeille
completions are the trivial variety, the variety of all BAs, and the variety of all
HAs.

Proof. Any variety of HAs different from the trivial variety and the variety of
all BAs contains the HA 3. £

Remark. By duality, the only varieties of co-HAs that are closed under MacNeille
completions are the trivial variety, the variety of all BAs, and the variety of all
co-HAs. There are, however, varieties of bi-HAs that are closed under MacNeille
completions. For example, the variety of bi-HAs generated by 3 is closed under
MacNeille completions. A proof of this fact can be obtained from the work of
Givant and Venema [5] or by using the topological considerations of Section 3.

5. Concluding remarks

It remains an open question whether there are varieties of HAs other than
the trivial variety, the variety of all BAs, and the variety of all HAs that admit
a regular completion. In particular, it is unknown whether the variety of HAs
generated by 3 admits a regular completion.
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Using the familiar connection between closure algebras and HAs, the results of
this paper have direct application to MacNeille completions of closure algebras.
More generally, it may also be possible to extend the techniques and results of
this paper to MacNeille completions of modal algebras.
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