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12 Varieties of algebras in fuzzy set theory

Guram Bezhanishvili, Mai Gehrke, John Harding, Carol Walker, Elbert Walker

Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM (USA)
???,mgehrke@nmsu.edu,???,hardy@nmsu.edu,elbert@nmsu.edu

Abstract Many algebras arise in the study of fuzzy set theory, including the unit interval with a
negation, a t-norm, or both. We investigate equational properties of such algebras.

12.1 Introduction

Our purpose is to study equational properties of algebras that arise in fuzzy set theory.
Each of the algebras we will consider is a bounded distributive lattice(D,∧,∨,0,1), per-
haps with some additional operations. The difficulty in determining the equational prop-
erties of a given algebra depends greatly upon which, if any, additional operations are
present.

Consider the situation for algebras having no further operations beyond the lattice
operations∧ and∨ and the bounds0 and1. Examples are the real unit intervalI with ∧
being min and∨ being max, or the collectionF(S) of fuzzy subsets of a setSwith ∧ and
∨ defined componentwise from max and min on the unit interval. A fundamental theorem
of Birkhoff states that a lattice equation holds in a non-trivial bounded distributive lattice
if and only if it holds in the two element distributive lattice we denote by2. Thus, to
determine whether a lattice equation holds in the real unit interval, or in the collection
of fuzzy subsets of a nonempty set, it is necessary and sufficient to determine whether
it holds in the two-element lattice2. This certainly provides a great simplification of the
problem.

A similar situation arises with algebras having only lattice operations and an addi-
tional operation of negation, denoted′. Obvious examples are the unit interval with the
negationx′ = 1−x, or the collectionF(S) of fuzzy subsets of a setSwith operations de-
fined componentwise from ones on the unit interval. However, many other negations are
possible on the unit interval, and onF(S) as well, and these give rise to different algebras.
Fortunately, a well-known result of Kalman [15] yields that an equation is valid in any
one of these algebras described above if and only if it is valid in the three-element chain
3 = {0,a,1} with negation0′ = 1, a′ = a and1′ = 0.

Consider algebras having an additional binary operation◦ in addition to the usual
lattice operations. Examples include the unit interval with◦ being ordinary multiplication,
the unit interval with◦ being an arbitrary t-norm, or the collectionF(S) of fuzzy subsets
of a set with an operation◦ defined componentwise through such an operation on the
unit interval. Here matters are considerably more complicated as one can show there is
no finite test algebra to play a role as above, even if one restricts attention to testing for
validity of equations in the unit interval under multiplication. Still, there is much that
can be said. For instance, we show that any equation holding in the algebra(I,◦), where
I= ([0,1],∧,∨,0,1) and◦ is ordinary multiplication, holds in any algebra(I,T) whereT
is a continuous t-norm.



312 G. Bezhanishvili, M. Gehrke, J. Harding, C. Walker & E. Walker

To continue on this path, we note that each of the algebras above is a bounded dis-
tributive lattice with a binary operation◦ that is commutative, associative, and satisfies
x◦ (y∧ z) = (x◦ y)∧ (x◦ z), x◦ (y∨ z) = (x◦ y)∨ (x◦ z) andx◦1 = x. We will call such
an algebra a bounded distributive lattice ordered commutative monoid (abbreviated:dl-
monoid).

We conjecture that any equation valid in the unit interval with ordinary multiplication
is valid in all dl-monoids, and in particular is valid in any algebra(I,T) whereT is a
t-norm. We have not proved this conjecture, but have verified it for equations involving
at most two variables. Aside from its application to fuzzy set theory, this conjecture is
likely of independent interest. It seems a natural companion to the well-known result [20]
that any equation valid in the ordered group of real numbers under addition is valid in all
lattice ordered abelian groups.

Finally, we consider algebras having lattice operations, a negation, and a binary oper-
ation as above. The unit interval with a negation and a t-norm is an example of such an
algebra and is called a De Morgan system. A conorm can be obtained through the nega-
tion and t-norm, therefore its inclusion as a basic operation in a De Morgan system is not
necessary.

There are several positive results about the equational theory of such De Morgan sys-
tems. For example, any De Morgan system whose t-norm is strict is isomorphic to one
whose t-norm is ordinary multiplication. Thus, the equations valid in all strict De Morgan
systems are exactly those valid in De Morgan systems based on ordinary multiplication.
Analogous results hold for nilpotent De Morgan systems and the Łukasiewicz t-norm.

There are, however, a number of negative results showing the difficulties in develop-
ing the equational theory of De Morgan systems. There is no finite algebra that satisfies
exactly those equations valid in all De Morgan systems. Worse still, the canonical exam-
ple of the unit interval with the usual negation and ordinary multiplication cannot be used
for this role either. In fact, given any two strict, non-isomorphic De Morgan systems, there
are equations valid in one, but not the other.

This chapter is organized in the following manner. In the second section we give a
brief review of some algebraic notions. In the third we define the basic lattices of interest
and give a complete determination of their equational properties. In the fourth section we
describe the situation for algebras with negation, and in the fifth we give several results
about algebras with an additional binary operation. The sixth section develops the basic
theory ofdl-monoids. This paves the way for the seventh section where we verify that
any equation in at most two variables valid in the unit interval with multiplication is valid
in all dl-monoids. In the eighth and final section we consider algebras with a negation
and a binary operation, especially De Morgan systems. Section 3, Section 4, portions
of Section 5, and Section 8 represent surveys of existing results, many obtained by the
second, fourth and fifth listed authors.

For background to this chapter the reader can consult [10] and [12] for connections
between equational theories and fuzzy logic, [3] for general aspects of equational theories
and universal algebra, and [16] and [19] for aspects of fuzzy sets.
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12.2 Preliminaries

Given a setA, and a nonnegative integern, we say a mapf : An→ A is ann-ary operation
on A. Thus ann-ary operation takes as argumentsn values fromA and returns a single
value fromA. An algebrais a set equipped with a family of operations. An algebra may
have any number of operations of any arities. A specification of the number of opera-
tions of an algebra and the arities of these operations is called thetypeof the algebra.
For example, a bounded distributive lattice(D,∧,∨,0,1) is an algebra of type(2,2,0,0)
meaning that it has two binary operations∧,∨ and two constants (operations taking zero
arguments)0, 1.

A termfor a given type of algebra is an expression formed from a set of variables using
the basic operations. Anequationfor algebras of a given type is a formal expressions≈ t
asserting the equality of two terms. For examplex∧ (x∨y) = x∨ (x∧y) is an equation for
algebras having two binary operations∧,∨. An algebraA is said tosatisfy an equation
s≈ t if every possible substitution of elements ofA for variables ins andt produces an
equality. We writeA |= s≈ t to signify thatA satisfiess≈ t.

For K a class of algebras andΣ a set of identities we useEq(K) to denote the set of
equations valid in each member ofK andmod(Σ) for the class of algebras satisfying each
member ofΣ. The notationK |= Σ means each member ofK satisfies each equation inΣ.

12.2.1 DEFINITION

A classK of algebras is anequational class, orvariety, if there is a setΣ of identities such
thatK = mod(Σ).

Thus a variety is the class of all algebras satisfying some set of equations. Given
any classK of algebras there is a smallest varietyV(K) containingK, namelyV(K) =
mod(Eq(K)). In particular, there is a smallest varietyV(A) containing a given algebraA,
and its members are those algebras that satisfy exactly the same equations asA.

To reiterate, our primary purpose is to give methods to determine which equations will
hold in a given algebraA or class of algebrasK arising in fuzzy set theory. Our technique
will be to find an algebraB whose equational theory is easily determined such thatB
generates the same variety asA or asK. Our primary tools are the algebraic techniques
described below.

An algebraB is a subalgebraof an algebraA if the underlying set ofB is a subset
of that ofA and the operations ofB are the restrictions of those ofA. A map f : A→ B
is a homomorphismif it is compatible with the basic operations. If the mapf is onto,
we sayB is ahomomorphic imageof A. For a familyAi (i ∈ I) of algebras of the same
type, theproduct∏i∈I Ai is the algebra whose underlying set is the Cartesian product of
the underlying sets of theAi and whose operations are defined componentwise. If all the
algebrasAi equal some algebraA we call the product of theAi the powerAI of A. An
algebraB is asubdirect productof the familyAi if B is a subalgebra of∏i∈I Ai and for
eachi ∈ I the natural homomorphism fromB to Ai is onto. Of basic importance is the
following theorem of Birkhoff.

12.2.2 THEOREM

The varietyV(K) generated byK is the smallest class of algebras containingK and
closed under taking homomorphic images, subalgebras and products.
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One final result, again due to Birkhoff, will be used. This result says that an equation
will hold in all members of a varietyV if and only if it holds in certain very special
algebras inV called subdirectly irreducibles. In order to define these, we first briefly
review the notion of a congruence.

Given an algebraA, an equivalence relationθ on the underlying set ofA is called a
congruenceof A if it is compatible with the operations ofA. Specifically this means that
for eachn-ary operationf :

If ai θbi for i = 1, . . . ,n, then f (a1, . . . ,an)θ f (b1, . . . ,bn).

Clearly the identical relation∆ which relates each element only to itself is a congruence
onA, as is the universal relation∇ which relates any two elements ofA. An algebraA
is said to besubdirectly irreducibleif there is a smallest congruence which is not equal
to the identity∆. This is equivalent to requiring that there be elementsa 6= b such that
(a,b) belongs to every congruence other than the identical relation. The significance of
subdirectly irreducibles is conveyed by the following theorem, also due to Birkhoff.

12.2.3 THEOREM

An equation holds in a varietyV if and only if it holds in every subdirectly irreducible
algebra inV.

The key point is that in many varieties, including the ones of interest here, the subdi-
rectly irreducibles are much better behaved than arbitrary members of the variety. Thus,
determining the subdirectly irreducibles can provide a tractable method to determining
equational properties.

12.3 The basic lattices

The real unit interval[0,1] forms a bounded distributive lattice under its usual ordering
with the operations of∧ and∨ given bymin andmax. We then define the following.

I= ([0,1],∧,∨,0,1) is the bounded unit interval.

Just as the real intervalI plays a basic role in the theory of fuzzy sets, a lattice constructed
from the collection of closed subintervals of[0,1] plays a basic role in the theory of
interval-valued fuzzy sets. This lattice is most easily described by noting that there is a
bijection between the non-empty closed subintervals of[0,1] and the set of ordered pairs
(a,b) with 0≤ a≤ b≤ 1. We then define the following.

I[2] is {(a,b) | 0≤ a≤ b≤ 1} with ∧,∨,0,1 defined componentwise.

A fuzzy subsetof a setS is a function f : S→ [0,1]. The collection of all fuzzy subsets
of S is therefore the set of all maps fromS to [0,1], which is the power[0,1]S. This
collection of fuzzy subsets ofScan naturally be considered a lattice by defining operations
componentwise from those ofI. We define the following.

The bounded latticeF(S) of fuzzy subsets of a setS is the powerIS.
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An interval-valued fuzzy subsetof a setSis defined to be a mapping fromSto the set of all
non-empty closed subintervals of[0,1], or equivalently, a mapping fromSto {(a,b) | 0≤
a≤ b≤ 1}. The set of all interval-valued fuzzy subsets ofScan naturally be considered
a bounded lattice by defining lattice operations componentwise through those ofI[2]. We
then define the following.

The bounded latticeIF(S) of interval-valued fuzzy subsets ofS is (I[2])S.

Birkhoff showed that any bounded distributive lattice that has more than one element
generates the variety of all bounded distributive lattices. As each of the lattices above is
distributive we have the following.

12.3.1 COROLLARY

A bounded lattice equation is valid inI, I[2], F(S) or IF(S) if and only if it is valid in the
two-element lattice2.

This result is of practical use. It gives a simple and effective method for determining
whether a bounded lattice equation is valid in one of the lattices listed above—one simply
checks whether the equation is valid in the two-element lattice2. Further, equipping these
lattices with additional operations, such as a negation or a t-norm, will in no way affect
this result for equations involving only the bounded lattice operations∧,∨,0,1.

12.4 Lattices with a negation

We next consider bounded distributive lattices with an additional unary operation.

12.4.1 DEFINITION

A negationon a lattice is a unary operation′ that satisfies
1. (x∧y)′ = x′∨y′,
2. (x∨y)′ = x′∧y′,
3. x′′ = x.

A bounded distributive lattice with a negation is aDe Morgan algebra.

Of basic importance in the study of fuzzy sets is the negation′ on the latticeI defined
by x′ = 1− x. We call this theusual negationon I. There are other negations onI, such
as the negation defined byx′ =

√
1−x2. However, any negation onI produces an algebra

isomorphic toI with the usual negation [1,8].
Similarly, there is a negation on the latticeI[2] of particular importance in the study

of interval-valued fuzzy sets. This negation, which is called theusual negationon I[2],
is defined by(a,b)′ = (1− b,1− a). One again has the result that any negation onI[2]

produces an algebra isomorphic toI[2] with the usual negation [9].
Finally, by theusual negationson the latticesF(S) andIF(S), we mean the negations

defined componentwise through the usual negations onI andI[2] respectively. We note
that there are negations onF(S) and onIF(S) producing algebras that are not isomorphic
to F(S) or IF(S) with the usual negations.

12.4.2 DEFINITION

Define two finite De Morgan algebras as follows.
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1. 3 is the lattice0 < a < 1 with negation0′ = 1,a′ = a,1′ = 0.
2. D is the lattice below with negation0′ = 1, u′ = u, v′ = v, 1′ = 0.

1
� �

u v
� �

0

These algebras are important in the study of equational properties of De Morgan al-
gebras. Kalman [15] showed that there are exactly four varieties of De Morgan alge-
bras; the variety of all De Morgan algebras, the variety of De Morgan algebras satisfying
x∧ x′ ≤ y∨ y′, which is known as the variety ofKleene algebras, the variety of Boolean
algebras, and the trivial variety of one-element algebras. Further,D generates the variety
of all De Morgan algebras and3 generates the variety of all Kleene algebras. This yields
the following which can also be found in [2,10].

12.4.3 COROLLARY

An equation is valid inI or F(S) with the usual negations if and only if it is valid in3;

and an equation is valid inI[2] or IF(S) with the usual negations if and only if it is valid
in D.

Again, we have a simple and effective method for determining whether an equation
is valid in one of the algebras listed above—one simply checks whether the equation is
valid in the three- or four-element lattice with negation. See [13] for further discussion,
including descriptions of normal forms and truth tables in these settings.

12.5 The unit interval with a t-norm

We recall several basic definitions which can be found in [17].

12.5.1 DEFINITION

A t-norm is a binary operation on the unit interval that is commutative, associative and
satisfies

1. T(x,y∧z) = T(x,y)∧T(x,z),
2. T(x,y∨z) = T(x,y)∨T(x,z),
3. T(x,1) = 1.

For a t-normT and elementx∈ I, define recursivelyxn by settingx0 = 1 andxn+1 =
T(x,xn). We now define several classes of t-norms of particular importance in our study.

12.5.2 DEFINITION

Let T be a t-norm. We say
1. T is continuousif it is continuous under the usual topology onI.
2. T is strict if it is continuous andx > 0,y < z=⇒ T(x,y) < T(x,z).
3. T is nilpotentif it is continuous andx 6= 1 =⇒ xn = 0 for somen.
4. T is idempotentif it satisfiesT(x,x) = x, or equivalentlyx2 = x.
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One can easily show that any t-norm satisfiesT(x,y)≤ x∧y. It then follows from this
that there is exactly one t-norm that is idempotent. While there are many different strict
and nilpotent t-norms, we shall see there are canonical examples of each.

12.5.3 DEFINITION

1. Theproductt-normTP is defined byTP(x,y) = xy.
2. TheŁukasiewiczt-normTL is defined byTL (x,y) = (x+y−1)∨0.
3. Theminimumt-normTM is defined byTM (x,y) = x∧y.

Note that the product t-normTP is strict, the Łukasiewicz t-normTL is nilpotent, and
the minimum t-normTM is idempotent. These examples are canonical in the following
sense.

12.5.4 THEOREM

LetT be a t-norm.

1. If T is strict, then the algebra(I,T) is isomorphic to(I,TP).
2. If T is nilpotent, then the algebra(I,T) is isomorphic to(I,TL ).
3. If T is idempotent, then the algebra(I,T) is equal to(I,TM ).

Thus, ifT is a strict t-norm, the algebras(I,T) and(I,Tp) generate the same variety,
and ifT is nilpotent then(I,T) and(I,TL ) generate the same variety. In [8], it is shown that
each of the algebras(I,TP) and(I,TL ) can be obtained from the other using homomorphic
images, subalgebras and products. Thus these algebras generate the same variety. We
therefore have the following.

12.5.5 THEOREM ( [8])
If T is a t-norm that is either strict or nilpotent, then

V(I,TP) = V(I,T) = V(I,TL ).

The situation for the idempotent t-normTM is particularly simple.

12.5.6 PROPOSITION

For (2,min), the lattice2 with extra binary operationmin,

V(I,TM ) = V(2,min)⊂ V(I,TP).

Proof. Fora∈ (0,1], let ϕa : (I,TM )→ (2,min) be the map defined by

ϕa(x) =

{
1 if x≥ a,

0 if x < a.

q

q

©©©©*

J
J

J
J
Ĵ

-

-

1

0

1

0

a
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Eachϕa is a homomorphism, and this family of maps separates points. So the product ho-
momorphism embeds(I,TM) into ∏a∈(0,1](2,min). This shows that(I,TM ) is inV(2,min),
and therefore thatV(I,TM ) ⊆ V(2,min). The containmentsV(2,min) ⊆ V(I,TM ) and
V(2,min)⊆V(I,TP) follow as(2,min) is a subalgebra of(I,TM ) and(I,TP). The equation
s2 ≈ swhich holds in(I,TM ) does not hold in(I,TP) so the inclusion is proper. ¤

The following lemma, which is similar to Ling’s [18] characterization of continuous
t-norms as ordinal sums of strict, nilpotent and idempotent t-norms, is key to determining
equational properties of continuous t-norms.

12.5.7 LEMMA

If T is a continuous t-norm, the algebra(I,T) is isomorphic to a subdirect product of al-
gebras(I,Tu) where eachTu is either a strict t-norm, a nilpotent t-norm, or the idempotent
t-norm.

Proof. Let T be a continuous t-norm. LetZ = {x∈ [0,1] | T(x,x) = x}. SinceT is conti-
nuous,Z is a closed subset of[0,1], so

[0,1]−Z =
⋃

s∈AXs

where{Xs}s∈A is a finite or countably infinite collection of pairwise disjoint open inter-
vals. Also,

[0,1]−⋃
s∈AXs =

⋃
t∈BYt

for some finite or countably infinite collection of disjoint open intervalsYt . For s∈ S,
the definition of the open intervalXs provides that its closure is equal to[a,b] for some
a,b∈ Z. Then for anyx,y∈ [a,b] we have thata = T(a,a)≤ T(x,y)≤ T(b,b) = b, soT
restricts to a binary operation on the interval[a,b] we denoteTs. Define0s = a, 1s = b and
set

As = (Xs,∧,∨,Ts,0s,1s).

The operationTs is commutative, associative, and distributes over both joins and meets
as it inherits these properties fromT. If x ∈ [a,b], thenT(x,b) ≤ x≤ b = T(b,b), thus,
asT is continuous,x = T(y,b) for somex≤ y≤ b. This givesT(x,b) = T(T(y,b),b) =
T(y,T(b,b)) = T(y,b) = x, showing that1s = b is a unit forTs. Note also thatTs is conti-
nuous as it is the restriction of a continuous operationT, and the definition ofXs provides
thatTs has no idempotents other than the endpointsa,b.

From the above remarks it follows thatAs is isomorphic to an algebra(I, T̂s) whereT̂s

is a continuous t-norm with no nontrivial idempotents, and consequently either a strict or
nilpotent t-norm (see [17] for a proof). Fort ∈ T we haveYt is an open interval contained
in the closed setZ. So the closure ofYt is a closed interval[a,b] contained inZ. From the
definition ofZ we haveT(x,x) = x for eachx∈ [a,b], and it follows thatT restricts to an
idempotent operationTt on [a,b]. Define0t = a, 1t = b and set

Bt = (Yt ,∧,∨,Tt ,0t ,1t).

Again, Tt is commutative, associative, and distributes over joins and meets as it inherits
these properties fromT. Further, forx∈ [a,b] we havex = T(x,x) ≤ T(x,b) ≤ x, hence
b = 1t is a unit forTt . Then asTt is idempotent, it follows thatBt is isomorphic toI with
the idempotent t-norm. For[a,b] = Xs or Yt defineϕab: (I,T)→ As orBt by
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ϕab(x) =





b if x≥ b,

x if a≤ x≤ b,

a if x≤ a.

1

0

a

b

a

b

½
½

½½>

Z
Z

ZZ~

-

-

Eachϕab is order preserving and therefore, as our algebras are chains, preserves∧,∨.
Also, by definition, eachϕab preserves bounds. To see thatϕab is a homomorphism it
remains to show thatϕab(T(x,y)) = Ts(ϕab(x),ϕab(y)) if [a,b] = Xs, or a similar statement
involving Tt if [a,b] = Yt . This follows from the definition ofTs and Tt if x,y ∈ [a,b].
If x ≤ a or y ≤ a then T(x,y) ≤ a and the result follows. Ifx ≥ b and y ≥ b then as
T(b,b) = b we haveT(x,y)≥ b and the result follows. Finally, ifx≤ b andy≥ b we have
x = T(x,b)≤ T(x,y)≤ x, and the result follows.

Since eachϕab is a homomorphism, the product of these maps gives a homomorphism
from (I,T) to ∏s∈SAs×∏t∈TAt . To show that this map is an embedding, we need to
show that the family of mapsϕab separates points. Letx < y∈ [0,1]. There is no problem
if either x or y lies in one of the intervalsXs. Supposex,y ∈ Z. If one of the intervals
Xs = [a,b] lies betweenx andy, thenϕab(x) = a 6= b= ϕab(y). If this is not the case, every
element betweenx andy is in Z so thatx,y ∈ Yt = [a,b] for somet, andϕab(x) = x 6=
y = ϕab(y). Each mapϕab is ontoAs or Bt as the case may be. Thus(I,T) is a subdirect
product of the algebrasAs andBt , and each of these is isomorphic to the unit interval with
a strict, nilpotent, or the idempotent t-norm. ¤

12.5.8 THEOREM

If T is a continuous t-norm that is not idempotent, then

V(I,T) = V(I,TP).

Proof. By Lemma 12.5.7,(I,T) can be embedded as a subdirect product of algebras
(I,Tu) where eachTu is either a strict, nilpotent, or the idempotent t-norm. By Theo-
rem 12.5.5 and Proposition 12.5.6 each of the algebras(I,Tu) belongs toV(I,TP). This
implies that(I,T) also belongs toV(I,TP), henceV(I,T)⊆ V(I,TP). As (I,T) is embed-
ded as a subdirect product of the algebras(I,Tu), the projections from(I,T) to the factors
(I,Tu) are all onto mappings. SinceT is not idempotent, it cannot be the case that all of the
Tu are idempotent. Therefore there is a strict or nilpotentTu with (I,Tu) a homomorphic
image of(I,T). It follows from Theorem 12.5.5 thatV(I,TP)⊆ V(I,T). ¤

We summarize our results in terms of equational properties.

12.5.9 THEOREM

If T is any continuous t-norm other than the idempotent t-norm, then an equation is valid
in the unit intervalIwith t-normT if and only if it is valid in the intervalIwith the product
t-norm. Further, an equation is valid in the intervalI with the idempotent t-norm if and
only if it is valid in the finite algebra(2,min).
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To conclude this section we note that there are algebras(I,T) in V(I,TP) whereT is
not continuous. The drastic t-normTD defined in [17] is one such example. Actually, more
can be shown. UsingA to denote the subalgebra of(I,TL ) with underlying set{0, 1

2,1}
we have

V(I,TD) = V(A)⊂ V(I,TP).

The proof is similar to that of Proposition 12.5.6.

12.6 Distributive lattice ordered commutative monoids

To study further properties of t-norms, it is convenient to work in a more general setting.

12.6.1 DEFINITION

A bounded distributive lattice ordered commutative monoid(abbreviated:dl-monoid) is a
bounded distributive lattice with an additional commutative, associative binary operation
◦ that satisfies

1. x◦ (y∧z) = (x◦y)∧ (x◦z),
2. x◦ (y∨z) = (x◦y)∨ (x◦z),
3. x◦1 = x.

The class of alldl-monoids is a variety we denote byM.

Note that(I ,T) is an example of adl-monoid for any t-normT. We next describe a
particulardl-monoid that plays an important role.

12.6.2 DEFINITION

The infinite cyclic algebraZ is thedl-monoid consisting of the chain0 < · · ·< z2 < z1 <
z0 = 1 with binary operation◦ given by

x◦y =

{
zm+n if x = zm andy = zn,

0 if eitherx or y is 0.

Note, ifA is adl-monoid anda∈A, then there is a homomorphismϕ : Z→Amapping
the generatorz1 of Z to a. This yields the following.

12.6.3 THEOREM

The infinite cyclic algebraZ is the free dl-monoid on one generator. Thus, an equation in
one variable is valid inZ if and only if it is valid in every dl-monoid.

The following is key to studying equational properties ofdl-monoids.

12.6.4 PROPOSITION

Two dl-monoids satisfy the same equations in the variablesx1, . . . ,xk if and only if they
satisfy the same inequalities

s1∧·· ·∧sm≤ t1∨·· ·∨ tn

where eachsi and eacht j is a product of the variablesx1, . . . ,xk.
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Proof. Note first that the equations≈ t holds if and only if each of the inequalitiess≤ t
andt ≤ s holds, and an inequalitys≤ t holds if and only if the equations∧ t ≈ t holds.
Thus twodl-monoids satisfy the same equations if and only if they satisfy the same in-
equalities. Suppose we wish to see whether an inequalitys≤ t holds. Because the monoid
operation◦ distributes over the lattice operations∧,∨ in anydl-monoid, we can assume
that s is a disjunctions = s1∨ s2∨ ·· · ∨ sn of termssi , where eachsi is a conjunction
si = si1∧si2∧·· ·∧sini of termssih with eachsih a product of variables. Similarly, we can
assumet is a conjunctiont = t1∧ t2∧ ·· · ∧ tm of termst j , where eacht j is a disjunction
t j = t j1∨t j2∨·· ·∨t jm j of termst jk with eacht jk a product of variables. Now the inequality

s1∨s2∨·· ·∨sn ≤ t1∧ t2∧·· ·∧ tm

holds if and only if each of the inequalitiessi ≤ t j , i = 1, . . . ,n, j = 1, . . . ,m holds, and
these inequalities are of the form asserted in the statement of the result. ¤

12.6.5 THEOREM

An equation is valid in the intervalI with product t-normTP if and only if it is valid in the
infinite cyclic algebraZ.

Proof. By the previous result, it suffices to show(I,TP) andZ satisfy the same inequalities
s≤ t wheres= s1∧s2∧·· ·∧sm, t = t1∨ t2∨·· ·∨ tn with

si = api1
1 · · · apik

k andt j = a
q j1
1 · · · aq jk

k .

Here we are assuming the inequality involvesk variablesa1, . . . ,ak and each variable
occurs in each product (maybe with exponent0). If b ∈ (0,1), then the subalgebra of
(I,TP) generated byb is isomorphic toZ, so any equation valid in(I,TP) is valid in Z.
To show the converse, we assume the inequalitys≤ t fails in (I,TP) and show that it also
fails inZ. By continuity, we know that this inequality failing in the real unit interval[0,1]
means that it fails in(0,1). Thus it fails for some choice ofa1, . . . ,ak in (0,1). Given
a∈ (0,1), we can writeai = aλi whereλi belongs to(0,∞). Thus the function

f (λ1, . . . ,λk) =
m∧

i=1

aλ1pi1+···+λkpik −
n∨

i=1

aλ1q j1+···+λkq jk

has at least one positive value. By continuity, we can find a positive value withλ1, . . . ,λk

rational, sayλ1 = u1
v , . . . ,λk = uk

v . Then, we have thata1 = aλ1, . . . ,ak = aλk provides an

instance where the original inequalitys≤ t fails. Letb= a
1
v . Thena1 = bu1, . . . ,ak = buk.

It then follows that the valuesa1, . . . ,ak producing a failure ofs≤ t lie in the subalgebra
of (I,TP) generated byb, and this subalgebra is isomorphic toZ. ¤

Combining this result with those of the previous section, we have that any equation
valid in the infinite cyclic algebraZ is valid in (I,T) for any continuous t-normT. This
result has other applications as well.

12.6.6 THEOREM

For V a variety of dl-monoids, these are equivalent.
1. Each finitely generated algebra inV is finite.
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2. The infinite cyclic algebraZ is not inV.
3. The algebra(I,TP) is not inV.
4. The free algebra inV on one generator is finite.

Proof. (1) implies (2) follows asZ is finitely generated, in fact generated by a single
element we denote byz, and is infinite. Theorem 12.6.5 yields (2) is equivalent to (3). To
establish (2) implies (4), recallZ is the freedl-monoid on one generator. So, if we useF
for the free algebra inV on one generator, there is a homomorphismϕ mappingZ ontoF.
AsZ does not belong toV, the mapϕ is not one-one, so there are powersm< m+k with
ϕ(zm) = ϕ(zm+k). Sinceϕ is a lattice homomorphism, it follows thatϕ(zm) = ϕ(zm+1),
and therefore thatF = {0,ϕ(z)m,ϕ(z)m−1, . . . ,ϕ(z),1}. To show (4) implies (1), suppose
F hask elements. Then forg the generator ofF we havegk = gk+1. As F is free inV,
this equation holds in every algebra inV. SupposeA ∈ V is finitely generated. Then only
finitely many elements occur as powers of the generators, and as◦ is commutative, only
finitely many elements can be obtained as products of powers of the generators. As◦
distributes over∧,∨, A is generated as a distributive lattice by the elements which are
products of powers of the generators, and hence is finite. ¤

We next produce a sequence of results which characterize the subdirectly irreducible
dl-monoids as certain chains, and establish that every variety ofdl-monoids is generated
by its finite subdirectly irreducibles. Results of Fuchs [7], in a slightly more general set-
ting, already showed each subdirectly irreducibledl-monoid is a chain, but did not yield
our other results. We remind the reader an algebra is subdirectly irreducible if it has a
least nontrivial congruence.

12.6.7 PROPOSITION

A subdirectly irreducible dl-monoid(L,◦) has a least nonzero elementa. Further, (0,a)
belongs to each nontrivial congruence on(L,◦), and the least nontrivial congruence on
(L,◦) is ∆∪{(0,a),(a,0)}.
Proof. Since(L,◦) is subdirectly irreducible, there is a pair(a,b) with a 6= b that belongs
to every nontrivial congruence of(L,◦). Any elementc∈ L induces a congruence defined
by x≡c y if and only if x∨c = y∨c. Then if b 6= 0, a≡b b impliesa∨b = b∨b = b so
a≤ b. Also if a 6= 0, a ≡a b implies thatb≤ a so a = b. Thus exactly one member of
the pair(a,b) is 0, and we takeb = 0. Then for any0 6= c∈ L, we have0 ≡c a, implying
c = 0∨c = a∨c , whencea≤ c. Thusa is the least nonzero element ofL, and it follows
that≡a= ∆∪{(0,a),(a,0)} is the least nontrivial congruence. ¤

Recall that a nonempty subsetI of a latticeL is called anideal of L if x,y∈ I imply
x∨y∈ I , andx∈ I andy≤ x imply y∈ I . An ideal is calledprimeif x∧y∈ I impliesx∈ I
or y∈ I .

12.6.8 DEFINITION

For (L,◦) adl-monoid,x∈ L andI an ideal ofL define

(I : x) = {y∈ L | x◦y∈ I}.

For I = {0} we call this theannihilator of x and write({0},x) = (0 : x).
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We note thatx≤ y implies (I : x) ⊇ (I : y), (I : x∨ y) = (I : x)∩ (I : y), and if I is a
prime ideal, then(I : x∧y) = (I : x)∪ (I : y).

12.6.9 PROPOSITION

For (L,◦) a dl-monoid andI a prime ideal ofL set

x≡ y if and only if(I : x) = (I : y).

Then≡ is a congruence on(L,◦).
Proof. Let x≡ y, and supposew(x∨ z) ∈ I . Thenw(x∨ z) = wx∨wz∈ I implieswx∈ I
andwz∈ I , whencewy∈ I andwz∈ I , and thuswy∨wz= w(y∨ z) ∈ I . It follows by
symmetry that

(I : (x∨z)) = (I : (y∨z)).

Supposew(x∧z)∈ I . Thenw(x∧z) = wx∧wz∈ I implies eitherwx∈ I or wz∈ I , whence
eitherwy∈ I or wz∈ I and thusw(y∧z) ∈ I . It follows by symmetry that

(I : (x∧z)) = (I : (y∧z)).

Finally, supposew(px) ∈ I . Then(wp)x∈ I , hence(wp)y = w(py) ∈ I . It now follows by
symmetry that

(I : px) = (I : py).

Thus≡ is a congruence. ¤

12.6.10 THEOREM

A dl-monoid(L,◦) is subdirectly irreducible if and only if it has a least nonzero element
and the annihilator ideals

{(0 : x) | x∈ L}
are distinct.

Proof. If (L,◦) is subdirectly irreducible, then by Proposition 12.6.7, it has a least nonzero
elementa, and the pair(0,a) belongs to every nontrivial congruence. The set{0} is an
ideal, and sincea lies below every nonzero element,{0} is a prime ideal. Thus the relation
defined by

x≡ y if and only if (0 : x) = (0 : y)

is a congruence. But(0 : 0) = L 6= (0 : a) implies (0,a) does not belong to this congru-
ence. Thus≡= ∆, that is, the relation induced by the annihilators must be the trivial one.
It follows that the annihilators of different elements are distinct. Now suppose the annihi-
lators are distinct andL has a least nonzero elementa. If ≡ is any congruence, andx≡ y
with x 6= y, then(0 : x) 6= (0 : y) so there is an elementw such thatwx= 0 andwy 6= 0 (or
the other way around). But then0 = wx∧a≡ wy∧a = a, so every nontrivial congruence
contains the pair(0,a). Thus(L,◦) is subdirectly irreducible. ¤

12.6.11 PROPOSITION

If (L,◦) is subdirectly irreducible with least elementa, then

(0 : a) = L−{1} .
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Proof. Supposex 6= 1. Then(0 : x) 6= (0 : 1) = {0} implies there is a nonzerob∈ L such
thatxb= 0. But this implies thatxa= 0, hencex∈ (0 : a). ¤

12.6.12 THEOREM

Every subdirectly irreducible dl-monoid is a chain.

Proof. Suppose(L,◦) is subdirectly irreducible with least nonzero elementa, and let
c,d ∈ L. If c andd are not comparable, then we have

c∧d < c < c∨d.

It is easy to see that
(0 : c∧d)⊇ (0 : c)⊇ (0 : c∨d),

and by Theorem 12.6.10, both inclusions are proper. Thus there isp∈ (0 : c∧d) such that
p /∈ (0 : c), andq∈ (0 : c) such thatq /∈ (0 : c∨d). This means

pc 6= 0, pd = 0,qc= 0,qd 6= 0.

But this means that

(c∨d)(p∧q) = (c∨d)p∧ (c∨d)q≥ cp∧dq≥ a 6= 0,

(c∨d)(p∧q) = c(p∧q)∨d(p∧q)≤ cq∨dp= 0.

Thus there is no such pairp,q. It follows that every pair of elements is comparable, i.e.,
L is a chain. ¤

As each variety ofdl-monoids is generated by subdirectly irreducibles, we have shown
each variety ofdl-monoids is generated by its members which are chains. We will show
each such variety is generated by its finite subdirectly irreducibles, in particular by its
finite chains. We require a lemma.

12.6.13 LEMMA

A finitely generated dl-monoidC whose underlying lattice is a chain contains no infinite
strictly increasing chains.

Proof. SupposeC is is generated by{g1,g2, . . . ,gn} and0 < x1 < x2 < · · · is a strictly
increasing chain. Since the underlying lattice ofC is a chain, each nonzero element
of C may be written as a product of powers of the generators. In particular eachxi =
gki1

1 gki2
2 · · ·gkin

n with eachki j a nonnegative integer. Ifk1m≤ kim for all m= 1,2, . . . ,n then
x1≥ xi . So for eachi > 1, there is at least onemsuch thatk1m > kim≥ 0. As the sequence
of xi ’s is infinite and there are only finitely many different natural numbers below the
k1m’s, there must be some pair of natural numbers(i1,m1) for which {i | kim1 = ki1m1} is
infinite. Take the subsequence of allxi ’s with kim1 = ki1m1. Again, for eachi > i1, there
is at least onem such thatkim > ki1m ≥ 0, andm 6= m1. Thus there is some(i2,m2) for
which {i | kim1 = ki1m1 andkim2 = ki2m2} is infinite. Again, take the subsequence of all
xi ’s with bothkim1 = ki1m1 andkim2 = ki2m2. Continuing in this fashion, we get an(in,mn)
for which {i | kim1 = ki1m1,kim2 = ki2m2, . . . ,kimn = kinmn} is infinite. This then says that

{i | xi = g
ki1m1
1 g

ki2m2
2 · · ·gkinmn

n } is infinite. But our assumption implies that no twoxi ’s were
equal, which is a contradiction. The lemma follows. ¤
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12.6.14 PROPOSITION

Each finitely generated subdirectly irreducible dl-monoid is a finite algebra whose under-
lying lattice is a chain.

Proof. Suppose(L,◦) is a finitely generated subdirectly irreducibledl-monoid. By The-
orem 12.6.12,L is a chain, so by Lemma 12.6.13 there are no infinite strictly increas-
ing chains inL. We show also that there are no infinite strictly decreasing chains inL.
Supposex1 > x2 > x3 > · · · is a strictly decreasing chain inL. If xi > xi+1 then clearly
(0 :xi)⊆ (0 :xi+1), and Theorem 12.6.10 provides that the annihilators(0 :xn) are strictly
increasing. Choosingyn ∈ (0 : xn+1)− (0 : xn) we havey1 < y2 < y3 < · · · is a strictly in-
creasing chain inL, so this chain is finite. Thus the chainx1 > x2 > x3 > · · · is also finite.
As L is a chain containing no infinite strictly increasing or infinite strictly decreasing
chains,L is finite. ¤

12.6.15 THEOREM

Every variety of dl-monoids is generated by its finite subdirectly irreducible members, all
of which are chains.

Proof. It is well known that varieties are closed under direct limits, that every algebra
is the direct limit of its finitely generated subalgebras, and that every finitely generated
algebra is a subdirect product of finitely generated subdirectly irreducibles. Thus, ev-
ery variety is generated by its finitely generated subdirectly irreducible algebras, and by
Proposition 12.6.14 these are finite chains. ¤

12.6.16 DEFINITION

For (L,◦) a finitedl-monoid, define the residualη onL by

η(x) =
∨
{y∈ L | y◦x = 0}.

Combining Theorem 12.6.10 and Proposition 12.6.14 yields the following.

12.6.17 COROLLARY

A finite dl-monoid is subdirectly irreducible if and only if its underlying lattice is a chain
and its residualη is a negation in the sense of Definition12.4.1.

There is difficulty in extending this result to the infinite setting as one needs com-
pleteness to ensure the residualη is defined. Suppose we assumeA is adl-monoid whose
underlying lattice is complete and that satisfies the infinite distributive lawx◦ (

∨
yi) =∨

(x◦ yi). ThenA is subdirectly irreducible if and only if it is a chain with least nonzero
element whose residualη is a negation.

Determining equational properties ofdl-monoids has been reduced to the setting of
finite chains whose residualη is a negation, but the problem is still far from trivial. With
a computer, one can check that there are dozens of such chains with, say, 10 elements.
It is not clear whether an effective procedure to determine all suchn-element chains can
be found. And if one is given a particular such chain, there can be difficulties in working
with it. Here, a first glimpse of trouble occurs already with quite small chains.
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12.6.18 EXAMPLE

The four element chain with operation◦ given by

• 1
|
• e = e◦e
|
• a
|
• 0 = e◦a = a◦a

is a subdirectly irreducibledl-monoid.

The4-elementdl-monoid above can be shown to belong toV(I,TP), but this is not a
trivial task. It is a homomorphic image of a subalgebra of an ultrapower of(I,TP), but not
a homomorphic image of a subalgebra of(I,TP) (due to the idempotente).

12.7 Equations in two variables

In Section 12.5 we showed that any equation valid in the unit intervalI with the product
t-norm TP is valid in I with any continuous t-norm. We suspect more is true—that any
equation satisfied by(I,TP) is satisfied by(I,T) for any t-normT. This would be one of
the consequences of the following conjecture.

12.7.1 CONJECTURE

The equations satisfied by the intervalI with the product t-normTP are exactly the equa-
tions that are satisfied by all dl-monoids.

If true, this conjecture would implyV(I,TP) is the variety of alldl-monoids, and would
provide a finite set of equations that defineV(I,TP), namely the equations used to define
dl-monoids. We have not proved this result, but can prove the version of it restricted to
equations having at most two variables. Thus, we will prove the following.

12.7.2 THEOREM

Any equation involving at most two variables that is satisfied by the intervalIwith product
t-norm TP is satisfied by all dl-monoids, and in particular, is satisfied byI with any t-
normT.

Our tools will be Proposition 12.6.4 and Theorem 12.6.12. These reduce the problem
to showing an inequality of the forms1∧ ·· · ∧ sm ≤ t1∨ ·· · ∨ tn, with eachsi and t j a
product of the variables, is valid in(I,TP) if and only if it is valid in everydl-monoid
whose lattice reduct is a chain.

We useC to denote the class of alldl-monoids whose underlying lattices are chains,
andC |= s≤ t to mean that the inequalitys≤ t is valid in all members ofC. We writex◦y
andTP(x,y) simply asxy, and use the notationxn as described after Definition 12.5.1.

12.7.3 LEMMA

For x,y,x1,y1 nonnegative integers, the following are equivalent.
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1. (I,TP) |= axby ≤ ax+x1 ∨by+y1.
2. xy≥ x1y1.
3. C |= axby ≤ ax+x1 ∨by+y1.

Proof. Assume that(I,TP) |= axby≤ ax+x1∨by+y1. If x1 = 0 or y1 = 0 then triviallyxy≥
x1y1. So assumex1 > 0 andy1 > 0. Let b∈ (0,1) anda= bz, wherez= (y+y1)/(x+x1).
Then

bzx+y = axby ≤ ax+x1 ∨by+y1 = bzx+zx1 ∨by+y1 = bzx+zx1

andbzx+y ≤ bzx+zx1 implies

zx+y≥ zx+zx1 = y+y1,

from which it follows thaty≥ zx1 andzx≥ y1. Thuszxy≥ zx1y1, or sincez 6= 0, xy≥
x1y1. Thus (1) implies (2). To show thatxy≥ x1y1 impliesC |= axby ≤ ax+x1 ∨by+y1, we
will induct on xy. If xy = 0 thenx1y1 = 0, so eitherx1 = 0 or y1 = 0 andC |= axby ≤
ax+x1 ∨ by+y1 follows. Assumexy > 0. As xy≥ x1y1, eitherx≥ x1 or y≥ y1. We will
assume without loss of generality thatx ≥ x1 and consider the two casesy ≥ y1 and
y≤ y1. First supposey≥ y1. One readily verifies thataxby≤ a2x∨b2y is valid in any chain
by considering the alternativesax ≤ by andby ≤ ax. As x≥ x1 andy≥ y1 we then have
2x≥ x+x1 and2y≥ y+y1. It follows thatC |= axby≤ ax+x1∨by+y1. Now supposey≤ y1.
Note that subtractingx1y from both sides of the inequalityxy≥ x1y1 yields

(x−x1)y≥ x1(y1−y).

Our assumptionsx≥ x1 andy≤ y1 imply that each of the terms in the above inequality is
nonnegative. Therefore by the inductive hypothesis

C |= ax−x1by ≤ ax∨by1.

LetC ∈ C anda,b∈ C. If by ≤ ax1 thenaxby ≤ ax+x1. And if ax1 ≤ by then

axby = ax1ax−x1by ≤ ax1(ax∨by1)

= ax1ax∨ax1by1 ≤ ax1ax∨byby1 = ax+x1 ∨by+y1.

This shows (2) implies (3). It is a trivial observation that (3) implies (1), because(I,TP) ∈
C. ¤

12.7.4 LEMMA

For x,y,x1,y1 nonnegative integers, the following are equivalent.
1. (I,TP) |= ax+x1 ∧by+y1 ≤ axby.
2. xy≤ x1y1.
3. C |= ax+x1 ∧by+y1 ≤ axby.

Proof. The proof is similar to that of the previous lemma, we only sketch the outline. For
(1) implies (2), letb∈ (0,1) and seta = bz wherez satisfies(x+ x1)z= y+ y1. For (2)
implies (3), we show thatxy≤ x1y1 implies C |= ax+x1 ∧ by+y1 ≤ axby by inducting on
x1y1. The casex1y1 = 0 implies eitherx = 0 or y = 0 leading to a trivial case such as
C |= ax1∧by+y1 ≤ by. Forx1y1 > 0 we may assume without loss of generality thatx1≥ x.
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If also y1 ≥ y then from the observationC |= a2x∧b2y ≤ axby our result follows. We are
left to considerx1 ≥ x andy1 ≤ y. Noting xy≤ x1y1 implies x(y− y1) ≤ (x1− x)y1 the
inductive hypothesis givesC |= ax1∧by≤ axby−y1. Our result then follows by considering
the two casesax ≤ by1 andby1 ≤ ax. And, of course, (3) implies (1) is again trivial. ¤

For the next step, we establish an inequality with a more general right hand side. This
is obtained easily by eliminating trivial cases and then reducing to the previous case.

12.7.5 LEMMA

For nonnegative integersx,y, p1,q1, p2,q2, these are equivalent.
1. (I,TP) |= axby ≤ ap1bq1 ∨ap2bq2.
2. C |= axby ≤ ap1bq1 ∨ap2bq2.

Proof. Since(I,TP) belongs toC, it is only necessary to show (1) implies (2). Suppose
thataxby ≤ ap1bq1 ∨ap2bq2 for all a,b∈ [0,1]. First we eliminate the possibility that both
x < p1 andx < p2, for if this were true then for alla,b∈ (0,1] we would have

by ≤ ap1−xbq1 ∨ap2−xbq2,

which fails forb = 1 anda∈ (0,1). Similarly we cannot have bothy < q1 andy < q2. If
x≥ p1 andy≥ q1, then

axby ≤ ap1bq1 ≤ ap1bq1 ∨ap2bq2,

and similarly, ifx≥ p2 andy≥ q2, then

axby ≤ ap2bq2 ≤ ap1bq1 ∨ap2bq2,

and in either case, the inequality holds for all chainsC∈ C. Thus ifx≥ p2 we may assume
thatq2 > y, whence alsoy≥ q1. And fromy≥ q1, we may assume thatp1 > x. Thus we
have the casep1 > x≥ p2 andq2 > y≥ q1, so

(I,TP) |= ax−p2by−q1 ≤ ap1−p2 ∨bq2−q1

with p1− p2 ≥ x− p2 andq2−q1 ≥ y−q1, and by Lemma 12.7.3 the same inequality
holds for all chains inC. Then multiplying both sides byap2bq1 gets the original inequality
to hold in all members ofC. The argument forx≥ p1 is similar. ¤

A dual argument establishes the following.

12.7.6 LEMMA

For nonnegative integersx,y, p1,q1, p2,q2, these are equivalent.
1. (I,TP) |= ap1bq1 ∧ap2bq2 ≤ axby.
2. C |= ap1bq1 ∧ap2bq2 ≤ axby.

The following lemma reduces the general case to the previous ones. Its proof relies
heavily on the linear geometry of the situation.

12.7.7 LEMMA

For nonnegative integersxi , yi , pi , qi these are equivalent.
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1. (I,TP) |= ax1by1 ∧ax2by2 ∧·· ·∧axnbyn ≤ ap1bq1 ∨ap2bq2 ∨·· ·∨apmbqm.
2. At least one of the following is true.

(a) There is1≤ i ≤ n and1≤ j ≤mwith

(I,TP) |= axi byi ≤ ap j bq j .

(b) There is1≤ i ≤ n and1≤ j < k≤mwith

(I,TP) |= axi byi ≤ ap j bq j ∨apkbqk.

(c) There is1≤ i < j ≤ n and1≤ k≤mwith

(I,TP) |= axi byi ∧ax j by j ≤ apkbqk.

Proof. We observe first that

(I,TP) |= ax1by1 ∧ax2by2 ∧·· ·∧axnbyn ≤ ap1bq1 ∨ap2bq2 ∨·· ·∨apmbqm (12.1)

is equivalent to requiring that for all0≤ λ < ∞

max{xi +λyi}n
i=1 ≥min{p j +λq j}m

j=1.

To see this, note the inequality (12.1) holding for alla,b∈ [0,1] is equivalent, via a conti-
nuity argument, to it holding for alla∈ (0,1), b∈ (0,1], hence it is equivalent to it holding
for all a∈ (0,1) and allb= aλ for some0≤ λ < ∞. Thus the inequality (12.1) being valid
in (I,TP) is equivalent to requiring that for alla∈ (0,1) and all0≤ λ < ∞

ax1+λy1 ∧ax2+λy2 ∧·· ·∧axn+λyn ≤ ap1+λq1 ∨ap2+λq2 ∨·· ·∨apm+λqm.

As a∈ (0,1) this is equivalent to requiring that for all0≤ λ < ∞

max{xi +λyi}n
i=1 ≥min{p j +λq j}m

j=1.

Thus, our task is reduced to showing that if for all0≤ λ < ∞

max{xi +λyi}n
i=1 ≥min{p j +λq j}m

j=1

then either there are1≤ i < j ≤mand1≤ k≤mso that for all0≤ λ < ∞

max{xi +λyi ,x j +λy j} ≥ pk +λqk,

or there are1≤ i < j ≤mand1≤ k≤mso that for all0≤ λ < ∞

xi +λyi ≥min{p j +λq j , pk +λqk}.

Define functionsf ,g,h on [0,∞) by setting

f (λ) = max{xi +λyi}n
i=1,

g(λ) = min{p j +λq j}m
j=1,

h(λ) = f (λ)−g(λ).
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Then f ,g are continuous and made up of finitely many linear functions. Thereforeh also
has these properties. Further, our assumption thatf ≥ g implies thath≥ 0. As h≥ 0 and
is made up of finitely many linear functions, it must have an absolute minimum on[0,∞).
This minimum can be chosen to occur at a valueλ0 where eitherλ0 = 0 or h has a vertex
at λ0. Note thath having a vertex atλ0 implies that eitherf or g, or both, have a vertex
at λ0. Consider several cases. Supposeλ0 = 0. Then ifxi + λyi is the first linear segment
of f andp j +λq j is the first linear segment ofg, we havexi ≥ p j andyi ≥ q j sinceh≥ 0
andλ0 = 0 is a minimum ofh. Therefore, for all0≤ λ < ∞, xi +λyi ≥ p j +λq j . Suppose
g has a vertex atλ0 and f does not have a vertex atλ0. Then there is a neighborhood of
λ0 on which f = f ′ andg = g′ where

f ′(λ) = xi +λyi ,

g′(λ) = min{p j +λq j , pk +λqk}
for some1≤ i ≤ m and1≤ j < k≤ n. Then f ′− g′ agrees withh on a neighborhood
of λ0, and it follows thatf ′−g′ has a local minimum atλ0. But f ′−g′ is comprised of
two linear functions. Hence this local minimum is an absolute minimum. It follows that
f ′−g′ ≥ 0. So for all0≤ λ < ∞

xi +λyi ≥min{p j +λq j , pk +λqk}.
Similarly, if f has a vertex atλ0 andg does not, we find there are1≤ i < j ≤ m and
1≤ k≤ n so that for all0≤ λ < ∞

max{xi +λyi ,x j +λy j} ≥ pk +λqk.

Finally, assume bothf andg have vertices atλ0. Then there is a neighborhood ofλ0 on
which f = f ′ andg = g′ where f ′(λ) = max{xi + λyi ,x j + λy j} andg′(λ) = min{p j +
λq j , pk +λqk} for some1≤ i < j ≤mand some1≤ k < `≤ n. Without loss of generality
we assumeyi < y j andqk > q`. Thus the situation appears as follows.

½
½

½
½

½½
³³³³³³

!!!!!!
¶

¶
¶

¶
¶

¶
¶¶

pk +λqk

xi +λyi
p` +λq`

x j +λy j

λ0

As h has a minimum atλ0, it follows thatyi −qk ≤ 0 andy j −q` ≥ 0, henceyi ≤ qk and
y j ≥ q`. It follows that eitheryi ≤ q` ≤ y j or q` ≤ yi ≤ qk. In the first case we have for all
0≤ λ < ∞

xi +λyi ≥min{p j +λq j , pk +λqk}.
This completes the proof, as the second case is similar. ¤
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Note that(I,TP) |= axby ≤ apbq if and only if x≥ p andy≥ q if and only if C |=
axby ≤ apbq. Therefore the previous lemma reduces the general case to known cases,
hence proving Theorem 12.7.2.

The difficulty in extending this proof to three or more variables seems to lie, in part,
in reducing the general case to a simple situation as in Lemma 12.7.3.

12.8 Varieties generated by De Morgan systems

12.8.1 DEFINITION

A De Morgan systemis an algebra(I,T,η), whereT is a t-norm, andη is a negation. We
call a De Morgan systemstrict if T is strict, andnilpotentif T is nilpotent.

There are two families of De Morgan systems that play an important role.

12.8.2 DEFINITION

For η a negation onI, set

1. Iη = (I,TP,η) whereTP is the product t-norm.
2. Jη = (I,TL ,η) whereTL is the Łukasiewicz t-norm.

Note that eachIη is strict and eachJη is nilpotent.

We use the symbol∼= to denote isomorphism of algebras.

12.8.3 THEOREM ( [8])
LetA be a De Morgan system.

1. If A is strict, thenA∼= Iη for some negationη.
2. If A is nilpotent, thenA∼= Jη for some negationη.

Thus, to determine the equations valid in all strict (nilpotent) De Morgan systems,
one may restrict attention to De Morgan systems having the usual product (Łukasiewicz)
t-norm. Still, the situation is quite complicated. The following result shows that for any
two non-isomorphic strict De Morgan systems, there are equations valid in one, and not
the other. In particular,(I,TP,′ ) does not play the fundamental role for De Morgan systems
we conjecture(I,TP) plays for t-norms.

12.8.4 THEOREM ( [12])
For any negationsγ andβ, these are equivalent.

1. Iγ ∼= Iβ.
2. Iγ andIβ generate the same variety.
3. Iγ andIβ generate comparable varieties.
4. Iγ andIβ satisfy the same inequalities in the family

(η((η((x∧η(x))m))n))l ≤ (y∨η(y))k (12.2)

wherem,n, l ,k range over the nonnegative integers.
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For any negationη the varietyV(Iη) is not generated by its finite members. In fact,
V(Iη) has a largest proper subvariety and this subvariety contains all finite members of
V(Iη) [12]. We suspect that noV(Iη) can be defined by a finite set of equations, and
that eachV(Iη) is defined by a family of equations in (12.2) together with the equations
defining adl-monoid and a Kleene algebra.

12.8.5 DEFINITION

A nilpotent De Morgan system satisfyingT(x,η(x)) = 0 is called aBoolean system.

12.8.6 THEOREM ( [11])
For T a nilpotent t-norm, the residual

ηT =
∨
{y | T(x,y) = 0}

is a negation and(I,T,ηT) is a Boolean system. Further, each Boolean system arises in
this manner.

As a Boolean system is a nilpotent De Morgan system, by Theorem 12.8.3 each is
isomorphic to someJη. The following is not unexpected [12].

12.8.7 THEOREM

Each Boolean system is isomorphic toJα whereα(x) = 1−x is the usual negation. There-
fore, each Boolean system generates the variety of all MV-algebras.

Thus, there is a finite set of equations defining the variety generated by any Boolean
system—the well-known equations defining MV-algebras [4]. We wonder if there is a fi-
nite set of equations defining the variety generated by all De Morgan systems. Perhaps
the equations definingdl-monoids together with those defining Kleene algebras comprise
such a finite set, we don’t know. This problem is similar to one raised by P. Hájek, R. Cig-
noli, F. Esteva, and others [14,5,6] asking whether the algebras consisting of a continuous
t-norm and its residuum generate the variety of all BL-algebras.
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