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12 Varieties of algebras in fuzzy set theory
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Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM (USA)
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Abstract Many algebras arise in the study of fuzzy set theory, including the unit interval with a
negation, a t-norm, or both. We investigate equational properties of such algebras.

12.1 Introduction

Our purpose is to study equational properties of algebras that arise in fuzzy set theory.
Each of the algebras we will consider is a bounded distributive latfice,V,0,1), per-

haps with some additional operations. The difficulty in determining the equational prop-
erties of a given algebra depends greatly upon which, if any, additional operations are
present.

Consider the situation for algebras having no further operations beyond the lattice
operationsh andV and the bound® and1. Examples are the real unit interdaith A
being min and/ being max, or the collectiofi(S) of fuzzy subsets of a s&with A and
Vv defined componentwise from max and min on the unit interval. A fundamental theorem
of Birkhoff states that a lattice equation holds in a non-trivial bounded distributive lattice
if and only if it holds in the two element distributive lattice we denoteZoylhus, to
determine whether a lattice equation holds in the real unit interval, or in the collection
of fuzzy subsets of a nonempty set, it is necessary and sufficient to determine whether
it holds in the two-element lattic2 This certainly provides a great simplification of the
problem.

A similar situation arises with algebras having only lattice operations and an addi-
tional operation of negation, denoteédObvious examples are the unit interval with the
negation’ = 1— x, or the collectior(S) of fuzzy subsets of a s&with operations de-
fined componentwise from ones on the unit interval. However, many other negations are
possible on the unit interval, and 61{S) as well, and these give rise to different algebras.
Fortunately, a well-known result of Kalman [15] yields that an equation is valid in any
one of these algebras described above if and only if it is valid in the three-element chain
3={0,a,1} with negationd’ = 1, @ =aandl =0.

Consider algebras having an additional binary operasian addition to the usual
lattice operations. Examples include the unit interval witleing ordinary multiplication,
the unit interval witho being an arbitrary t-norm, or the collecti6i{S) of fuzzy subsets
of a set with an operation defined componentwise through such an operation on the
unit interval. Here matters are considerably more complicated as one can show there is
no finite test algebra to play a role as above, even if one restricts attention to testing for
validity of equations in the unit interval under multiplication. Still, there is much that
can be said. For instance, we show that any equation holding in the aldebravhere
I=([0,1],A,V,0,1) ando is ordinary multiplication, holds in any algeb{& T) whereT
is a continuous t-norm.
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To continue on this path, we note that each of the algebras above is a bounded dis-
tributive lattice with a binary operation that is commutative, associative, and satisfies
Xo (YAZ) = (Xoy) A(Xo0Z), Xo(yVz) = (Xoy)V (xoz) andxo 1= x. We will call such
an algebra a bounded distributive lattice ordered commutative monoid (abbrewdhted:
monoid).

We conjecture that any equation valid in the unit interval with ordinary multiplication
is valid in all dl-monoids, and in particular is valid in any algeliaT) whereT is a
t-norm. We have not proved this conjecture, but have verified it for equations involving
at most two variables. Aside from its application to fuzzy set theory, this conjecture is
likely of independent interest. It seems a natural companion to the well-known result [20]
that any equation valid in the ordered group of real numbers under addition is valid in all
lattice ordered abelian groups.

Finally, we consider algebras having lattice operations, a negation, and a binary oper-
ation as above. The unit interval with a negation and a t-norm is an example of such an
algebra and is called a De Morgan system. A conorm can be obtained through the nega-
tion and t-norm, therefore its inclusion as a basic operation in a De Morgan system is not
necessary.

There are several positive results about the equational theory of such De Morgan sys-
tems. For example, any De Morgan system whose t-norm is strict is isomorphic to one
whose t-norm is ordinary multiplication. Thus, the equations valid in all strict De Morgan
systems are exactly those valid in De Morgan systems based on ordinary multiplication.
Analogous results hold for nilpotent De Morgan systems and the tukasiewicz t-norm.

There are, however, a number of negative results showing the difficulties in develop-
ing the equational theory of De Morgan systems. There is no finite algebra that satisfies
exactly those equations valid in all De Morgan systems. Worse still, the canonical exam-
ple of the unit interval with the usual negation and ordinary multiplication cannot be used
for this role either. In fact, given any two strict, non-isomorphic De Morgan systems, there
are equations valid in one, but not the other.

This chapter is organized in the following manner. In the second section we give a
brief review of some algebraic notions. In the third we define the basic lattices of interest
and give a complete determination of their equational properties. In the fourth section we
describe the situation for algebras with negation, and in the fifth we give several results
about algebras with an additional binary operation. The sixth section develops the basic
theory ofdl-monoids. This paves the way for the seventh section where we verify that
any equation in at most two variables valid in the unit interval with multiplication is valid
in all dl-monoids. In the eighth and final section we consider algebras with a negation
and a binary operation, especially De Morgan systems. Section 3, Section 4, portions
of Section 5, and Section 8 represent surveys of existing results, many obtained by the
second, fourth and fifth listed authors.

For background to this chapter the reader can consult [10] and [12] for connections
between equational theories and fuzzy logic, [3] for general aspects of equational theories
and universal algebra, and [16] and [19] for aspects of fuzzy sets.



12 Varieties of algebras that arise in fuzzy set theory 313

12.2 Preliminaries

Given a sefA, and a nonnegative integerwe say a mag : A" — Ais ann-ary operation

on A. Thus ann-ary operation takes as argumentsalues fromA and returns a single
value fromA. An algebrais a set equipped with a family of operations. An algebra may
have any number of operations of any arities. A specification of the number of opera-
tions of an algebra and the arities of these operations is calletypeef the algebra.

For example, a bounded distributive lattid, A, V,0,1) is an algebra of typ€2,2,0,0)
meaning that it has two binary operationsvy and two constants (operations taking zero
argumentsp, 1.

A termfor a given type of algebra is an expression formed from a set of variables using
the basic operations. Agqjuationfor algebras of a given type is a formal expressent
asserting the equality of two terms. For example(x V' y) = XV (XAY) is an equation for
algebras having two binary operationsV. An algebraA is said tosatisfy an equation
st if every possible substitution of elementsAfor variables ins andt produces an
equality. We writeA = s=t to signify thatA satisfies~t.

For X a class of algebras arila set of identities we useq(X) to denote the set of
equations valid in each memberX&ifandmod(%) for the class of algebras satisfying each
member ofz. The notatiorK =~ means each member &f satisfies each equation

12.2.1 CEFINITION
A classX of algebras is apquational classor variety; if there is a sek of identities such
that X = modX).

Thus a variety is the class of all algebras satisfying some set of equations. Given
any classk of algebras there is a smallest variétyX) containingX, namelyV(X) =
mod(Eq(X)). In particular, there is a smallest variéfyA) containing a given algebua,
and its members are those algebras that satisfy exactly the same equations as

To reiterate, our primary purpose is to give methods to determine which equations will
hold in a given algebra or class of algebraX arising in fuzzy set theory. Our technique
will be to find an algebr@® whose equational theory is easily determined such khat
generates the same variety&aor asX. Our primary tools are the algebraic techniques
described below.

An algebraB is a subalgebraof an algebraA if the underlying set of8 is a subset
of that of A and the operations @ are the restrictions of those &f Amapf: A — B
is a homomorphisnif it is compatible with the basic operations. If the méps onto,
we sayB is ahomomorphic imagef A. For a familyA; (i € |) of algebras of the same
type, theproduct[Jic Ai is the algebra whose underlying set is the Cartesian product of
the underlying sets of th&; and whose operations are defined componentwise. If all the
algebrash; equal some algebra we call the product of thé\; the powerA! of A. An
algebraB is asubdirect producbf the family A; if B is a subalgebra of]i¢, Ai and for
eachi € | the natural homomorphism froi to A; is onto. Of basic importance is the
following theorem of Birkhoff.

12.2.2 THEOREM
The varietyV(X) generated byX is the smallest class of algebras containifigand
closed under taking homomorphic images, subalgebras and products.
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One final result, again due to Birkhoff, will be used. This result says that an equation
will hold in all members of a variety if and only if it holds in certain very special
algebras inV called subdirectly irreducibles. In order to define these, we first briefly
review the notion of a congruence.

Given an algebrd\, an equivalence relatiof on the underlying set of is called a
congruencedf A if it is compatible with the operations @&. Specifically this means that
for eachn-ary operationf:

If & 0b fori=1,...,n,thenf(as,...,an)0 f(bg,...,bn).

Clearly the identical relatio which relates each element only to itself is a congruence
on A, as is the universal relation which relates any two elements A&f An algebraA

is said to besubdirectly irreducibldf there is a smallest congruence which is not equal
to the identityA. This is equivalent to requiring that there be elemengs b such that

(a,b) belongs to every congruence other than the identical relation. The significance of
subdirectly irreducibles is conveyed by the following theorem, also due to Birkhoff.

12.2.3 THEOREM
An equation holds in a variety if and only if it holds in every subdirectly irreducible
algebrainV.

The key point is that in many varieties, including the ones of interest here, the subdi-
rectly irreducibles are much better behaved than arbitrary members of the variety. Thus,
determining the subdirectly irreducibles can provide a tractable method to determining
equational properties.

12.3 The basic lattices

The real unit interval0, 1] forms a bounded distributive lattice under its usual ordering
with the operations of\ andV given bymin andmax We then define the following.

I=([0,1],A,V,0,1) is the bounded unit interval.

Just as the real intervaplays a basic role in the theory of fuzzy sets, a lattice constructed
from the collection of closed subintervals [8f, 1] plays a basic role in the theory of
interval-valued fuzzy sets. This lattice is most easily described by noting that there is a
bijection between the non-empty closed subinterval@df] and the set of ordered pairs
(a,b) with 0 < a < b < 1. We then define the following.

112 is {(a,b) | 0 < a< b < 1} with A, V,0,1 defined componentwise.
A fuzzy subsetf a setSis a functionf: S— [0,1]. The collection of all fuzzy subsets
of Sis therefore the set of all maps frofito [0,1], which is the power0,1]5. This

collection of fuzzy subsets &can naturally be considered a lattice by defining operations
componentwise from those df We define the following.

The bounded latticé (S) of fuzzy subsets of a s&is the powetl®.
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An interval-valued fuzzy subseta setSis defined to be a mapping fro8to the set of all
non-empty closed subintervals[6f 1], or equivalently, a mapping froi®to {(a,b) | 0 <
a<b < 1}. The set of all interval-valued fuzzy subsetsSxtan naturally be considered
a bounded lattice by defining lattice operations componentwise through thiiée \fe
then define the following.

The bounded latticeF (S) of interval-valued fuzzy subsets 8fs (112)S.

Birkhoff showed that any bounded distributive lattice that has more than one element
generates the variety of all bounded distributive lattices. As each of the lattices above is
distributive we have the following.

12.3.1 @ROLLARY
A bounded lattice equation is valid in112, F(S) or 3F(S) if and only if it is valid in the
two-element lattic@.

This result is of practical use. It gives a simple and effective method for determining
whether a bounded lattice equation is valid in one of the lattices listed above—one simply
checks whether the equation is valid in the two-element lagti€airther, equipping these
lattices with additional operations, such as a negation or a t-norm, will in no way affect
this result for equations involving only the bounded lattice operatians0, 1.

12.4 Lattices with a negation

We next consider bounded distributive lattices with an additional unary operation.

12.4.1 CEFINITION
A negationon a lattice is a unary operatiothat satisfies
1. (xAy) =X VY,
2. (xvy) =X AY,
3. X"'=x
A bounded distributive lattice with a negation i©a Morgan algebra

Of basic importance in the study of fuzzy sets is the negationthe latticel defined
by X = 1 —x. We call this theusual negatioron I. There are other negations dnsuch
as the negation defined b= /1 — x2. However, any negation dnproduces an algebra
isomorphic tal with the usual negation [1, 8].

Similarly, there is a negation on the lattit@ of particular importance in the study
of interval-valued fuzzy sets. This negation, which is calledukeal negatioron 112,
is defined by(a,b)’ = (1—b,1—a). One again has the result that any negatiori!@n
produces an algebra isomorphiclt® with the usual negation [9].

Finally, by theusual negationsn the latticesF(S) andJF(S), we mean the negations
defined componentwise through the usual negations amdI12 respectively. We note
that there are negations 6i{S) and onJF(S) producing algebras that are not isomorphic
to F(S) or IF(S) with the usual negations.

12.4.2 DEFINITION
Define two finite De Morgan algebras as follows.
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1. 3is the latticed < a < 1 with negationd =1, =a,1' =0.
2. D is the lattice below with negatio®f =1, v =u,V =v, 1’ =0.

These algebras are important in the study of equational properties of De Morgan al-
gebras. Kalman [15] showed that there are exactly four varieties of De Morgan alge-
bras; the variety of all De Morgan algebras, the variety of De Morgan algebras satisfying
xAX <yVy, which is known as the variety ¢fleene algebrasthe variety of Boolean
algebras, and the trivial variety of one-element algebras. Fuithgenerates the variety
of all De Morgan algebras artlgenerates the variety of all Kleene algebras. This yields
the following which can also be found in [2, 10].

12.4.3 GWROLLARY

An equation is valid il or F(S) with the usual negations if and only if it is valid 8)
and an equation is valid iil? or JF(S) with the usual negations if and only if it is valid
in D.

Again, we have a simple and effective method for determining whether an equation
is valid in one of the algebras listed above—one simply checks whether the equation is
valid in the three- or four-element lattice with negation. See [13] for further discussion,
including descriptions of normal forms and truth tables in these settings.

12.5 The unit interval with a t-norm

We recall several basic definitions which can be found in [17].

12.5.1 CEFINITION

A t-normis a binary operation on the unit interval that is commutative, associative and

satisfies
L TXyAZ) =T(XY)AT(X 2z
2.T(x,yVz) =T(Xy)VT(X,z
3. T(x1) =1

~—~
A

For a t-normT and elemenk € I, define recursivelx” by settingx’ = 1 andx" =
T(x,X"). We now define several classes of t-norms of particular importance in our study.

12.5.2 CEFINITION

LetT be at-norm. We say
1. T is continuousf it is continuous under the usual topology n
2. T isstrictif itis continuous andk > 0,y < z= T(X,y) < T(X,2).
3. T is nilpotentif it is continuous and £ 1 = X" = 0 for somen.
4. T isidempotentf it satisfiesT (x,x) = x, or equivalentlyx® = x.
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One can easily show that any t-norm satisfigs,y) < xAYy. It then follows from this
that there is exactly one t-norm that is idempotent. While there are many different strict
and nilpotent t-norms, we shall see there are canonical examples of each.

12.5.3 CEFINITION
1. Theproductt-normTp is defined byTp(x,y) = Xy.
2. Thetukasiewicz-norm Ty is defined byT (x,y) = (Xx+y—1) V0.
3. Theminimumt-normTy, is defined byTy (X,y) = XAY.

Note that the product t-norfp is strict, the Lukasiewicz t-norr is nilpotent, and
the minimum t-normTy is idempotent. These examples are canonical in the following
sense.

12.5.4 THEOREM
LetT be a t-norm.

1. If T is strict, then the algebrél, T) is isomorphic tal, Tp).
2. If T is nilpotent, then the algebrd, T) is isomorphic ta(I, T, ).
3. If T is idempotent, then the algeb(® T) is equal to(I, Ty ).

Thus, if T is a strict t-norm, the algebrd$, T) and (I, Tp) generate the same variety,
andifT is nilpotent ther(I, T) and(I, T, ) generate the same variety. In [8], itis shown that
each of the algebrd§, Tp) and(I, T, ) can be obtained from the other using homomorphic
images, subalgebras and products. Thus these algebras generate the same variety. We
therefore have the following.

12.5.5 THEOREM( [8])
If T is at-norm that is either strict or nilpotent, then

VI, Tp) =V, T)=V({I,T).

The situation for the idempotent t-norfyy is particularly simple.

12.5.6 FROPOSITION
For (2, min), the lattice2 with extra binary operatiomin,

V(H,TM) = V(Z, min) C V(H,Tp).

Proof. Fora e (0,1], letda: (I, Tw) — (2,min) be the map defined by

14>.1

A

ba(x) = {1 if x> a,

0 ifx<a
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Eachd, is a homomorphism, and this family of maps separates points. So the product ho-
momorphism embedd, Tw ) into [ac(0,1(2, Min). This shows thatll, Ty ) is in'V(2,min),

and therefore thaV(I, Ty ) C V(2,min). The containment&(2,min) C V(I,Ty) and
V(2,min) C V(I,Tp) follow as(2,min) is a subalgebra dfl, Ty ) and(I, Tp). The equation

s? ~ swhich holds in(I, Ty ) does not hold ir{I, Tp) so the inclusion is proper. O

The following lemma, which is similar to Ling’s [18] characterization of continuous
t-norms as ordinal sums of strict, nilpotent and idempotent t-norms, is key to determining
equational properties of continuous t-norms.

12.5.7 LEMMA

If T is a continuous t-norm, the algeb(& T) is isomorphic to a subdirect product of al-
gebras(I, T,) where eacl, is either a strict t-norm, a nilpotent t-norm, or the idempotent
t-norm.

Proof. Let T be a continuous t-norm. L& = {x € [0,1] | T(x,x) = x}. SinceT is conti-
nuousZ is a closed subset ¢, 1], so

[0,1] = Z = UsepXs

where{Xs}sa is a finite or countably infinite collection of pairwise disjoint open inter-
vals. Also,

[07 1] - UseAxS = UteBYt
for some finite or countably infinite collection of disjoint open intervglsForse S
the definition of the open interva{s provides that its closure is equal @ b] for some
a,b e Z. Then for anyx,y € [a,b] we have tha =T (a,a) < T(x,y) < T(b,b) =b, soT
restricts to a binary operation on the interiab] we denotels. DefineOs = a, 1s=b and
set

AS = (Y& /\7 \/, TS) OSa lS)

The operationlg is commutative, associative, and distributes over both joins and meets
as it inherits these properties from If x € [a,b], thenT (x,b) < x < b= T(b,b), thus,
asT is continuousx = T(y, b) for somex <y < b. This givesT (x,b) = T(T(y,b),b) =
T(y,T(b,b)) = T(y,b) = x, showing thatls = b is a unit forTs. Note also thals is conti-
nuous as it is the restriction of a continuous operalipand the definition oXs provides
thatTs has no idempotents other than the endpaants

From the above remarks it follows that is isomorphic to an algebr(ﬁ,'f's) whereT,
is a continuous t-norm with no nontrivial idempotents, and consequently either a strict or
nilpotent t-norm (see [17] for a proof). FoE T we havey; is an open interval contained
in the closed seZ. So the closure of; is a closed interval, b] contained inZ. From the
definition ofZ we haveT (x,x) = x for eachx € [a,b], and it follows thafT restricts to an
idempotent operatiof on [a,b]. Define0; = a, 1; = b and set

Bt = (Vt,/\,\/,T[,O[,lt).

Again, T; is commutative, associative, and distributes over joins and meets as it inherits
these properties from. Further, forx € [a,b] we havex =T (x,x) < T(x,b) < x, hence

b= 1; is a unit forT;. Then asl; is idempotent, it follows thaB; is isomorphic tdl with

the idempotent t-norm. Fda, b] = X; or Y; definedap: (I, T) — Agor B; by
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b ifx>b, b\b

ban(x) = {x ifa<x<h,
al———'a

a ifx<a /

0

Eachd¢,p, is order preserving and therefore, as our algebras are chains, presewes
Also, by definition, eachb,, preserves bounds. To see titat, is a homomorphism it
remains to show thdtap(T (X, Y)) = Ts(dan(X), ap(y)) if [, b] = Xs, or a similar statement
involving T; if [a,b] = ¥. This follows from the definition offs and T; if x,y € [a,b].

If x<aory<athenT(x,y) < a and the result follows. Ik > b andy > b then as
T(b,b) = bwe haveT (x,y) > b and the result follows. Finally, ¥ < b andy > b we have
x=T(x,b) <T(x,y) <x, and the result follows.

Since eaclp,p is a homomorphism, the product of these maps gives a homomorphism
from (I,T) t0 [sesAs X [Ntet At. To show that this map is an embedding, we need to
show that the family of map$,, separates points. L&t< y € [0,1]. There is no problem
if either x or y lies in one of the interval¥Xs. Supposex,y € Z. If one of the intervals
Xs = [a,b] lies betweenx andy, thenap(X) = a # b= ¢ap(y). If this is not the case, every
element betweer andy is in Z so thatx,y € ¥; = [a,b] for somet, and¢ap(X) = X #

y = ¢an(y). Each maphyp is onto A or B; as the case may be. Th(isT) is a subdirect
product of the algebrass andB;, and each of these is isomorphic to the unit interval with
a strict, nilpotent, or the idempotent t-norm. O

12.5.8 THEOREM
If T is a continuous t-norm that is not idempotent, then

V(I T) = V(I,Tp).

Proof. By Lemma 12.5.7(I,T) can be embedded as a subdirect product of algebras
(I, Ty) where eachTy, is either a strict, nilpotent, or the idempotent t-norm. By Theo-
rem 12.5.5 and Proposition 12.5.6 each of the algelds) belongs toV (I, Tp). This
implies that(I, T) also belongs t& (I, Tp), henceV(I, T) C V(I,Tp). As (I, T) is embed-

ded as a subdirect product of the algelfa3, ), the projections frontl, T) to the factors
(I, Ty) are all onto mappings. Sindeis not idempotent, it cannot be the case that all of the
Ty are idempotent. Therefore there is a strict or nilpofgnwith (I, T,) a homomorphic
image of(I, T). It follows from Theorem 12.5.5 that(I, Tp) C V(I,T). O

We summarize our results in terms of equational properties.

12.5.9 THEOREM

If T is any continuous t-norm other than the idempotent t-norm, then an equation is valid
in the unit intervall with t-normT if and only if it is valid in the interval with the product
t-norm. Further, an equation is valid in the intervlvith the idempotent t-norm if and
only if it is valid in the finite algebrg2, min).
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To conclude this section we note that there are algefirds in V(I,Tp) whereT is
not continuous. The drastic t-norfg defined in [17] is one such example. Actually, more
can be shown. Using to denote the subalgebra @f T, ) with underlying set{0, %, 1}
we have

V(H,TD) = V(A) - V(H,Tp).

The proof is similar to that of Proposition 12.5.6.

12.6 Distributive lattice ordered commutative monoids

To study further properties of t-norms, it is convenient to work in a more general setting.

12.6.1 CEFINITION
A bounded distributive lattice ordered commutative mor{alzbreviateddl-monoid) is a
bounded distributive lattice with an additional commutative, associative binary operation
o that satisfies

1. Xxo(YAZ) = (Xoy) A (X02Z),

2. Xo(yVz) = (xoy)V (x02),

3. Xol=x.
The class of altll-monoids is a variety we denote by.

Note that(l, T) is an example of @l-monoid for any t-nornT. We next describe a
particulardl-monoid that plays an important role.

12.6.2 CEFINITION
The infinite cyclic algebr#. is thedl-monoid consisting of the chalhi< --- < 2 < 71 <
Zp = 1 with binary operatior given by

Xoy — Znin If X=12znandy =z,
0 if eitherx oryis 0.

Note, if A is adl-monoid anda € A, then there is a homomorphigm Z — A mapping
the generator; of Z to a. This yields the following.

12.6.3 THEOREM
The infinite cyclic algebr& is the free dl-monoid on one generator. Thus, an equation in
one variable is valid irZ if and only if it is valid in every dl-monoid.

The following is key to studying equational propertiesdbimonoids.

12.6.4 RROPOSITION
Two dI-monoids satisfy the same equations in the variakles., X if and only if they
satisfy the same inequalities

Sl/\.../\smgtl\/...\/tn

where eacls and eaclt; is a product of the variablesy, . .., .
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Proof. Note first that the equatiosi~ t holds if and only if each of the inequalities< t

andt < sholds, and an inequality < t holds if and only if the equatioaAt ~t holds.
Thus twodl-monoids satisfy the same equations if and only if they satisfy the same in-
equalities. Suppose we wish to see whether an inequaitiyholds. Because the monoid
operationo distributes over the lattice operationsv in anydl-monoid, we can assume
thatsis a disjunctions=5 Vs V--- Vg, of termss, where eacls is a conjunction

S =S1AS2A--- Asp, of termssy, with eachsy, a product of variables. Similarly, we can
assumd is a conjunctiort =t; Ato A--- Aty Of termst;, where each is a disjunction
ti=tj1 ViV Vijm, of termstj, with eacht a product of variables. Now the inequality

SISV V-V St Ao A=+ Aty

holds if and only if each of the inequalitiss<tj,i =1,...,n, j=1,...,mholds, and
these inequalities are of the form asserted in the statement of the result. O

12.6.5 THEOREM
An equation is valid in the intervédlwith product t-normlp if and only if it is valid in the
infinite cyclic algebraZ.

Proof. By the previous result, it suffices to shdilyTp) andZ satisfy the same inequalities
s<twheres=s A A---ASpyt=t1 Vi V- - Vi, with

j1 djk

Here we are assuming the inequality involdesariablesay,...,ax and each variable
occurs in each product (maybe with exponétlf b € (0,1), then the subalgebra of
(I, Te) generated by is isomorphic toZ, so any equation valid i(l, Tp) is valid in Z.
To show the converse, we assume the inequaliyt fails in (I, Tp) and show that it also
fails in Z. By continuity, we know that this inequality failing in the real unit inter{@l1]
means that it fails in0,1). Thus it fails for some choice ddy,...,a in (0,1). Given
ac (0,1), we can writea; = &' where); belongs to0, ). Thus the function

s =aP... aPk andt; — a}

m n
f()\l, . 7)\k) = /\ a)\lpil+~-.+)\kpik _ \/ a)\lqj1+...+)\kqjk
i=1 i=1

has at least one positive value. By continuity, we can find a positive value\yith. , A\g
rational, sayA; = %,... A\ = . Then, we have thay, = a',...,a = a provides an
instance where the original inequalgy t fails. Letb = av. Thena; =b",... ax = b'%,
It then follows that the valuesy, ..., ax producing a failure o <t lie in the subalgebra
of (I, Tp) generated by, and this subalgebra is isomorphicZo O

Combining this result with those of the previous section, we have that any equation
valid in the infinite cyclic algebr& is valid in (I, T) for any continuous t-norr¥. This
result has other applications as well.

12.6.6 THEOREM
For V a variety of dl-monoids, these are equivalent.

1. Each finitely generated algebra #is finite.



322 G. Bezhanishvili, M. Gehrke, J. Harding, C. Walker & E. Walker

2. The infinite cyclic algebr& is not in'V.
3. The algebraT, Tp) is not inV.
4. The free algebra i on one generator is finite.

Proof. (1) implies (2) follows a<Z is finitely generated, in fact generated by a single
element we denote k®y and is infinite. Theorem 12.6.5 yields (2) is equivalent to (3). To
establish (2) implies (4), recdll is the freedl-monoid on one generator. So, if we Use

for the free algebra if¥ on one generator, there is a homomorph¢smappingZ onto[F.

As Z does not belong t¥, the mapd is not one-one, so there are powers: m+ k with

o (2" = ¢(Z™). Since¢ is a lattice homomorphism, it follows that(z") = ¢ (zZ™1),

and therefore thdf = {0,¢(2)™,¢(2™2,...,0(2),1}. To show (4) implies (1), suppose

F hask elements. Then fog the generator oF we havegk = g¢*1. AsF is free inV,

this equation holds in every algebraYn Suppose\ € V is finitely generated. Then only
finitely many elements occur as powers of the generators, andsasommutative, only
finitely many elements can be obtained as products of powers of the generatars. As
distributes over\,V, A is generated as a distributive lattice by the elements which are
products of powers of the generators, and hence is finite. O

We next produce a sequence of results which characterize the subdirectly irreducible
dl-monoids as certain chains, and establish that every varietifrobnoids is generated
by its finite subdirectly irreducibles. Results of Fuchs [7], in a slightly more general set-
ting, already showed each subdirectly irreducitllenonoid is a chain, but did not yield
our other results. We remind the reader an algebra is subdirectly irreducible if it has a
least nontrivial congruence.

12.6.7 RROPOSITION

A subdirectly irreducible dl-monoidL, o) has a least nonzero elememtFurther, (0,a)
belongs to each nontrivial congruence @b, o), and the least nontrivial congruence on
(L,0) isAU{(0,), (a,0)}.

Proof. Since(L, o) is subdirectly irreducible, there is a péé, b) with a # b that belongs
to every nontrivial congruence @, o). Any element € L induces a congruence defined
byx=cyifand onlyifxvc=yVvc. Thenifb+# 0, a=, bimpliesavb=bvb=bso
a<h. Also if a# 0, a =4 b implies thatb < a soa = b. Thus exactly one member of
the pair(a,b) is 0, and we takd» = 0. Then for any0 # c € L, we haved = a, implying
c=0vc=aVc, whencea < c. Thusais the least nonzero elementlgfand it follows
that=,=AU{(0,a), (a,0)} is the least nontrivial congruence. O

Recall that a nonempty subdedf a latticeL is called anideal of L if x,y € | imply
xVyel,andx el andy < ximply y € I. Anideal is callegprimeif xAy € | impliesx € |
oryel.

12.6.8 DEFINITION
For (L, o) adl-monoid,x € L andl an ideal of. define

(I:x)={yeL|xoyel}.

Forl = {0} we call this theannihilator of x and write({0},x) = (0 : X).
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We note tha <y implies (

[:x) D (1:y), (L:xvy)=(:x)Nn(l:y), and ifl is a
prime ideal, therfl : xAy) = (I : x) U

(r:y).

12.6.9 RROPOSITION
For (L, o) a dl-monoid and a prime ideal ofL. set

x=yifandonly if(I : x) = (1 :y).
Then= is a congruence oflL, o).

Proof. Letx =y, and suppos&/(xV z) € |. Thenw(xV z) = wxVwze | implieswx e |
andwze |, whencewy € | andwze |, and thuswyVv wz=w(yV z) € I. It follows by
symmetry that

(I:(xvz)=(:(yv2).
Supposav(xAz) € |. Thenw(xAz) =wxAwze | implies eithewxe | orwze |, whence
eitherwy e | orwze | and thusnv(yAz) € 1. It follows by symmetry that

(I:(xA2)=(:(yA2).

Finally, supposev(px) € |. Then(wp)x € I, hencgwp)y = w(py) € |. It now follows by
symmetry that

(F:px) = (I': py).
Thus= is a congruence. O

12.6.10 THEOREM
A dl-monoid(L, o) is subdirectly irreducible if and only if it has a least nonzero element
and the annihilator ideals

{(0:x) | xeL}

are distinct.

Proof. If (L, o) is subdirectly irreducible, then by Proposition 12.6.7, it has a least nonzero
elementa, and the pai0,a) belongs to every nontrivial congruence. The &} is an
ideal, and sinca lies below every nonzero elemefi@} is a prime ideal. Thus the relation
defined by

x=yifandonly if (0:x) = (0:y)

is a congruence. ByD : 0) = L # (0 : a) implies (0,a) does not belong to this congru-
ence. Thuss = A, that is, the relation induced by the annihilators must be the trivial one.
It follows that the annihilators of different elements are distinct. Now suppose the annihi-
lators are distinct antl has a least nonzero elementf = is any congruence, and=y

with x # y, then(0 : x) # (0 :y) so there is an elementsuch thatvx= 0 andwy # O (or

the other way around). But théh= wxA a = wyA a = a, So every nontrivial congruence
contains the paif0,a). Thus(L, o) is subdirectly irreducible. O

12.6.11 ROPOSITION
If (L,0) is subdirectly irreducible with least elememtthen

(0:a)=L—{1}.
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Proof. Suppose# 1. Then(0 :x) # (0: 1) = {0} implies there is a nonzetwe L such
thatxb = 0. But this implies thaka= 0, hencex € (0 : a). O

12.6.12 THEOREM
Every subdirectly irreducible dl-monoid is a chain.

Proof. Supposeg(lL,0) is subdirectly irreducible with least nonzero elemangnd let
c,d € L. If candd are not comparable, then we have

cAhd<c<cevd.

It is easy to see that
(0:cAnd)D(0:c)2(0:cvd),

and by Theorem 12.6.10, both inclusions are proper. Thus there {® : cAd) such that
p¢(0:c),andqe (0:c)suchthag ¢ (0:cvd). This means

pc# 0, pd=0,qc=0,qd # 0.
But this means that

(cvd)(pAg) = (cvd)pA(cvd)g=>cpAdg=>a#0,
(cvd)(pAg)=c(pAg)Vvd(pAg) <cqvdp=0.

Thus there is no such pai, g. It follows that every pair of elements is comparable, i.e.,
L is a chain. O

As each variety ofll-monoids is generated by subdirectly irreducibles, we have shown
each variety ofll-monoids is generated by its members which are chains. We will show
each such variety is generated by its finite subdirectly irreducibles, in particular by its
finite chains. We require a lemma.

12.6.13 [EMMA
A finitely generated dl-monoi@ whose underlying lattice is a chain contains no infinite
strictly increasing chains.

Proof. SupposeC is is generated bygi,g2,...,0n} and0 < X3 < X2 < --- is a strictly
increasing chain. Since the underlying lattice @fis a chain, each nonzero element
of C may be written as a product of powers of the generators. In particulangach
g‘flgg‘z - gin with eachk;; a nonnegative integer. kim < kim forallm=1,2,...,nthen

X1 > X;. So for each > 1, there is at least ona such thak;m > kim > 0. As the sequence
of x;’s is infinite and there are only finitely many different natural numbers below the
kim's, there must be some pair of natural numb@rsm, ) for which {i | kim, = ki;m, } is
infinite. Take the subsequence of glb with kim;, = ki;m,. Again, for eachi > iy, there

is at least onen such thatkm > ki,m > 0, andm # my. Thus there is somé,mp) for
which {i | kim, = ki;m, andkim, = ki,m, } is infinite. Again, take the subsequence of all
xi's with bothkim, = ki;m, andkim, = ki,m,. Continuing in this fashion, we get &, m,)

for which {i | kim, = Ki;my, Kimy, = Kimy, - - -, Kimy, = Kiymy, } is infinite. This then says that
{i|x= glflmlgz'zmz ---gﬁ”m”} is infinite. But our assumption implies that no twé were
equal, which is a contradiction. The lemma follows. O
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12.6.14 ROPOSITION
Each finitely generated subdirectly irreducible dl-monoid is a finite algebra whose under-
lying lattice is a chain.

Proof. Suppos€LL,o) is a finitely generated subdirectly irreducililemonoid. By The-
orem 12.6.12[L is a chain, so by Lemma 12.6.13 there are no infinite strictly increas-
ing chains inL. We show also that there are no infinite strictly decreasing chaifs in
Suppose; > X > X3 > --- is a strictly decreasing chain in. If x; > X1 then clearly
(0:%) C(0:%+1), and Theorem 12.6.10 provides that the annihilatdrs,) are strictly
increasing. Choosing, € (0 : X,+1) — (0:X%,) we havey; < y» <y3 < --- is a strictly in-
creasing chain ifi., so this chain is finite. Thus the chain> x; > x3 > - - - is also finite.

As LL is a chain containing no infinite strictly increasing or infinite strictly decreasing
chains,L is finite. O

12.6.15 THEOREM
Every variety of dl-monoids is generated by its finite subdirectly irreducible members, all
of which are chains.

Proof. It is well known that varieties are closed under direct limits, that every algebra
is the direct limit of its finitely generated subalgebras, and that every finitely generated
algebra is a subdirect product of finitely generated subdirectly irreducibles. Thus, ev-
ery variety is generated by its finitely generated subdirectly irreducible algebras, and by
Proposition 12.6.14 these are finite chains. O

12.6.16 CEFINITION
For (L, o) a finitedl-monoid, define the residuglonL by

nx) =\/{yeL|yox=0}.

Combining Theorem 12.6.10 and Proposition 12.6.14 yields the following.

12.6.17 @ROLLARY
A finite dl-monoid is subdirectly irreducible if and only if its underlying lattice is a chain
and its residuah is a negation in the sense of Definititg.4.1

There is difficulty in extending this result to the infinite setting as one needs com-
pleteness to ensure the residgas defined. Suppose we assufés adl-monoid whose
underlying lattice is complete and that satisfies the infinite distributivexla@y/y;) =
V(xoVi). ThenA is subdirectly irreducible if and only if it is a chain with least nonzero
element whose residuglis a negation.

Determining equational properties dFmonoids has been reduced to the setting of
finite chains whose residuglis a negation, but the problem is still far from trivial. With
a computer, one can check that there are dozens of such chains with, say, 10 elements.
It is not clear whether an effective procedure to determine all seelement chains can
be found. And if one is given a particular such chain, there can be difficulties in working
with it. Here, a first glimpse of trouble occurs already with quite small chains.
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12.6.18 XAMPLE
The four element chain with operatioergiven by

ol

|

e E—=¢coe
|

e a

e0=eca=aoca
is a subdirectly irreducibldl-monoid.

The 4-elementdl-monoid above can be shown to belongd, Tp), but this is not a
trivial task. It is a homomorphic image of a subalgebra of an ultrapowg, ®), but not
a homomorphic image of a subalgebrgbffp) (due to the idempoterd).

12.7 Equations in two variables

In Section 12.5 we showed that any equation valid in the unit intérvath the product
t-norm Tp is valid in T with any continuous t-norm. We suspect more is true—that any
equation satisfied byll, Tp) is satisfied by(I, T) for any t-normT. This would be one of
the consequences of the following conjecture.

12.7.1 GWNJIECTURE
The equations satisfied by the interfalith the product t-nornTp are exactly the equa-
tions that are satisfied by all dl-monoids.

If true, this conjecture would imply (I, Tp) is the variety of aldl-monoids, and would
provide a finite set of equations that defWél, Tp), namely the equations used to define
dl-monoids. We have not proved this result, but can prove the version of it restricted to
equations having at most two variables. Thus, we will prove the following.

12.7.2 THEOREM

Any equation involving at most two variables that is satisfied by the intéwih product
t-norm Tp is satisfied by all dl-monoids, and in particular, is satisfiedlbyith any t-
normT.

Our tools will be Proposition 12.6.4 and Theorem 12.6.12. These reduce the problem
to showing an inequality of the forrsi A--- Asm <ty V--- Vs, with eachs andtj a
product of the variables, is valid ifI, Tp) if and only if it is valid in everydl-monoid
whose lattice reduct is a chain.

We useC to denote the class of alll-monoids whose underlying lattices are chains,
andC = s <t to mean that the inequaliy< t is valid in all members of. We writexoy
andTp(x,y) simply asxy, and use the notatiod' as described after Definition 12.5.1.

12.7.3 LEMMA
For x,y, X1,y1 honnegative integers, the following are equivalent.
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1. (LTp) & a%b¥ < @y b,
2. Xy > X1Y1.
3. CEay <atyv iyt

Proof. Assume thatl, Tp) = a*b¥ < a*™ v Y™ If x; = 0 ory; = 0 then trivially xy >
X1y1. SO assumg; > 0 andy; > 0. Letb € (0,1) anda = b? wherez= (y+y1)/(X+X1).
Then

b2 — g¥pY < g¥tXy YY1 = pP 2y pY YL — X

andb®Y < b?*24 implies
ZX+Y 2> ZX+ 2% = Y+ VY1,

from which it follows thaty > zx andzx> y;. Thuszxy> zxy1, or sincez # 0, Xy >
x1y1. Thus (1) implies (2). To show thaty > x1y; implies € E a*by < a™ v by, we
will induct on xy. If xy= 0 thenxyy; = 0, so eithen; =0ory; =0andC | a‘b’ <
a1 v byt follows. Assumexy > 0. As Xy > X1y, eitherx > x; or y > y;. We will
assume without loss of generality that> x; and consider the two casgs> y; and
y < yi. First supposg > y;. One readily verifies that‘y < a® Vv b? is valid in any chain
by considering the alternative& < b¥ andb¥ < a*. Asx > x; andy > y; we then have
2x > x+xg and2y > y+y;. It follows thatC = a*by < a1 v b1, Now supposg < ;.
Note that subtracting;y from both sides of the inequalityy > x1y; yields

(X=x1)y > X1 (y1 —Y)-

Our assumptiong > x; andy < y; imply that each of the terms in the above inequality is
nonnegative. Therefore by the inductive hypothesis

CEa™p <a‘vbn.
LetC € Canda,be C. If b¥ < a thenaXby < a*™1, And if a’t < bY then

a‘hy = aua* Y <a“(a¥vbn)
=aa®vaipt < ga¥ v bYpL = @ty YL,

This shows (2) implies (3). It is a trivial observation that (3) implies (1), becdu3p) €
C. O

12.7.4 LEMMA

For x,Y, X1,y1 honnegative integers, the following are equivalent.
1. (I, Tp) @™ Ay < a*by.
2. Xy < X1Y1.
3. CEam AR <akby.

Proof. The proof is similar to that of the previous lemma, we only sketch the outline. For
(1) implies (2), letb € (0,1) and seta = b* wherez satisfies(X+ x1)z = y+ y1. For (2)
implies (3), we show thaty < x;y; implies € = a*™ AbY™1 < a*b¥ by inducting on
X1y1. The caseqys = 0 implies eitherx = 0 or y = 0 leading to a trivial case such as
ClEat AL <. Forxyy; > 0we may assume without loss of generality tkat> x.
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If alsoy; >y then from the observatio@ = a* A b% < ab¥ our result follows. We are
left to consideng > x andy; <y. Noting xy < x3y; impliesx(y —y1) < (x3 —X)y1 the
inductive hypothesis gives = a* AbY < a‘bY~¥1. Our result then follows by considering
the two casesa* < b¥* andb¥* < a*. And, of course, (3) implies (1) is again trivial. O

For the next step, we establish an inequality with a more general right hand side. This
is obtained easily by eliminating trivial cases and then reducing to the previous case.

12.7.5 LEMMA

For nonnegative integers y, p1,ds1, P2, 2, these are equivalent.
1. (I,Tp) = ab¥ < aPib™ v aP2h%,
2. C = abY < aPib™h v aPb%.

Proof. Since(I, Tp) belongs toC, it is only necessary to show (1) implies (2). Suppose
thata*by < aPitb% v aP2b® for all a,b € [0, 1]. First we eliminate the possibility that both
X < p1 andx < pg, for if this were true then for alh, b € (0, 1] we would have

by S aplfxbcﬂ \Vi ap27qu2,

which fails forb = 1 anda € (0,1). Similarly we cannot have both< g; andy < gp. If
X> p1 andy > qi, then

a‘by < aPipdt < aPipd v/ gP2 sz7
and similarly, ifx > p2 andy > g, then
axby S ap2 bqZ S apl bql \/ ap2 bC|27

and in either case, the inequality holds for all ch&ins C. Thus ifx > p, we may assume
thatqg, >y, whence alsy > gi:. And fromy > q;, we may assume thgh > X. Thus we
have the casp; > x> p2 andgz >y > 1, SO

(I, Tp) |= @* PepY % < gPt—P2y/ o~

with p;1 — p2 > x—p2 andgz — g1 > y— 1, and by Lemma 12.7.3 the same inequality
holds for all chains irt. Then multiplying both sides bg”2b% gets the original inequality
to hold in all members of. The argument fox > p; is similar. O

A dual argument establishes the following.

12.7.6 LEMMA

For nonnegative integers y, p1,d1, P2, 02, these are equivalent.
1. (I, Tp) = aPrb™ AaP2b® < a*by.
2. Cl=aPibm A aP2h® < a'py.

The following lemma reduces the general case to the previous ones. Its proof relies
heavily on the linear geometry of the situation.

12.7.7 LEMMA
For nonnegative integers, vi, pi, g these are equivalent.
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1. (]LTP) ): a“thyr AaebY2 A - A @Y < aPipdt v aPzph%®2 v/ ... v/ gPmptm,
2. At least one of the following is true.
(@) Thereisl<i<nandl < j<mwith

(I, Tp) = @b < aPibfi.
(b) Thereisl <i<nandl< j<k<mwith
(I, Tp) = a9b% < aPib%i v aPp%.
(c) Thereisl<i< j<nandl<k< mwith
(I, Tp) = &b nakibYi < aPkb™.
Proof. We observe first that
(I, Tp) | @4t A22 A -+ AP < aPrb™ v aP2b% v ... v aPmpim (12.1)
is equivalent to requiring that for < A < oo
max{ + M}y > min{p; +Agj 1y

To see this, note the inequality (12.1) holding forab € [0, 1] is equivalent, via a conti-

nuity argument, to it holding for al € (0, 1), b € (0,1}, hence itis equivalent to it holding
forallac (0,1) and allo= & for some0 < A < . Thus the inequality (12.1) being valid
in (I, Tp) is equivalent to requiring that for adlc (0,1) and all0 <A < «

QUL A g2 tW2 A LA @AY < gPLHAGL y gP2tAG2 Ly gPmrtAG
Asac (0,1) this is equivalent to requiring that for &< A <
max{x -+ Ay }_3 > min{pj +Ag;}]L;.
Thus, our task is reduced to showing that if for@f A < o
max{x; +Ay; ;L1 > min{p; +)\qj}§"=1
then either there are<i < j <mandl < k <mso that for all0 <A < o
max{x +AYi,Xj +Ayj} > pk+ Aok,
orthereard <i< j<mandl<k<msothatforalld <A <o
Xi +Ayi > min{pj +Aqj, P + A0} -
Define functionsf, g, h on [0, o) by setting

f(N) = max{x + Ay},
g(A\) = min{p; +Aq;}]Ly,
h(A) = £(A) —g(A).
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Thenf, g are continuous and made up of finitely many linear functions. Theréfatso
has these properties. Further, our assumptionftixag implies thath > 0. Ash > 0 and

is made up of finitely many linear functions, it must have an absolute minimul@, o).
This minimum can be chosen to occur at a valgevhere eitheig = 0 or h has a vertex
atAo. Note thath having a vertex akg implies that eitherf or g, or both, have a vertex
atAg. Consider several cases. Suppage= 0. Then ifx; + Ay; is the first linear segment
of f andpj +Aq; is the first linear segment of we havex; > p; andy; > g sinceh > 0
andAg = 0is a minimum ofh. Therefore, for alD <A < o, X; +-Ay; > pj +Aqgj. Suppose
g has a vertex akg and f does not have a vertex &§. Then there is a neighborhood of
Ao on whichf = f/ andg = ¢ where

f'(A) =% + Ay,
g'(A) = min{pj +Aq;, px + A}
for somel <i <mandl1< j< k<n. Thenf’ —d agrees witth on a neighborhood
of Ao, and it follows thatf’ — g’ has a local minimum akq. But f’ — ¢’ is comprised of
two linear functions. Hence this local minimum is an absolute minimum. It follows that
f'—g >0.Soforall0<A <
X +Ayi > min{ pj +Aqj, Pk + Aok }-
Similarly, if f has a vertex akg andg does not, we find there afe<i < j <mand
1<k<nsothatforalld <A <o
max{x +AYi,Xj +Ayj} > P+ Ak

Finally, assume botli andg have vertices akg. Then there is a neighborhood &f on
which f = " andg = ¢’ where f'(A) = max{x; + Ayi,Xx; +Ay;j} andg'(A) = min{p; +
Adj, pc+Agy} for somel <i < j <mand somd < k < ¢ < n. Without loss of generality
we assumg; < yj andgk > g. Thus the situation appears as follows.

Pk + AQk

I

I

il
Ao
As h has a minimum ako, it follows thaty; — g« < 0 andy; — g, > 0, hencey; < gx and
yj > Qe. It follows that eithery; < g, <y;j or g, <yi < g. In the first case we have for all
0<A<»

% +Ayi = min{p; +Ad;, P+ Ak}
This completes the proof, as the second case is similar. O
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Note that(I, Tp) = a@b¥ < aPb? if and only if x > p andy > q if and only if € =
a*by < aPbi. Therefore the previous lemma reduces the general case to known cases,
hence proving Theorem 12.7.2.

The difficulty in extending this proof to three or more variables seems to lie, in part,
in reducing the general case to a simple situation as in Lemma 12.7.3.

12.8 Varieties generated by De Morgan systems

12.8.1 CEFINITION
A De Morgan systeris an algebrdl, T,n), whereT is a t-norm, and is a negation. We
call a De Morgan systemstrict if T is strict, anchilpotentif T is nilpotent.

There are two families of De Morgan systems that play an important role.

12.8.2 CEFINITION
Forn a negation of, set

1. I, = (I, Tp,n) whereTp is the product t-norm.

2. Jy = (I, TL,n) whereT is the Lukasiewicz t-norm.
Note that eacfiy, is strict and eacli, is nilpotent.

We use the symbak to denote isomorphism of algebras.

12.8.3 THEOREM( [8])
Let A be a De Morgan system.
1. If Ais strict, thenA = I, for some negation.
2. If A'is nilpotent, themd = ], for some negation.

Thus, to determine the equations valid in all strict (nilpotent) De Morgan systems,
one may restrict attention to De Morgan systems having the usual product (Lukasiewicz)
t-norm. Still, the situation is quite complicated. The following result shows that for any
two non-isomorphic strict De Morgan systems, there are equations valid in one, and not
the other. In particula(ll, Tp," ) does not play the fundamental role for De Morgan systems
we conjecturél, Tp) plays for t-norms.

12.8.4 THEOREM ( [12])
For any negationy andf3, these are equivalent.
1. Hy = HB
2. Iy andlig generate the same variety.
3. Iy andl generate comparable varieties.
4. Iy andly satisfy the same inequalities in the family

(MM(xAN)™)M)' < (yvn(y)X (12.2)

wherem,n, |,k range over the nonnegative integers.
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For any negatiom the varietyV(Iy) is not generated by its finite members. In fact,
V(I,) has a largest proper subvariety and this subvariety contains all finite members of
V(Iy) [12]. We suspect that n¥(I,) can be defined by a finite set of equations, and
that eachV (1) is defined by a family of equations in (12.2) together with the equations
defining adl-monoid and a Kleene algebra.

12.8.5 CEFINITION
A nilpotent De Morgan system satisfyifigx,n(x)) = Ois called aBoolean system

12.8.6 THEOREM ( [11])
For T a nilpotent t-norm, the residual

nt=\V{ylT(xy) =0}

is a negation andl, T,nT) is a Boolean system. Further, each Boolean system arises in
this manner.

As a Boolean system is a nilpotent De Morgan system, by Theorem 12.8.3 each is
isomorphic to somgy. The following is not unexpected [12].

12.8.7 THEOREM
Each Boolean system is isomorphidtpowherea (x) = 1—x s the usual negation. There-
fore, each Boolean system generates the variety of all MV-algebras.

Thus, there is a finite set of equations defining the variety generated by any Boolean
system—the well-known equations defining MV-algebras [4]. We wonder if there is a fi-
nite set of equations defining the variety generated by all De Morgan systems. Perhaps
the equations definindl-monoids together with those defining Kleene algebras comprise
such a finite set, we don’t know. This problem is similar to one raised b@pKIR. Cig-
noli, F. Esteva, and others [14,5, 6] asking whether the algebras consisting of a continuous
t-norm and its residuum generate the variety of all BL-algebras.
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