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We provide a method to construct a type of orthomodular structure known as an
orthoalgebra from the direct product decompositions of an object in a category that
has finite products and whose ternary product diagrams give rise to certain pushouts.
This generalizes a method to construct an orthomodular poset from the direct product
decompositions of familiar mathematical structures such as non-empty sets, groups,
and topological spaces, as well as a method to construct an orthomodular poset from
the complementary pairs of elements of a bounded modular lattice.
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1. INTRODUCTION

Since the work of Birkhoff and von Neumann (1936), various types of ortho-
modular structures generalizing the lattice C(H) of closed subspaces of a Hilbert
space have been used as models for the propositions of a quantum mechanical sys-
tem. This forms the basis of the quantum logic approach to quantum mechanics.

Among many ways to view the closed subspaces of a Hilbert space H, one
notes that they correspond exactly to direct product decompositionsH � H1 × H2

of the Hilbert space. Thus, the direct product decompositions of a Hilbert space
H form an orthomodular structure that is isomorphic to C(H). One might expect
that the source of orthomodularity in this construction is closely tied to properties
of the Hilbert space. Harding (1996) has shown that this is not the case, and
that the direct product decompositions of most familiar mathematical structures,
such as non-empty sets, groups, and topological spaces, naturally form a type
of orthomodular structure known as an orthomodular poset. In Harding (1999),
Harding takes this result as a basic building block for an axiomatization of a
fragment of quantum mechanics.
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In this note we generalize Harding’s result to show that the direct prod-
uct decompositions of any object in a suitable type of category form a type of
orthomodular structure known as an orthoalgebra. This categorical approach has
a number of advantages. It provides a relatively simple method to determine
when the decompositions of a given type of mathematical structure will yield an
orthoalgebra; it provides a result with much wider applicability than the orig-
inal; and this categorical construction unifies the earlier result on constructing
orthomodular posets from the decompositions of various types of mathematical
structures with a related result, described by Harding (1996) and Mushtari (1989),
on constructing an orthomodular poset from the complementary pairs of elements
of a bounded modular lattice.

There is one other advantage to this categorical approach to decompositions.
There has been recent interest in using categorical methods to address foundational
issues in quantum mechanics (Abramsky and Coecke, 2004; Isham and Butterfield,
2000). While I know of no direct links between the methods described here and the
approaches of these authors, the results presented here do provide a link between
quantum logic and a categorical viewpoint, and this may some day serve as a
useful bridge.

This paper is organized in the following manner. In the second section we
review some basics, and provide the definition of the type of category we will
consider, the so-called honest categories. In the third section we describe how to
construct an algebraic structure D(A) from the decompositions of an object A in
an honest category and prove our main result, that D(A) is an orthoalgebra. In the
fourth, and final, section, we provide an example to show that the structure D(A)
need not be an orthomodular poset, and discuss possible directions of further study.

2. HONEST CATEGORIES

A finite product diagram in a category C is a finite sequence of morphisms
(f1, . . . , fn) with fi : A → Ai such that for each sequence (g1, . . . , gn) with
gi : B → Ai there is a unique h : B → A with fi ◦ h = gi for each i = 1, . . . , n.
A category C is said to have finite products if for each sequence A1, . . . , An of
objects, there is an object A and a product diagram (f1, . . . , fn) with fi : A → Ai .

Throughout, we shall work with a category C that has finite products. We shall
further assume that for each finite sequence A1, . . . , An of objects that we have
selected a specific object, denoted A1 × · · · × An, and a specific product diagram,
denoted (πA1×···×An

1 , . . . , πA1×···×An
n ) with π

A1×···×An

i : A1 × · · · × An → Ai . Usu-
ally the domain of the maps π

A1×···×An

i is clear from the context, and we simply
write πi : A1 × · · · × An → Ai and call these the projection maps. Using these
projections, for any sequence of morphisms (f1, . . . , fn) with fi : A → Ai , we de-
fine the morphism f1 × · · · × fn : A → A1 × · · · × An to be the unique morphism
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Fig. 1.

with πi ◦ (f1 × · · · × fn) = fi for each i = 1, . . . , n. We use π
A1×···×An

ij as an ab-

breviation for π
A1×···×An

i × π
A1×···×An

j .
We require the category C to have finite products. By this we mean that

the empty family must have a product as well. In other words, C must have a
terminal object. We assume that a specific terminal object � has been selected,
and for each object A we let τA : A → � be the unique morphism to this terminal
object.

We recall that a sequence (f1, f2, g1, g2) with fi : A → Ai , gi : Ai → B and
g1 ◦ fi = g2 ◦ f2 is called a pushout if for every pair of morphisms (u1, u2) with
ui : Ai → C and u1 ◦ f1 = u2 ◦ f2 there is a unique h : B → C with h ◦ gi = ui .
The relationship between pushouts and products is key to our definition of an
honest category.

Definition 2.1. A product diagram (f1, . . . , fn) is called a disjoint product dia-
gram if for each i = 1, . . . , n the sequence (fi,

∏
j �=i fj , τAi

, τ∏
j �=i Aj

) is a pushout.

In particular, a binary product diagram (f1, f2) is disjoint if Fig. 1 is a pushout,
and the ternary product diagram (f1, f2, f3) is disjoint if Fig. 2, as well as two
others formed by permuting indices, is a pushout.

Fig. 2.
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Fig. 3.

Definition 2.2. A category C is called an honest category if it has finite products,
all projections are epic, and for each disjoint product diagram (f1, f2, f3) the
diagram (f1 × f3, f2 × f3, π2, π2) is a pushout. See Fig. 3.

There are many examples of honest categories whose objects are based on
sets and whose products are based on usual Cartesian products of sets; these in-
clude the category of non-empty sets, any category of algebras with finitary or
infinitary operations, the category of topological spaces, the category of uniform
spaces, and the category of posets. Other examples of honest categories include
the category of sets with morphisms being relations, and the objects with global
support in a topos. Any join semi-lattice with zero that satisfies the implication
a ∧ (b ∨ c) = b ∧ (a ∨ c) = c ∧ (a ∨ b) = 0 ⇒ (a ∨ c) ∧ (b ∨ c) = c, where the
symbol ∧ is meant to imply an existing meet, provides an honest category where
products are given by joins and pushouts by meets. Any distributive lattice
with zero is easily seen to provide an example of such a join-semilattice, and
with modest effort one sees that any modular lattice with zero provides such a
join-semilattice.

3. DECOMPOSITIONS IN AN HONEST CATEGORY

Let A be an object in an honest category C. Define an equivalence rela-
tion � on the collection of all morphisms with domain A by setting f � g if
there is an isomorphism u with u ◦ f = g. Consider the set of all finite product
diagrams (f1, . . . , fn) where the maps fi, . . . , fn have common domain A and
define an equivalence relation ≈ on this collection of product diagrams by setting
(f1, . . . , fn) ≈ (g1, . . . , gn) if fi � gi for each i = 1, . . . , n. We use [ f1, . . . , fn ]
to denote the equivalence class of ≈ containing (f1, . . . , fn) and call this equiv-
alence class an n-ary decomposition of A. In the case that the product diagram
(f1, . . . , fn) is disjoint, we call [ f1, . . . , fn ] a disjoint decomposition of A.
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Lemma 3.1. Suppose [ h1, h2, h3 ] and [ k1, k2, k3 ] are disjoint decompositions
of A with [ h1, h2 × h3 ] = [ k1, k2 × k3 ] and [ h2, h1 × h3 ] = [ k2, k1 × k3 ], then
[ h1, h2, h3 ] = [ k1, k2, k3 ].

Proof: Suppose hi : A → Ai and ki : A → Bi . As [ h1, h2 × h3 ] = [ k1, k2 ×
k3 ] there are isomorphisms u1 : A1 → B1 and v : A2 × A3 → B2 × B3 with u1 ◦
h1 = k1 and v ◦ (h2 × h3) = k2 × k3, and as [ h2, h1 × h3 ] = [ k2, k1 × k3 ] there
are isomorphisms u2 : A2 → B2 and w : A1 × A3 → B1 × B3 with u2 ◦ h2 = k2

and w ◦ (h1 × h3) = k1 × k3.
As (k1, k2, k3) is a disjoint product diagram and the category C is honest,

we have (k1 × k3, k2 × k3, π2, π2) is a pushout diagram. Then as v,w are iso-
morphisms, (w−1 ◦ (k1 × k3), v−1 ◦ (k2 × k3), π2 ◦ w,π2 ◦ v) is a pushout, and
upon simplifying, (h1 × h3, h2 × h3, π2 ◦ w,π2 ◦ v) is a pushout. But (h1, h2, h3)
is also a disjoint product diagram, so honesty gives (h1 × h3, h2 × h3, π2, π2)
is a pushout. So there is an isomorphism u3 : A3 → B3 with u3 ◦ π2 = π2 ◦
w, hence u3 ◦ π2 ◦ (h1 × h3) = π2 ◦ w ◦ (h1 × h3), which gives u3 ◦ h3 = k3.
Therefore there are isomorphisms u1, u2, u3 with ui ◦ hi = ki for i = 1, 2, 3,
hence [ h1, h2, h3 ] = [ k1, k2, k3 ]. �

Definition 3.2. For A an object in an honest category C, let D(A) be the set of
disjoint binary decompositions [ f1, f2 ] of A. Define constants 0, 1 on D(A) by
setting

0 = [ τA, 1A ] and 1 = [ 1A, τA ].

Define a relation ⊥ on D(A) and a partial binary operation ⊕ with domain ⊥
as follows. Set [ f1, f2 ] ⊥ [ g1, g2 ] if there is a disjoint ternary decomposition
[ h1, h2, h3 ] with

[ h1, h2 × h3 ] = [ f1, f2 ] and [ h2, h1 × h3 ] = [ g1, g2 ]

and in this case define

[ f1, f2 ] ⊕ [ g1, g2 ] = [ h1 × h2, h3 ].

The crucial definitions of ⊥ and ⊕ express that the sum of two decompositions
is defined when they are built in a certain way from a common refinement, and
that their sum is constructed from this refinement. That ⊕ is well-defined follows
from Lemma 3.1.

Definition 3.3. An orthoalgebra is a set X with constants 0 and 1, and a partial
binary operation ⊕ which satisfies the following:

1. If f ⊕ g is defined, then g ⊕ f is defined and f ⊕ g = g ⊕ f .
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2. If f ⊕ g is defined and e ⊕ (f ⊕ g) is defined, then e ⊕ f is defined,
(e ⊕ f ) ⊕ g is defined and e ⊕ (f ⊕ g) = (e ⊕ f ) ⊕ g.

3. For each f in X, there is exactly one f ∗ in X with f ⊕ f ∗ defined and
f ⊕ f ∗ = 1.

4. If f ⊕ f is defined, then f = 0.

Orthoalgebras were introduced by Randall and Foulis in 1979 as a general-
ization of orthomodular posets that admits a tensor product. Since their inception,
these structures have received a good amount of attention. For a detailed account of
orthoalgebras the reader should consult (Foulis et al., 1992; Wilce, 2000), and for
general background on orthomodular posets and lattices the reader should consult
(Kalmbach, 1983; Ptak and Pulmannová, 1991).

Theorem 3.4. For any object A object in an honest category C, the structure
(D(A),⊥,⊕, 0, 1) is an orthoalgebra.

Proof: To verify the first condition in the definition of an orthoalgebra sup-
pose [ f1, f2 ] ⊕ [ g1, g2 ] is defined. Then there is a disjoint decomposition
[ h1, h2, h3 ] with [ h1, h2 × h3 ] = [ f1, f2 ] and [ h2, h1 × h3 ] = [ g1, g2 ]. Then
[ h2, h1, h3 ] is a disjoint decomposition showing [ g1, g2 ] ⊕ [ f1, f2 ] is defined,
and as there is an isomorphism i with i ◦ (h1 × h2) = h2 × h1 it follows that
[ f1, f2 ] ⊕ [ g1, g2 ] = [ g1, g2 ] ⊕ [ f1, f2 ].

The second condition in the definition of an orthoalgebra requires more ef-
fort, and we return to it momentarily. For the third condition, we note that for a
disjoint decomposition [ f1, f2 ], that [ f2, f1 ] is also a disjoint decomposition,
and that [ f1, f2, τA ] is a disjoint decomposition showing [ f1, f2 ] ⊕ [ f2, f1 ]
is defined and equal to [ 1A, τA ] = 1. Suppose [ g1, g2 ] is a disjoint de-
composition with [ f1, f2 ] ⊕ [ g1, g2 ] defined and equal to [ 1A, τA ]. Then
there is a disjoint decomposition [ h1, h2, h3 ] with [ h1, h2 × h3 ] = [ f1, f2 ],
[ h2, h1 × h3 ] = [ g1, g2 ] and [ h1 × h2, h3 ] = [ 1A, τA ]. It follows that h3 = τA.
So there is an isomorphism i with i ◦ (h2 × h3) = h2, and it follows that
[ h1, h2 ] = [ h1, h2 × h3 ] = [ f1, f2 ]. Thus [ h1, h2, h3 ] = [ f1, f2, τA ], and it
follows that [ g1, g2 ] = [ f2, f1 ].

For the fourth condition, suppose [ f1, f2 ] ⊕ [ f1, f2 ] is defined. Then
there is a disjoint decomposition [ h1, h2, h3 ] with [ h1, h2 × h3 ] = [ f1, f2 ]
and [ h2, h1 × h3 ] = [ f1, f2 ]. So h1 � h2, and therefore [ h1, h1, h3 ] is a dis-
joint decomposition. Suppose hi : A → Ai . Then disjointness yields (h1, h1 ×
h3, τA1 , τA1×A3 ) is a pushout. As 1A1 ◦ h1 = h1 = π1 ◦ (h1 × h3) there is a map
i : � → A1 with i ◦ τA1 = 1A1 . Since τA1 ◦ i : � → �, as � is terminal we have
τA1 ◦ i = 1�. So τA1 and i are mutually inverse isomorphisms. In particular
A1 � �, so A1 is terminal. Thus [ h1, h1, h3 ] = [ τA, τA, h3 ]. As [ τA, τA, h3 ] is
a product diagram, h3 is an isomorphism, and therefore [ f1, f2 ] = [ τA, 1A ] = 0.
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We now return to the second condition. Let [ e, e′ ], [ f, f ′ ] and [ g, g′ ]
be disjoint decompositions (we shift notation slightly to ease readability) with
[ f, f ′ ] ⊕ [ g, g′ ] defined, and [ e, e′ ] ⊕ ([ f, f ′ ] ⊕ [ g, g′ ]) is defined. Then there
are disjoint decompositions [ h1, h2, h3 ] and [ k1, k2, k3 ] with

[ h1, h2 × h3 ] = [ f, f ′ ]
[ h2, h1 × h3 ] = [ g, g′ ]
[ h1 × h2, h3 ] = [ f, f ′ ] ⊕ [ g, g′ ]

[ k1, k2 × k3 ] = [ e, e′ ]
[ k2, k1 × k3 ] = [ f, f ′ ] ⊕ [ g, g′ ]
[ k1 × k2, k3 ] = [ e, e′ ] ⊕ ([ f, f ′ ] ⊕ [ g, g′ ])

The above data, with the observation that [ f, f ′ ] ⊕ [ g, g′ ] is equal to both
[ h1 × h2, h3 ] and [ k2, k1 × k3 ], gives

h1 � f, h2 � g, k1 � e, h3 � k1 × k3 � e × k3 and k2 � h1 × h2 � f × g.

Then as [ h1, h2, h3 ] and [ k1, k2, k3 ] are disjoint decompositions we have

[ f, g, e × k3 ] and [ e, f × g, k3 ] are disjoint decompositions.

Then from general properties of products, [ e, f, g, k3 ] is a decomposition, and
therefore [ e, f, g × k3 ] is a decomposition. We next show that [ e, f × g, k3 ] is
disjoint. It will be convenient to suppose e : A → E, f : A → F , g : A → G and
k3 : A → K3. �

Claim [ e, f, g × k3 ] is a disjoint decomposition.

Proof: Note that [ e, f × g, k3 ] being disjoint implies [ e, f × g × k3 ] is dis-
joint. Also [ f, g, e × k3 ] being disjoint implies [ f, e × g × k3 ] is disjoint. It
remains to show that [ e × f, g × k3 ] is disjoint, that is, that (e × f, g × k3, τ, τ )
is a pushout.

Suppose u, v are as shown in Fig. 4 with u ◦ (e × f ) = v ◦ (g × k3). We must
show there is a unique λ : � → D completing this diagram. As u ◦ (e × f ) = v ◦
(g × k3) we have u ◦ π12 ◦ (e × f × k3) = v ◦ π23 ◦ (e × g × k3), so the outside
square in Fig. 5 commutes, and similarly the outside square in Fig. 6 commutes.

As [ f, g, e × k3 ] and [ e, f × g, k3 ] are disjoint decompositions, honesty
gives that the inside squares in Fig. 5 and 6 are a pushouts. Therefore there are
unique maps ϕ and ψ completing these diagrams in the indicated manner.

Using the fact that [ e, f × g, k3 ] is disjoint, from the definition of disjoint-
ness we have that the inside square in Fig. 7 is a pushout, and a bit of diagram
chasing involving Figs. 5 and 6 shows that the outside square of Fig. 7 is commu-
tative. Therefore there is a unique map λ : � → D completing Fig. 7.
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Fig. 4.

As � is terminal, there is a unique map from E × F × K3 to �. Therefore we
have λ ◦ τE×F ◦ π12 = λ ◦ τE×K3 ◦ π13. Using Fig. 7, this composition is equal to
ϕ ◦ π13, which by Fig. 5 equals u ◦ π12. Part of the definition of honesty requires all
projections be epimorphisms, so λ ◦ τE×F ◦ π12 = u ◦ π12 yields λ ◦ τE×F = u.
Similarly λ ◦ τG×K3 = v, showing λ does indeed complete Fig. 4.

It remains to show λ is the unique map completing Fig. 4. Suppose λ′ is
another. Then as there is a unique map from E × F × K3 to the terminal object
�, we have λ′ ◦ τE×K3 ◦ π13 = λ′ ◦ τE×F ◦ π12. By our assumption on λ′, this
composition is equal to u ◦ π12, and by Fig. 5 this equals ϕ ◦ π13. As projections
are epic and λ′ ◦ τE×K3 ◦ π13 = ϕ ◦ π13 we have λ′ ◦ τE×K3 = ϕ, and similarly
λ′ ◦ τF×G = ψ . Then from the uniqueness of the map completing Fig. 7, we have
λ = λ′. This concludes the proof of the claim.

We have shown that [ e, f, g × k3 ] is a disjoint decomposition. As we have
seen that f × g � k2, we have f × g × k3 � k2 × k3 � e′. Also, as e × k3 � h3

Fig. 5.
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Fig. 6.

and g � h2 we have e × g × k3 � h2 × h3 � f ′. Thus

[ e, f × g × k3 ] = [ e, e′ ]
[ f, e × g × k3 ] = [ f, f ′ ]

This shows [ e, e′ ] ⊕ [ f, f ′ ] is defined and equal to [ e × f, g × k3 ].
We next see that [ e × f, g, k3 ] is disjoint. Earlier we noted that [ e, f ×

g, k3 ] and [ f, g, e × k3 ] are disjoint. From these we obtain that [ e × f × g, k3 ]
and [ g, e × f × k3 ] are disjoint. We have just shown that [ e, f, g × k3 ] is disjoint,
and this yields that [ e × f, g × k3 ] is disjoint. This shows that [ e × f, g, k3 ] is
disjoint.

Above we have noted that f � h1 and e × k3 � h3. So e × f × k3 � h1 ×
h3 � g′. This, and the above description of [ e, e′ ] ⊕ [ f, f ′ ] gives

[ e, e′ ] ⊕ [ f, f ′ ] = [ e × f, g × k3 ]

[g, g′] = [ g, e × f × k3 ]

This shows that ([ e, e′ ] ⊕ [ f, f ′ ]) ⊕ [ g, g′ ] is defined and equal to [ e × f ×
g, k3 ]. As e � k1 and f × g � k2 we have e × f × g � k1 × k2. Therefore, as

Fig. 7.
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[ e, e′ ] ⊕ ([ f, f ′ ] ⊕ [ g, g′ ]) is given above by [ k1 × k2, k3 ] we have that the two
expressions are equal. �

4. FURTHER REMARKS

Harding (1996) has shown that the direct product decompositions of any
nonempty set, group, topological space, etc. form a type of orthomodular structure
known as an orthomodular poset. In this same paper Harding exhibits several
related constructions, namely, a method to produce an orthomodular poset from the
equivalence elements of any relation algebra, and one to produce an orthomodular
poset from the complementary pairs of elements of any bounded modular lattice.
Mushtari 1989 has shown that one can construct an orthomodular poset from
the complementary pairs of any bounded lattice that is both M-symmetric and
M*-symmetric.

The above categorical viewpoint encompasses several of these methods. The
categories of non-empty sets, groups, and topological spaces are all honest (with all
products disjoint), and the construction described above reduces to that described
by Harding in these cases. Also, any modular lattice forms an honest category,
and the construction described above reduces to that described by Harding and
Mushtari in this case as well.

All this raises several questions. First, one might wonder whether the above
construction yields not just an orthoalgebra, but the more specialized type of
structure known as an orthomodular poset. An orthomodular poset, in our current
situation, is most easily described as an orthoalgebra in which e ⊕ f , e ⊕ g, and
f ⊕ g being defined implies (e ⊕ f ) ⊕ g is defined (the standard treatment of
orthomodular posets (Kalmbach, 1983; Pták and Pulmannová, 1991) defines them
as a special type of orthocomplemented poset). The example below shows that the
above construction does not in general yield orthomodular posets.

Proposition 4.1. There is a lattice L, that when considered as a category, is
honest and contains an object A with D(A) an orthoalgebra that is not an ortho-
modular poset.

Proof: We view a lattice as a category where there is a unique morphism from
x to y when x ≥ y. The join of two objects x, y is their product, and their meet
is their pushout. Our lattice will have a lower bound 0 which is the terminal
object, and an upper bound 1 which will serve as our object A. For a lattice to be
honest, when viewed as a category, it must satisfy for all x, y, z if x ∧ (y ∨ z) =
y ∧ (x ∨ z) = z ∧ (x ∨ y) = 0, then (x ∨ z) ∧ (y ∨ z) = z.

The lattice L we consider will be a sixteen element Boolean algebra with one
coatom removed. To be specific, suppose B is a sixteen element Boolean algebra
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with atoms a, b, c, d and let L = B − {d ′} with the partial ordering inherited
from B. Note that L is a subset of B, but not a sublattice, that all meets in L

agree with those in B, and that all joins in L that do not evaluate to 1 agree with
those in B. As B is Boolean it is clearly honest. Suppose x, y, z belong to L and
satisfy x ∧ (y ∨ z) = y ∧ (x ∨ z) = z ∧ (x ∨ y) = 0. If none of x ∨ y, x ∨ z or
y ∨ z evaluate to 1, then these joins all agree with those in 24, and it follows from
the honesty of 24 that (x ∨ z) ∧ (y ∨ z) = z, and if any of these joins does evaluate
to 1, then one fairly trivially obtains (x ∨ z) ∧ (y ∨ z) = z. So L is honest.

We next describe elements e, f, g of D(A). Each element will be a disjoint
binary decomposition of 1. Rather than stating the two morphisms (with domain
1) that describe this binary decomposition, we specify only the codomains of
these morphisms, as our category is a lattice. Thus each of e, f, g will be an
ordered pair of complementary elements of L. We set e = (a, a′), f = (b, b′) and
g = (c, c′). Then (a, b, a′ ∧ b′) is a disjoint decomposition showing that e ⊕ f is
defined, (a, c, a′ ∧ c′) is a disjoint decomposition showing that e ⊕ g is defined,
and (b, c, b′ ∧ c′) is a disjoint decomposition showing that f ⊕ g is defined. As
e ⊕ f is equal to (a ∨ b, a′ ∧ b′), to have (e ⊕ f ) ⊕ g defined, we would need a
disjoint ternary decomposition whose first component was a ∨ b, whose second
component was c, and whose second and third components joined to a′ ∧ b. But
a ∨ b ∨ c equals 1, and disjointness implies that (a ∨ b) ∨ c meets with the third
component to 0. Therefore the third component must be zero, a contradiction. �

The construction described in this note can be modified. If one considers a
category C with finite products where every ternary product diagram (e, f, g), dis-
joint or otherwise, produces a pushout (e × g, f × g, π2, π2), then the collection
of all binary decompositions, disjoint or otherwise, of an object in such a cate-
gory produces an orthoalgebra. This construction applies to categories built from
familiar mathematical structures such as non-empty sets, groups or topological
spaces, but not a category built from a modular lattice. It is not known whether
this construction always yields an orthomodular poset.

It may be possible to find some modification of the construction described
in this note that generalizes not only the existing constructions of orthomodular
posets from mathematical structures and modular lattices, but also the construction
of orthomodular structures from symmetric lattices and relation algebras. Perhaps
one could even find such a modification that always yielded orthomodular posets.
This would seem to be a worthwhile direction of study.
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