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Abstract. For a modal algebra (B, f), there are two natural ways to ex-

tend f to an operation on the MacNeille completion of B. The resulting

structures are called the lower and upper MacNeille completions of (B, f).

In this paper we consider lower and upper MacNeille completions for vari-

ous varieties of modal algebras. In particular, we characterize the varieties

of closure algebras and diagonalizable algebras that are closed under lower

and upper MacNeille completions. We also introduce the variety of Sierpin-

ski algebras, and show that although this variety is not closed under lower

or upper MacNeille completions, it follows from the axiom of choice that

each Sierpinski algebra has a MacNeille completion that is also a Sierpinski

algebra, and that this result implies the Boolean ultrafilter theorem.

1. Introduction

For a modal algebra (B, f), there are two natural ways to extend f to an
operation on the MacNeille completion B of B. Define f, f : B → B by setting

fx =
∨

{fa|a ∈ B and a ≤ x}

and
fx =

∧

{fa|a ∈ B and x ≤ a}.

We call (B, f) and (B, f) the lower and upper MacNeille completions of (B, f),
respectively. Lower MacNeille completions of modal algebras were first studied
by Monk [33]. Givant and Venema [18] investigated the identities preserved under
lower MacNeille completions when the modal operator is conjugated. Lower and
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upper MacNeille completions of lattices with additional operations were discussed
by Gehrke, Harding, and Venema [17].

In this note we investigate varieties of modal algebras closed under lower and
upper MacNeille completions. We show that none of the varieties of all modal al-
gebras, all weakly derivative algebras, all derivative algebras, all closure algebras,
all Grzegorczyk algebras, or all diagonalizable algebras are closed under lower
MacNeille completions. We also characterize which varieties of closure algebras
and diagonalizable algebras are closed under lower MacNeille completions.

We show that the variety of all modal algebras, the variety of all weakly de-
rivative algebras, the variety of all derivative algebras, the variety of all closure
algebras, and the variety of all monadic algebras are closed under upper Mac-
Neille completions. We also characterize which varieties of closure algebras and
diagonalizable algebras are closed under upper MacNeille completions.

We introduce Sierpinski algebras and Boolean triples and show that the cate-
gory of Sierpinski algebras is equivalent to the category of Boolean triples. From
our results on lower and upper MacNeille completions it follows that the variety
of Sierpinski algebras is closed under neither lower nor upper MacNeille comple-
tions. Nevertheless, we imply from the axiom of choice, using the equivalence
of the categories of Sierpinski algebras and Boolean triples, that each Sierpinski
algebra has a MacNeille completion that is a Sierpinski algebra as well. Finally,
we show that this result implies the Boolean ultrafilter theorem.

The paper is organized as follows. Section 2 consists of preliminaries, and in
it we recall the basic definitions used throughout the paper. In Section 3 we dis-
cuss the lower and upper MacNeille completions of modal algebras. In particular,
we establish that several basic varieties of modal algebras are closed under upper
MacNeille completions, but not under lower MacNeille completions. We also char-
acterize which varieties of closure algebras and diagonalizable algebras are closed
under lower MacNeille completions. In Section 4 we characterize which varieties
of closure algebras are closed under upper MacNeille completions, and in Section 5
we characterize which varieties of diagonalizable algebras are closed under upper
MacNeille completions. In Section 6 we first introduce Sierpinski algebras and
axiomatize the variety of Sierpinski algebras; it follows from our earlier results on
lower and upper MacNeille completions that the variety of Sierpinski algebras is
closed under neither lower nor upper MacNeille completions; then we introduce
Boolean triples and show that the category of Sierpinski algebras is equivalent
to the category of Boolean triples; and finally, using this equivalence, we show
that the axiom of choice implies that every Sierpinski algebra has a MacNeille
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completion that is a Sierpinski algebra as well. We finish the paper by showing
that this fact implies the Boolean ultrafilter theorem.

2. Preliminaries

Definition 1. A modal algebra is a pair A = (B, f) where B is a Boolean algebra
and f is a unary operation on B that satisfies

(1) f0 = 0,
(2) f(a ∨ b) = fa ∨ fb.

A modal algebra is called a weak derivative algebra if it satisfies

3. ffa ≤ a ∨ fa.

A modal algebra is called a derivative algebra if it satisfies

4. ffa ≤ fa.

A derivative algebra is called a closure algebra if it satisfies

5. a ≤ fa.

A closure algebra is called a monadic algebra if it satisfies

6. fa ≤ −f − fa.

A closure algebra is called a Grzegorczyk algebra if it satisfies

7. a ≤ f(a− f(fa− a)).

A derivative algebra is called a diagonalizable algebra if it satisfies

8. fa ≤ f(a− fa).

We use MA, wDA, DA, CA, Mon, Grz, and Diag for the varieties of modal
algebras, weak derivative algebras, derivative algebras, closure algebras, monadic
algebras, Grzegorczyk algebras, and diagonalizable algebras, respectively.

Remark. These definitions of derivative algebras and closure algebras were given
by McKinsey and Tarski [31] to conduct an algebraic study of topological spaces.
Given a topological space (X, τ), if one considers the power set P(X) with the
topological closure operator C, then the pair (P(X),C) forms a closure algebra.
Similarly, if the space (X, τ) is T1, then P(X) with the derived set operator δ forms
a derivative algebra (P(X), δ). Esakia has shown [16] that for any topological
space (X, τ), that (P(X), δ) is a weak derivative algebra, and that (P(X), δ) is
a derivative algebra if, and only if, the space (X, τ) satisfies the TD separation
axiom (i.e. every point is the intersection of an open set and a closed set).

Monadic algebras were introduced by Halmos [20] for an algebraic study of the
one variable fragment of predicate logic. Grzegorczyk algebras were introduced
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by Esakia [14] for an algebraic study of Grzegorczyk’s modal system, and diag-
onalizable algebras were introduced by Magari [27] for an algebraic study of the
Gödel-Löb provability logic.

Due to the topological connections mentioned above, we will often use C for
the operation of a closure algebra and δ for that of a derivative algebra.

Remark. There is a well-known duality theory for modal algebras [37]. To each
modal algebra (B, f) one associates a pair (X, R) consisting of a Stone space X

and a binary relation R on X that satisfies (i) for each x ∈ X, the set R[x] = {y ∈
X|xRy} is closed, and (ii) for each clopen A ⊆ X, the set R−1[A] = {y ∈ X|yRa

for some a ∈ A} is clopen. The dual spaces of weak derivative algebras are
exactly those (X, R) where R is weakly transitive (xRy and yRz and x 6= z imply
xRz) [16], and the dual spaces of derivative algebras are those (X, R) where R

is transitive [24]. The dual spaces of closure algebras are those (X, R) with R

reflexive and transitive [24], and the dual spaces of monadic algebras are those
(X, R) where R is an equivalence relation [20]. Unfortunately there is no first-
order characterization of the dual spaces of diagonalizable algebras or Grzegorczyk
algebras [4, pages 130–132].

A diagram of portions of the lattice of varieties of modal algebras is given
below.
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This diagram is intended to show only containments between varieties. It is
not the case that DA is the join of the varieties CA and Diag. However, it
does happen that CA and Diag intersect in the trivial variety, and that Grz and
Mon intersect in V1.

The varieties V1, V2, R, and S are the varieties generated by the following
algebras.
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Figure 2

In each case, the action of the additional unary operation on the (two or four
element) Boolean algebra is indicated by arrows.

It is known that every subvariety of MA other than the trivial variety contains
either V1 or V2 [28]. It is also known that any variety of closure algebras that is
not contained in Mon contains the variety R [29]. Consequently, every nontrivial
variety of Grzegorczyk algebras different from V1 contains R. Similarly, every
nontrivial variety of diagonalizable algebras different from V2 contains S [30].
We call the variety S the variety of Sierpinski algebras. This variety will play an
important role in our considerations.

Definition 2. For any weak derivative algebra A = (B, δ) we define auxiliary
operations C, I on B by setting

Ca = a ∨ δa and Ia = −C− a.

The following basic facts are well-known [16, 32].

Proposition 2.1.

(1) If A = (B, δ) is a weak derivative algebra, then (B,C) is a closure algebra.
(2) If A = (B,C) is a closure algebra, then H = {Ia|a ∈ B} forms a Heyting

algebra where a → b = I(−a ∨ b).
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These facts form the basis of various connections between the categories of
weak derivative algebras wDA, closure algebras CA, and Heyting algebras HA.
There is a well-developed theory of the connections between the categories CA
and HA [5, 6, 15], and to a lesser extent that of connections between wDA and
CA [16, 26]. The particular facts we will need are given below.

Theorem 2.2. There are functors F : wDA → CA and G : CA → HA where
F (B, δ) = (B,C) and G(B,C) = {Ia|a ∈ B}. Further

(1) The functor F commutes with the class operators H, P, but not S.
(2) The functor G commutes with the class operators H, S, P and therefore

provides a complete lattice homomorphism from the lattice of subvarieties
of CA to the lattice of subvarieties of HA.

Remark. It can further be shown [5, 13] that G provides an isomorphism between
the lattice of subvarieties of Grz and the lattice of subvarieties of HA.

3. Lower and upper MacNeille completions

Definition 3. For A = (B, f) a modal algebra, we let B be the MacNeille
completion of the Boolean algebra B and define maps f, f : B → B, called the
lower and upper extensions of f , by setting

fx =
∨

{fa|a ∈ B and a ≤ x},

and
fx =

∧

{fa|a ∈ B and x ≤ a}.

We call A = (B, f) the lower MacNeille completion of A and A = (B, f) the upper
MacNeille completion of A.

Lower MacNeille completions were introduced by Monk [33] and later studied
by Givant and Venema [18]. Upper and lower MacNeille completions of lattices
with additional operations were discussed by Gehrke, Harding, and Venema [17].

Remark. For A = (B, f) a modal algebra with dual space (X, R), one may recover
an algebra isomorphic to (B, f) by taking the Boolean algebra Clopen(X) of
clopen subsets of X and the unary operation R−1 on this algebra. One may
also realize algebras isomorphic to the lower and upper MacNeille completions
of A through the dual space. For the lower MacNeille completion we take the
Boolean algebra Reg(X) of regular open subsets of X with additional operation
ICR−1, and for the upper MacNeille completion we take Reg(X) with additional
operation IR−1C.
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To see this we note that joins in Reg(X) are given by taking IC of the union
and meets in Reg(X) are given by taking I of the intersection. Then for any
regular open set U ,

∨

{R−1K|K clopen and K ⊆ U} is equal to IC
⋃

{R−1K|K
clopen and K ⊆ U}, and this equals ICR−1

⋃

{K|K clopen and K ⊆ U}, which is
equal to ICR−1U . Also

∧

{R−1K|K clopen and U ⊆ K} is equal to I
⋂

{R−1K|K
clopen and U ⊆ K}. By Esakia’s Lemma (see, e.g., [8, page 350]) this is equal to
IR−1

⋂

{K|K clopen and U ⊆ K}, which is equal to IR−1CU .

The following definition, closely related to the notion of residuation [7], is due
to Jónsson and Tarski [24].

Definition 4. We say a unary operation f on a Boolean algebra B is conjugated
if there is a unary operation g on B such that for all a, b ∈ B we have

fa ∧ b = 0 if, and only if, a ∧ gb = 0.

Givant and Venema [18] proved the following result, although in somewhat
different terminology.

Theorem 3.1. If A = (B, f) is a Boolean algebra with a conjugated unary oper-
ation f , then A = A.

Proof. Using fd to denote the operation given by fda = −f − a, Givant and
Venema proved [18, Lemmas 18 and 21] that if f is conjugated then the lower
extension of fd is equal to (f)d. (Note, the notation f+ of Givant and Venema
corresponds to our f .) One can then easily show, directly from the definitions,
that the lower extension of fd is equal to (f)d. So (f)d = (f)d, and therefore
f = f . £

Remark. Suppose (B, f) is a modal algebra whose operation f has a conjugate
g. Then it is well-known that g is also an operator on B (i.e. preserves finite
joins), see [24], and therefore the dual space can naturally be considered as a triple
(X, R, S) where S is the relation corresponding to the operator g. Moreover, the
conjugacy of f, g implies [24] that S is the converse of R. Therefore R[K] is
clopen for each clopen K, and it can then be shown that R−1 commutes with the
topological closure operation C. Therefore ICR−1 = IR−1C, providing a dual
method to show that f and f coincide when f is conjugated.

Lemma 3.2. Every subvariety of Mon is closed under lower MacNeille comple-
tions.

Proof. Every subvariety of Mon can be defined by strictly positive identities
[22], that is, identities that do not use the Boolean negation. As the operator
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of any monadic algebra is conjugated [22], it then follows from results of Givant
and Venema [18] that these strictly positive identities are preserved under lower
MacNeille completions. £

In conjunction with this result, the following theorem completely determines
which subvarieties of CA and Diag are closed under lower MacNeille completions.
There are rather few of them.

Theorem 3.3.

(1) If a subvariety of MA contains R, then it is not closed under lower
MacNeille completions.

(2) If a subvariety of MA contains S, then it is not closed under lower Mac-
Neille completions.

(3) The varieties V1 and V2 are closed under lower MacNeille completions.
(4) If A is a monadic algebra, then A = A.

Proof. (1) Let B be the Boolean algebra of all finite and cofinite subsets of the
natural numbers ω and consider the algebra A = (B× 2, f) where f(a, b) = (a, 0)
if a is a finite subset of ω and b = 0, and f(a, b) = (a, 1) in all other cases.

For each natural number n let ϕn be the map from A to the two-element closure
algebra (2, id) defined by ϕn(a, b) = 0 if n /∈ a and ϕn(a, b) = 1 if n ∈ a. It is
routine to check that each ϕn is a homomorphism.

Next, let R be the four-element closure algebra ({0, p, q, 1},C) where C0 = 0,
Cp = p, and Cq = C1 = 1. As mentioned in the preliminaries, R generates the
variety R. Define ϕω : A → R by setting ϕω(a, b) = 0 if a is finite and b is 0,
ϕω(a, b) = p if a is finite and b is 1, ϕω(a, b) = q if a is cofinite and b is 0, and
ϕω(a, b) = 1 if a is cofinite and b is 1. One can check that ϕω is a homomorphism
and that the set of maps {ϕn|n ∈ ω} ∪ {ϕω} separates points. Therefore A is a
subalgebra of the product of copies of the two-element closure algebra, which is
a subalgebra of R, and R, so A belongs to R.

One sees easily that B × 2 is the product of the power set of ω and 2. Let Odd
and Even be the sets of odd and even natural numbers, respectively. Then

f(Odd, 0) =
∨

{f(a, b)|(a, b) ∈ B × 2 and (a, b) ≤ (Odd, 0)},

f(Even, 0) =
∨

{f(a, b)|(a, b) ∈ B × 2 and (a, b) ≤ (Even, 0)}.
Therefore f(Odd, 0) = (Odd, 0) and f(Even, 0) = (Even, 0). But f(ω, 0) =
f(ω, 0) = (ω, 1). So the lower MacNeille completion A is not a modal algebra.
As any subvariety of MA that contains R will contain the algebra A, our result
follows.
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(2) Again let B be the Boolean algebra of all finite and cofinite subsets of ω

and consider the algebra B = (B × 2, g) where g(a, b) = (0, 0) if a is finite and
g(a, b) = (0, 1) if a is cofinite. We note that for f(a, b) the function from Part 1,
that f(a, b) = (a, b)∨g(a, b). Using the same maps ϕn and ϕω as in Part 1, we can
see that each ϕn is a homomorphism from B to the two-element diagonalizable
algebra (where the operation δ must satisfy δ1 = δ0 = 0), and that ϕω is a
homomorphism from B to the algebra S = ({0, p, q, 1}, δ) where δ0 = δp = 0
and δq = δ1 = p. As mentioned in the preliminaries, the algebra S generates
the variety S. As the set of maps {ϕn|n ∈ ω} ∪ {ϕω} separates points, and the
two-element diagonalizable algebra is a homomorphic image of S, the algebra B

belongs to the variety S.
If we again compute the action of the lower MacNeille extension g on (Odd, 0)

and (Even, 0) we obtain that g(Odd, 0) = (0, 0) and g(Even, 0) = (0, 0). As
g(ω, 0) = g(ω, 0) = (0, 1), we see that B is not even a modal algebra. Again, it
follows that if a subvariety of MA contains S, then it is not closed under lower
MacNeille completions.

(3) One sees easily (and it is well-known [28]) that the variety V1 is defined
by the Boolean algebra identities and the identity fa = a; and the variety V2

is defined by the Boolean algebra identities and the identity f1 = 0. Clearly
if A satisfies fa = a, then A satisfies fx = x since each x ∈ B is equal to
∨

{a ∈ B|a ≤ x}. And obviously if A satisfies f1 = 0, then A satisfies f1 = 0. So
V1 and V2 are closed under lower MacNeille completions.

(4) This follows from Theorem 3.1 as the unary operation of any monadic
algebra is conjugated [22]. £

Corollary 3.4.

(1) None of the varieties MA, wDA, DA, CA, Grz, R, Diag, S are closed
under lower MacNeille completions.

(2) A subvariety of CA is closed under lower MacNeille completions if, and
only if, it is a subvariety of Mon.

(3) A subvariety of Grz is closed under lower MacNeille completions if, and
only if, it is equal to the trivial variety or the variety V1.

(4) A subvariety of Diag is closed under lower MacNeille completions if, and
only if, it is equal to the trivial variety or the variety V2.

Proof. (1) Each of these varieties contains either R or S, so the result follows by
the first and second parts of Theorem 3.3. (2) Any subvariety of Mon is closed
under lower MacNeille completions by Lemma 3.2. Any subvariety of CA not
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contained in Mon contains R [29] so is not closed under lower MacNeille comple-
tions. (3) Clearly the trivial variety is closed under lower MacNeille completions,
and by Part 3 of Theorem 3.3 V1 is closed under lower MacNeille completions.
Any subvariety of Grz other than these contains R so is not closed under lower
MacNeille completions. (4) Clearly the trivial variety is closed under lower Mac-
Neille completions, and by Part 3 of Theorem 3.3, so also is V2. Any subvariety
of Diag other than these contains S [30] so by Part 2 of Theorem 3.3 is not closed
under lower MacNeille completions. £

Therefore, lower MacNeille completions are of limited use when applied to
varieties of closure algebras or diagonalizable algebras. In fact, the only such
varieties that are closed under lower MacNeille completions are also closed under
upper MacNeille completions, and the lower and upper MacNeille completions of
each algebra in the variety coincide. Matters for upper MacNeille completions are
somewhat better, as is shown in the following result.

Theorem 3.5. Each of the varieties MA, wDA, DA, and CA is closed under
upper MacNeille completions.

Proof. Let A = (B, f) be a modal algebra. Then as f0 = 0 we have f0 = 0.
For any x, y ∈ B we have fx∨ fy is equal to

∧

{fa|a ∈ B and x ≤ a} ∨
∧

{fb|b ∈
B and y ≤ b}. Using the infinite distributive law for the complete Boolean algebra
B we have fx ∨ fy =

∧

{fa ∨ fb|a, b ∈ B and x ≤ a, y ≤ b}. Then as A satisfies
fa ∨ fb = f(a ∨ b) we have fx ∨ fy =

∧

{f(a ∨ b)|a, b ∈ B and x ≤ a, y ≤ b}. As
{a ∨ b|a, b ∈ B and x ≤ a, y ≤ b} is equal to {c|c ∈ B and x ∨ y ≤ c}, we have
fx ∨ fy =

∧

{fc|c ∈ B and x ∨ y ≤ c}, hence fx ∨ fy = f(x ∨ y). So the upper
MacNeille completion of A is a modal algebra.

Suppose next that the modal algebra A satisfies the identity ffa ≤ a ∨ fa.
Then for any x ∈ B, as x is equal to the meet of the elements of B above it, we
have x ∨ fx =

∧

{a|a ∈ B and x ≤ a} ∨
∧

{fb|b ∈ B and x ≤ b}. Using complete
distributivity, x ∨ fx =

∧

{a ∨ fb|a, b ∈ B and x ≤ a, b}. As {c|c ∈ B and x ≤ c}
is down-directed, we then have that x ∨ fx =

∧

{c ∨ fc|c ∈ B and x ≤ c}. Then
as A satisfies ffa ≤ a ∨ fa we have

∧

{ffc|c ∈ B and x ≤ c} ≤ x ∨ fx. But for
any c ∈ B with x ≤ c we have f fx ≤ f fc = ffc, so f fx ≤ x ∨ fx. So the
variety wDA is closed under upper MacNeille completions.

Suppose that the modal algebra A satisfies the identity ffa ≤ fa. Then
for any x ∈ B we have f fx ≤

∧

{ffa|a ∈ B and x ≤ a} since a ∈ B and
x ≤ a imply f fx ≤ f fa = ffa. Thus as A satisfies ffa ≤ fa, we have



MACNEILLE COMPLETIONS OF MODAL ALGEBRAS 365

f fx ≤
∧

{fa|a ∈ B and x ≤ a}, so f fx ≤ fx. So the variety DA is closed
under upper MacNeille completions.

Suppose that the modal algebra A satisfies the identity a ≤ fa. Then for any
x ∈ B we have x =

∧

{a|a ∈ B and x ≤ a}, so x ≤
∧

{fa|a ∈ B and x ≤ a}, giving
x ≤ fx. As we have already seen the variety DA is closed under upper MacNeille
completions, it follows that CA is closed under upper MacNeille completions. £

Remark. Based on Jónsson’s treatment of the preservation of Sahlqvist identities
under canonical completions [23], Givant and Venema [18] have conducted a study
of which identities are preserved under lower MacNeille completions when the
operators involved are conjugated. Recently Theunissen and Venema [38] have
considered the non-conjugated setting, and among other results have produced a
Sahlqvist-type theorem that encompasses the results in Theorem 3.5 above.

In the next section we will classify those subvarieties of CA that are closed
under upper MacNeille completions. In the fifth section we will show that the
variety Diag is not closed under upper MacNeille completions and classify those
subvarieties of Diag that are closed under upper MacNeille completions.

4. Upper MacNeille completions of closure algebras

As mentioned in Section 2, there is a close connection between closure algebras
and Heyting algebras. Here we exploit this connection, and existing results about
MacNeille completions of Heyting algebras, to determine which subvarieties of
CA are closed under upper MacNeille completions. We begin with the following
well-known result [3, Page 238, Exercise 11].

Theorem 4.1. The MacNeille completion of the lattice reduct of a Heyting alge-
bra H naturally forms a Heyting algebra we denote H.

We note that the implication → of a Heyting algebra is completely determined
by the underlying lattice structure. So, there is one and only one way to extend
the implication → of a Heyting algebra H to an implication on the MacNeille
completion of the lattice reduct of H.

We next consider the connection between the functor G : CA → HA discussed
in the preliminaries and MacNeille completions. The key result is the following.

Proposition 4.2. For A = (B,C) a closure algebra, GA = GA.

Proof. Let H = GA and ̂H = GA be the Heyting algebras of open elements of
A and A respectively. As A is a subalgebra of A, we have that H is a subalgebra
of ̂H. It is well known, and not difficult to show, that in a complete closure
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algebra, the join of open elements is open. Thus ̂H is complete. Using the well-
known abstract characterization of the MacNeille completion as the unique (to
isomorphism) join and meet dense completion [3], to show that ̂H = H it is
sufficient to show that H is join and meet dense in ̂H.

Suppose x ∈ ̂H, so x is open in A = (B,C). For convenience, we use ̂I for
the interior operator of A, so ̂I = −C−. As B is meet dense in B we have
x =

∧

{a|a ∈ B and x ≤ a}. But a ∈ B and x ≤ a imply ̂Ix ≤ Ia. So
x = ̂Ix ≤

∧

{Ia|a ∈ B and x ≤ a} ≤
∧

{a|a ∈ B and x ≤ a} = x. Therefore x is
the meet (in B) of elements of H, and as x ∈ ̂H, it is the meet (in ̂H) of elements
of H. Set y = −x. Then x = ̂Ix yields y = Cy. By the definition of C we have
Cy =

∧

{Ca|a ∈ B and y ≤ a}, so x = −y =
∨

{−Ca|a ∈ B and y ≤ a}. As
each −Ca is open, we have x is the join (in B) of elements of H, and as x ∈ ̂H,
it follows that x is the join (in ̂H) of elements of H. £

Definition 5. We let Λ(CA) be the lattice of subvarieties of CA, and Λ(HA)
be the lattice of subvarieties of HA.

The following is well known [6, 15].

Theorem 4.3. For any subvariety V of CA the class {GA|A ∈ V} is a subvariety
of HA. Moreover, the map Φ : Λ(CA) → Λ(HA) defined by

Φ(V) = {GA|A ∈ V}

is a complete lattice homomorphism.

As Φ is a complete lattice homomorphism, the preimage of any point in Λ(HA)
is an interval in the lattice Λ(CA). It is known (see, e.g., [9]) that the preimage
of the variety BA of Boolean algebras is the interval [V1,Mon] of Λ(CA) and
that the preimage of the variety HA is the interval [Grz,CA] of Λ(CA). These
facts are illustrated in the following figure.
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Lemma 4.4. If V is a subvariety of CA, then V being closed under upper Mac-
Neille completions implies Φ(V) is closed under MacNeille completions.

Proof. Suppose H ∈ Φ(V). Then H = GA for some A ∈ V. By Proposition
4.2 we have H = GA. Then as V is closed under upper MacNeille completions,
A ∈ V, hence H ∈ Φ(V). £

Lemma 4.5. Every subvariety of Mon is closed under upper MacNeille comple-
tions.

Proof. Theorem 3.3 shows that the lower and upper MacNeille completions of
monadic algebras coincide. Now apply Lemma 3.2. £

Lemma 4.6. The only subvariety of CA that contains Grz and is closed under
upper MacNeille completions is the variety CA.

Proof. Let T denote the countably infinite binary tree with root r where each
node has exactly two children. We consider T to be a poset with least element
r (and no greatest element). Let U be the collection of upsets of T and B(U)
be the Boolean subalgebra of the powerset P(T ) of T generated by U. One can
easily see that for each t ∈ T the singleton {t} belongs to B(U), so the MacNeille
completion B(U) of B(U) is P(T ).
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For any A ⊆ T let ↓A = {t ∈ T |t ≤ a for some a ∈ A}. It is well known that
A = (B(U), ↓) belongs to Grz [14]. Consider the operation ↓ on B(U) = P(T ).
For any X ⊆ T we have ↓X =

⋂

{↓A|A ∈ B(U) and X ⊆ A}, and this is easily
seen to equal ↓X. Thus (B(U), ↓) = (P(T ), ↓). However, it is known (see, e.g.,
[19]) that (P(T ), ↓) generates the variety CA, and our result follows. £

Theorem 4.7. The only subvarieties of CA that are closed under upper Mac-
Neille completions are the subvarieties of Mon and the variety CA.

Proof. We have seen in Theorem 3.5 that CA is closed under upper MacNeille
completions, and in Lemma 3.2 that each subvariety of Mon is closed under upper
MacNeille completions. We wish to show these are the only such varieties. Sup-
pose V is a subvariety of CA that is closed under upper MacNeille completions.
Then by Lemma 4.2 Φ(V) is a variety of Heyting algebras that is closed under
MacNeille completions. By [21] Φ(V) is either the trivial variety, the variety BA,
or the variety HA. In the first two cases V is contained in Mon. In the final
case, Grz ⊆ V, so by Lemma 4.6 V = CA. £

Remark. In this section we made use of the homomorphism Φ : Λ(CA)→ Λ(HA)
provided by the functor G : CA → HA to characterize varieties of closure al-
gebras closed under upper MacNeille completions. Key were the facts that G

commuted with HSP, so Φ(V) = {GA|A ∈ V}, and that GA = GA.
For any weak derivative algebra A = (B, δ) we similarly have FA = FA.

Indeed, as FA = (B,C), where Ca = a ∨ δa, then for any x ∈ B we have
x ∨ δx =

∧

{a|x ≤ a} ∨
∧

{δb|x ≤ b} =
∧

{a ∨ δb|x ≤ a, b} =
∧

{e ∨ δe|x ≤ e} =
∧

{Ce|x ≤ e} = Cx.
However, the homomorphism Ψ : Λ(wDA) → Λ(CA) provided by the functor

F takes the more complicated form Ψ(V) = S({FA|A ∈ V}) as F commutes
with H and P, but not S. This prevents us from duplicating the proof of Lemma
4.4 for varieties of weak derivative algebras and closure algebras. Indeed, as we
will see in the next section, there are varieties V of weak derivative algebras with
V closed under upper MacNeille completions, but Ψ(V) not closed under upper
MacNeille completions.

5. Upper MacNeille completions of diagonalizable algebras

We begin by reviewing known results [1, 30] about the lattice of subvarieties
of Diag. For this, we need the following definition.
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Definition 6. For each natural number n, let On = (P(ωn +1), δ) where δ is the
derived set operator of the interval topology on the ordinal ωn +1, and let On be
the variety generated by On.

Definition 7. For each natural number n, let Sn be the subalgebra of On gen-
erated by the bounds 0 = ∅ and 1 = ωn + 1 and let Sn be the variety generated
by Sn. Let Sω be the variety generated by {Sn|n ∈ ω}.

Note that O0 and S0 are the two-element diagonalizable algebra depicted
second in Figure 2, so O0 = S0 is the variety we called V2 in Section 2. Also,
S1 is the algebra depicted fourth in Figure 2, so S1 is the variety we called S in
Section 2. It is not difficult to see, and well known, that Sn is properly contained
in Sn+1 for each natural number n. Therefore, the following definition is valid.

Definition 8. For V a subvariety of Diag, we say V is of order n if Sn ⊆ V and
Sn+1 6⊆ V. If there is no such natural number n, then Sn ⊆ V for each n ∈ ω,
and we say V is of order ω.

Theorem 5.1. Suppose V is a subvariety of Diag. Then
(1) V is of order n if, and only if, Sn ⊆ V ⊆ On.
(2) V is of order ω if, and only if, Sω ⊆ V ⊆ Diag.

A figure depicting the lattice of subvarieties of Diag is given below. This
diagram is intended only to show containments, and it is not the case that Sn ∨
On−1 = On.

•
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•

•

•

•
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S = S1
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Figure 4
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It is worthwhile to note that the variety Diag is generated by {On|n ∈ ω}
hence is the join of the varieties On, n ∈ ω. The following result on equational
definitions of these varieties is known (see, e.g., [30]).

Proposition 5.2. In the presence of the axioms defining Diag,

(1) On is defined by the identity δn+11 = 0.
(2) Sω is defined by the identity δ(a−Cb) ∧ δ(b−Ca) = 0.
(3) Sn is defined by the identities δn+11 = 0 and δ(a−Cb) ∧ δ(b−Ca) = 0.

We will need the somewhat technical result that each variety On is defined
by only the wDA axioms and the identity δn+11 = 0. This likely belongs to
folklore, but we cannot find it in the literature. The proof presented below is likely
somewhat novel, as it is based on algebraic techniques, rather than techniques
based on duality.

Definition 9. For A = (B, δ) a weak derivative algebra we say an ideal I ⊆ B is
a δ-ideal if a ∈ I implies δa ∈ I.

The definition of δ-ideals, and the following well-known result [37] about them,
are valid in the more general setting of modal algebras.

Proposition 5.3. For A = (B, δ) a weak derivative algebra, there is a bijective
correspondence between congruences of A and δ-ideals of A. In particular, a
subdirectly irreducible weak derivative algebra has a least nontrivial δ-ideal.

Lemma 5.4. For any n ≥ 1, equations 1–4 imply equation 5.

(1) δ0 = 0,
(2) δ(a ∨ b) = δa ∨ δb,
(3) δδa ≤ a ∨ δa,
(4) δn1 = 0,
(5) δa = δ(a− δa).

Proof. For n = 1 this is trivial as δa = 0 and δ(a−δa) = 0. So assume n ≥ 2. It
is enough to show that if equations 1–4 hold in a subdirectly irreducible algebra
A, then equation 5 holds in A as well.

Assume A = (B, δ) is subdirectly irreducible and that equations 1–4 hold in
A. Let I be the least non-trivial δ-ideal of A. Note that equations 1–2 imply that
if d ∈ B and δd ≤ d, then ↓d is a δ-ideal. Then as δn1 = 0 we have ↓(δn−11) is
a δ-ideal, and assuming δn−11 6= 0, we have I ⊆↓(δn−11). Thus δa = 0 for each
a ∈ I, and it follows that I ⊆↓a for each non-zero a ∈ I, so I is equal to ↓c for
some atom c of A with δc = 0. We claim c =↓(δn−11). If not, then there is some
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d with c ∧ d = 0 and c ∨ d = δn−11. But then as d ≤ δn−11, we have δd = 0,
hence ↓d is a δ-ideal, so c ≤ d, a contradiction.

So I =↓(δn−11). As A/I satisfies δn−11 = 0, the inductive hypothesis gives that
for any a ∈ B, δ(a/I) = δ((a/I)−δ(a/I)). Therefore δa ≤ δ(a−δa)∨δn−11. But
for any b ∈ B we have ↓(b∨δb) is a δ-ideal as equation 3 gives δ(b∨δb) = δb∨δδb ≤
b∨ δb. So ↓((a− δa)∨ δ(a− δa)) is a δ-ideal, giving δn−11 ≤ (a− δa)∨ δ(a− δa).
Therefore as δa ≤ δ(a− δa)∨ δn−11 we have δa ≤ (a− δa)∨ δ(a− δa), and taking
the meet of both sides of this equation with δa gives δa = δ(a− δa). £

Proposition 5.5. For each natural number n, the variety On is closed under
upper MacNeille completions.

Proof. The previous lemma shows that On is defined by the wDA identities
and the identity δn+11 = 0. We have seen that the wDA identities are preserved
under upper MacNeille completions. For any weak derivative algebra A = (B, δ),
as A is a subalgebra of A, we have (δ)n+11 = δn+11. Therefore the identity
δn+11 = 0 is also preserved under upper MacNeille completions. £

Proposition 5.6. If V is a subvariety of Diag that is closed under upper Mac-
Neille completions and contains Sn, then V contains On.

Proof. Assume V is a subvariety of Diag that is closed under upper MacNeille
completions, and that for some natural number n, that V contains the variety
Sn. Let T be the subalgebra of (P(ωn + 1), δ) generated by {↓α|α ≤ ωn} where
↓α = {β|β ≤ α}.

Claim 1. For each α ≤ ωn the singleton {α} belongs to T.

Proof. For α ≤ ωn we say the degree of α is the largest k for which α ∈ δk1.
Note that if α is of order k, then as α ∈ δk1 and α is not a limit point of δk1,
the set {β|β ∈ δk1 and β < α} is either empty or has a largest element γ. If this
set is empty, then {α} =↓α ∩ δk1, and if this set has a largest element γ, then
{α} = (↓α ∩ δk1)− ↓γ. £

Claim 2. (P(ωn + 1), δ) is the upper MacNeille completion of T.

Proof. It follows from the previous claim that the Boolean algebra P(ωn + 1)
is the MacNeille completion of the Boolean algebra underlying T. Using δ for the
derivative operation on P(ωn +1) and δ for the upper MacNeille extension of the
derivative operation δ|T on T, we must show δ = δ.

For any X ⊆ ωn + 1, the definition of δ gives

δX =
⋂

{δA|A ∈ T and X ⊆ A}.
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It then follows directly that δX ⊆ δX. Suppose α /∈ δX. We must show that
there is A ∈ T with X ⊆ A and α /∈ δA. As α /∈ δX, the set (X∩ ↓α) − {α} is
either empty or is contained in ↓β for some β < α. If this set is empty, then for
A = (1− ↓α)∪{α} we have A ∈ T, X ⊆ A and α /∈ δA. If this set is contained in
↓β for some β < α, then for A = (1− ↓α) ∪ {α}∪ ↓β we have A ∈ T, X ⊆ A and
α /∈ δA. £

Claim 3. For each α ≤ ωn, Iα = {A ∈ T|α /∈ CA} is a δ-ideal of T.

Proof. Surely Iα is a downset, and as C(A ∪ B) = CA ∪ CB we have Iα is
closed under finite joins. As ωn + 1 is Hausdorff, hence a TD-space, we have
CδA = δA ∪ δδA ⊆ δA ⊆ CA, so Iα is closed under δ. £

Claim 4. T is in the variety Sn.

Proof. The variety Sn is generated by the algebra Sn, which is the subalgebra
of (P(ωn + 1), δ) generated by {0, 1}. Note that

⋂

{Iα|α ≤ ωn} = {0} since A

belonging to this intersection implies α /∈ CA for all α ≤ ωn. So T is isomorphic
to a subalgebra of the product

∏

{T/Iα|α ≤ ωn}.
Consider Iα in terms of the generators ↓β of T. For α, β ≤ ωn we have β < α

implies α /∈ C(↓β), so ↓β ∈ Iα, and therefore ↓β/Iα = 0/Iα. If α ≤ β then
α /∈ C(1− ↓β), so 1− ↓β ∈ Iα, and this implies ↓β/Iα = 1/Iα. Thus, as T is
generated by {↓β|β ≤ ωn}, we have T/Iα is generated by {0/Iα, 1/Iα}, so T/Iα

is isomorphic to a quotient of Sn. £

To conclude the proof of our proposition, as V contains Sn, we have T ∈ V. Then
as V is closed under upper MacNeille completions, On = (P(ωn+1), δ) ∈ V. Then
as On is generated by On, we have On ⊆ V. £

Proposition 5.7. There are no subvarieties of Diag that contain Sω and are
closed under upper MacNeille completions.

Proof. Define an ordering v on the set ω of natural numbers by setting m v n

if one of the following holds: (i) m is odd and n is even, (ii) m, n are both odd
and m ≤ n, or (iii) m, n are both even and n ≤ m. Let B be the Boolean algebra
of finite and cofinite subsets of ω and define δ on B by setting δ(A) = {n|n @
a for some a ∈ A}. Here n @ a means n v a and n 6= a. Using Odd and Even
for the sets of odd and even numbers respectively, if A ∩ Even 6= ∅ then δA is
cofinite, and if A ∩ Even = ∅, then as A ∈ B we have that A is a finite subset of
Odd, so δA is finite. Thus δ is a well-defined operation on B.

Clearly δ0 = 0, and from the form of its definition, one sees easily that δ(C ∪
D) = δC ∪ δD. For any C ∈ B we have δδC ⊆ δC, so (B, δ) is a derivative
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algebra. Note also, for any C ∈ B, that CC = {n|n v a for some a ∈ C}.
But (ω,v) is a chain, so for any C, D ∈ B we have that either CC ⊆ CD or
CD ⊆ CC. If CC ⊆ CD, then C−CD = 0, so δ(C−CD) = 0, and if CD ⊆ CC,
then δ(D −CC) = 0. In any event, δ(C −CD) ∧ δ(D −CC) = 0, showing that
(B, δ) belongs to the variety Sω.

Clearly the powerset P(ω) is the MacNeille completion of the Boolean algebra
B. Consider the action of δ on the element Odd of P(ω). Note that if A ∈ B and
Odd ⊆ A, then A is cofinite, so A contains some even number, giving Odd ⊆ δA.
But for each even n, if we set An = {k|k v n} we have An ∈ B, Odd ⊆ An, and
δAn = An+2. As δOdd =

⋂

{A|A ∈ B and Odd ⊆ A}, we then have δOdd = Odd.
But then δ(Odd− δ(Odd)) = δ0 = 0, so δOdd 6≤ δ(Odd− δ(Odd)), showing that
the upper MacNeille completion of (B, δ) is not a diagonalizable algebra.

So if V is a subvariety of Diag that contains Sω, then A = (B, δ) belongs to
V, but A is not diagonalizable, so does not belong to V. £

Theorem 5.8. The trivial variety and the varieties On for n ∈ ω are exactly the
subvarieties of Diag that are closed under upper MacNeille completions.

Proof. This follows directly from the previous three propositions and the de-
scription of the lattice of subvarieties of Diag given in Theorem 5.1. £

6. MacNeille completions of Sierpinski algebras

We call the variety S from Section 2 the variety of Sierpinski algebras, and
we call an algebra A ∈ S a Sierpinski algebra. The name, suggested to us by
Leo Esakia, is due to the fact that the algebra S that generates the variety S is
isomorphic to the power set of the Sierpinski space X = {x, y} with open sets
∅, {y}, X where the additional operation δ is the derived set operator of X.

This section is split into three subsections. In the first subsection we give
axioms defining the variety S. These results likely belong to folklore, but are not
easily found in the literature, and our algebraic proofs are likely novel. In the
second subsection we develop a triple representation for Sierpinski algebras along
the lines of the well-known triple representation of Stone algebras [10, 11]. Key to
this triple representation is the fact that each Sierpinski algebra has a least dense
element. In the final subsection we employ the triple representation to consider
MacNeille completions of Sierpinski algebras.

6.1. Axiomatics.

Theorem 6.1. An algebra A = (B, δ) consisting of a Boolean algebra B with
unary operation δ is a Sierpinski algebra if, and only if, it satisfies
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(1) δ0 = 0,
(2) δ(a ∨ b) = δa ∨ δb,
(3) δδ1 = 0,
(4) δa ∧ δ(−a) = 0.

Proof. Let V be the variety defined by the above equations. One easily checks
that these equations are valid in S, so S ∈ V, and therefore S ⊆ V. To show the
other containment, it is enough to show that every subdirectly irreducible algebra
in V belongs to S.

Suppose A = (B, δ) is a subdirectly irreducible algebra in V. Then as A satisfies
equations 1 and 2 above, congruences on A correspond to δ-ideals of A. So, as A

is subdirectly irreducible, it has a least non-trivial δ-ideal, say I.
If δ1 = 0, then it follows that each ideal of A is a δ-ideal, so A has a least

non-zero element. Hence, A is a two-element Boolean algebra with δ1 = 0. It
follows that A is a quotient of S, so A ∈ S. We therefore assume that δ1 6= 0 in
A.

Note that for any b ∈ B we have δ(b ∨ δb) = δb ∨ δδb by equation 2, and as
equation 3 gives δδb = 0, that δ(b ∨ δb) ≤ b ∨ δb. So for any b ∈ B, the principal
ideal ↓(b∨ δb) is a δ-ideal. The minimality of I yields I ⊆↓(b∨ δb) for each b 6= 0.
Specializing, we obtain

if b 6= 0 and δb = 0 then I ⊆↓b, (∗)
if δb 6= 0 then I ⊆↓(δb). (∗∗)

Here (∗∗) is obtained from (∗) as equation 3 gives δδb = 0.
As δ1 6= 0, condition (∗) gives I ⊆↓(δ1), hence δb = 0 for all b ∈ I. Then (∗)

gives I ⊆↓b for all non-zero b ∈ I. This implies I =↓a for some atom a of A with
δa = 0.

Note next that for any b ∈ B we have δb ∨ δ(−b) = δ1 6= 0, so at most one of
δb, δ(−b) is zero. We can not have both δb, δ(−b) non-zero as (∗∗) would give
I ⊆↓(δb) and I ⊆↓(δ(−b)), contrary to equation 4 which gives δb∧ δ(−b) = 0. So
for any b ∈ B exactly one of δb, δ(−b) is zero. It follows easily that J = {b|δb = 0}
is a maximal ideal of A. But condition (∗) yields that the atom a is the least
non-zero element of the maximal ideal J , and this implies that J =↓a. It follows
that A has exactly four elements, 0, a,−a, 1.

We have seen that δa = 0 and clearly δ0 = 0. Also, we have seen that a ≤ δ1,
and as δδ1 = 0 we have δ1 6= 1. Thus δ1 = a. Finally, as exactly one of δa, δ(−a)
is zero, we have δ(−a) 6= 0, and as δ(−a) ≤ δ1, we have δ(−a) = a. Thus A is
isomorphic to S. £
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6.2. Triples and Sierpinski algebras.

Definition 10. For A = (B, δ) a Sierpinski algebra and a ∈ B we say
(1) a is dense if a ∨ δa = 1.
(2) a is closed if a ∨ δa = a.
(3) a is clopen if both a and −a are closed.

We use Dense A and ClopenA for the set of dense elements of A and the set of
clopen elements of A, respectively.

Note, using the auxiliary operations C and I of closure and interior, a being
dense means Ca = 1, a being closed means Ca = a, and a being clopen means
Ca = a and Ia = a.

Lemma 6.2. For A = (B, δ) a Sierpinski algebra and a ∈ B, these are equivalent.
(1) a is dense.
(2) a ≥ −δ1.

Proof. 1 ⇒ 2. If a is dense, then a∨ δa = 1, so a∨ δ1 = 1, giving that a ≥ −δ1.
2 ⇒ 1. One checks that −δ1 ∨ δ(−δ1) = 1 in S, hence −δ1 ∨ δ(−δ1) = 1 in all
Sierpinski algebras. Now a ≥ −δ1 implies a ∨ δa ≥ −δ1 ∨ δ(−δ1) = 1. £

Lemma 6.3. If A = (B, δ) is a Sierpinski algebra, then
(1) Dense A is a Boolean sublattice of B.
(2) Clopen A is a Boolean subalgebra of B.

Proof. 1. By Lemma 6.2 we have Dense A is the interval [−δ1, 1] of B.
2. From its definition, Clopen A is closed under complementation. Also one

easily sees that both 0, 1 are clopen. Suppose a, b are closed. Then a∨b∨δ(a∨b) =
(a∨ δa)∨ (b∨ δb) = a∨ b, so the join of closed elements is closed. Also as a, b are
closed, δa ≤ a and δb ≤ b, so δ(a ∧ b) ≤ δa ∧ δb ≤ a ∧ b, showing a ∧ b is closed.
It then follows easily that Clopen A is closed under finite joins and meets. £

Definition 11. For A = (B, δ) a Sierpinski algebra, define a mapping
ϕA : ClopenA → Dense A by

ϕA(a) = a ∨ −δ1.

We recall that by Lemma 6.2, −δ1 is the least dense element of A.

Lemma 6.4. For A = (B, δ) a Sierpinski algebra, ϕA is a Boolean algebra ho-
momorphism.

Proof. Clearly ϕA(a ∨ b) = ϕAa ∨ ϕAb, and ϕA(−a) = −a ∨ −δ1 which is the
complement of a ∨ −δ1 in the interval [−δ1, 1]. £
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We have seen that to each Sierpinski algebra A one may associate a triple
(Clopen A, Dense A, ϕA) where Clopen A and Dense A are Boolean algebras and
ϕA : ClopenA → Dense A is a Boolean algebra homomorphism. We next consider
abstractly such triples.

Definition 12. A Boolean triple is an ordered triple T = (C, D, ϕ) where
(1) C, D are Boolean algebras.
(2) ϕ : C → D is a Boolean algebra homomorphism.

A morphism between triples T = (C, D, ϕ) and T ′ = (C ′, D′, ϕ′) is an ordered
pair h = (h1, h2) where h1 : C → C ′ and h2 : D → D′ are Boolean algebra
homomorphisms with ϕ′ ◦ h1 = h2 ◦ ϕ.

C
ϕ //

h1

¯¯

D

h2

¯¯
C ′

ϕ′ // D′

Finally, if T , T ′ and T ′′ are triples and h : T → T ′ and g : T ′ → T ′′ are triple
morphisms, we define g ◦ h : T → T ′′ to be (g1 ◦ h1, g2 ◦ h2).

Definition 13. We let S be the category of Sierpinski algebras and their homo-
morphisms and T be the category of Boolean triples and their morphisms.

The reader will observe that for BA the category of Boolean algebras, T is
none other than the arrow category BA→.

Definition 14. For A, A′ Sierpinski algebras and f : A → A′ a homomorphism,
define

FA = (Clopen A, Dense A, ϕA) where ϕA(c) = c ∨ −δ1.
Ff = (f1, f2) where f1 = f |Clopen A and f2 = f |Dense A.

Definition 15. For T = (C, D, ϕ) and T ′ = (C ′, D′, ϕ′) Boolean triples and
h : T → T ′ a triple morphism define

GT = (C ×D, δ) where δ is given by δ(c, d) = (0, ϕc).
Gh is the map h1 × h2 : GT → GT ′ given by Gh(c, d) = (h1c, h2d).

Theorem 6.5. F : S → T and G : T → S are functors.

Proof. Suppose A = (B, δ) and A′ = (B′, δ′) are Sierpinski algebras and f :
A → A′ is a homomorphism. Lemmas 6.3 and 6.4 show FA and FA′ are triples.
As f is a homomorphism, fδa = δ′fa, and it follows that f maps Clopen A to
Clopen A′ and Dense A to Dense A′. Thus f1 = f |Clopen A and f2 = f |Clopen A
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are maps f1 : Clopen A → Clopen A′ and f2 : Dense A → Dense A′. By Lemma
6.3 Clopen A and Clopen A′ are subalgebras of B and B′ respectively, and as f1 is
the restriction of a homomorphism, it follows that f1 is a homomorphism. Lemma
6.3 shows that Dense A is the interval [−δ1, 1] of A and Dense A′ is the interval
[−δ′1, 1] of A′. Then as f2 is the restriction of the homomorphism f and f satisfies
f(−δ1) = −δ′f1, we have that f2 is a Boolean algebra homomorphism. For ϕA :
Clopen A → Dense A and ϕA′ : Clopen A′ → Dense A′ defined by ϕAa = a ∨ −δ1
and ϕA′a = a ∨ −δ′1 we have ϕA′f1a = ϕA′fa = fa ∨ −δ′1 = fa ∨ f(−δ1) =
f(a ∨ −δ1) = fϕAa = f2ϕAa. So ϕA′ ◦ f1 = f2 ◦ ϕA, and this shows that
Ff = (f1, f2) is a triple morphism from FA to FA′. Finally, it is a simple matter
to show that F preserves composition of morphisms and the identity maps. Thus
F : S → T is a functor.

Suppose T = (C, D, ϕ) is a triple. Then C ×D is a Boolean algebra and the
map δ : C×D → C×D defined by δ(c, d) = (0, ϕc) is a unary operation on C×D.
To show (C ×D, δ) is a Sierpinski algebra it is enough to show that equations 1
through 4 of Theorem 6.1 hold. As ϕ is a homomorphism δ(0, 0) = (0, ϕ0) = (0, 0),
so equation 1 holds. Also δ(c ∨ c′, d ∨ d′) = (0, ϕ(c ∨ c′)) = (0, ϕc) ∨ (0, ϕc′) =
δ(c, d) ∨ δ(c′, d′), so equation 2 holds. As δδ(1, 1) = δ(0, ϕ1) = (0, ϕ0) = (0, 0),
equation 3 holds, and as δ(c, d)∧δ(−c,−d) = (0, ϕc)∧(0, ϕ(−c)) = (0, ϕc∧−ϕc) =
(0, 0), equation 4 holds. Thus GT is a Sierpinski algebra.

Suppose T = (C, D, ϕ) and T ′ = (C ′, D′, ϕ′) are triples with GT = (C ×D, δ)
and GT ′ = (C ′ × D′, δ′). Suppose f : T → T ′ is a triple morphism with f =
(f1, f2). Then it is well known that f1 × f2 : C × D → C ′ × D′ is a Boolean
algebra homomorphism. Then using the definitions of δ and δ′, as well as the
facts that f1, f2 are Boolean algebra homomorphisms with ϕ′ ◦ f1 = f2 ◦ ϕ, we
have (f1× f2)δ(c, d) = (f1× f2)(0, ϕc) = (f10, f2ϕc) = (0, ϕ′f1c) = δ′(f1c, f2d) =
δ′(f1 × f2)(c, d). Thus Gf = f1 × f2 is a Sierpinski algebra homomorphism from
GT to GT ′. Finally, it is a simple matter to show that G preserves compositions
of morphisms and identity maps. So G : T → S is a functor. £

Lemma 6.6. For A = (B, δ) a Sierpinski algebra and T = (C, D, ϕ) a triple:
(1) GFA = (Clopen A×Dense A, δ′) where δ′(c, d) = (0, c ∨ −δ1).
(2) FGT = ({(c, ϕc)|c ∈ C}, {1} ×D, ϕ′) where ϕ′(c, ϕc) = (1, ϕc).

Proof. 1. For a Sierpinski algebra A = (B, δ) we have FA = (Clopen A,

Dense A, ϕ) where ϕa = a ∨ −δ1. Then GFA = (Clopen A × Dense A, δ′) where
δ′(c, d) = (0, ϕc), and upon substituting, δ′(c, d) = (0, c ∨ −δ1).

2. For a triple T = (C, D, ϕ) we have GT = (C×D, δ) where δ(c, d) = (0, ϕc).
Note that (c, d) is closed if, and only if, δ(c, d) ≤ (c, d), which is equivalent to
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requiring that ϕc ≤ d. Thus (c, d) and −(c, d) are closed if, and only if, ϕc ≤ d

and ϕ(−c) ≤ −d, or equivalently, if ϕc = d. So Clopen(GT ) = {(c, ϕc)|c ∈ C}.
Note also that (c, d) is dense if, and only if, (c, d) ∨ δ(c, d) = (1, 1), which is
equivalent to (c, d) ∨ (0, ϕc) = (1, 1), and hence to c = 1. So Dense(GT ) is given
by {1}×D. From the above descriptions of Clopen(GT ) and Dense(GT ), as well
as the definition of FGT , we have FGT = ({(c, ϕc)|c ∈ C}, {1} × D, ϕ′) where
ϕ′ : {(c, ϕc)|c ∈ C} → {1} × D is the map ϕGT described in Definition 14. We
then have ϕ′(c, ϕc) = (c, ϕc) ∨ −δ(1, 1). As the derivative operation δ of GT is
given by δ(c, d) = (0, ϕc), then −δ(1, 1) = −(0, ϕ1) = −(0, 1) = (1, 0), and so
ϕ′(c, ϕc) = (1, ϕc). £

Lemma 6.7. For each Sierpinski algebra A = (B, δ), the mapping
ηA : A → GFA defined by

ηAa = (CIa, a ∨ −δ1)

is an isomorphism. Here C, I are the closure and interior operators of A.

Proof. Recall S is the algebra constructed from the Sierpinski space X = {x, y}
with open sets ∅, {y}, X. From the earlier description of the derived set operator
δ of S we have that the closure and interior operators C, I of S are given by
C∅ = ∅, C{x} = {x}, C{y} = X, CX = X and I∅ = ∅, I{x} = ∅, I{y} = {y},
IX = X. One can then see that in S we have CIa = ∅ if, and only if, a ⊆ {x},
and CIa = X if, and only if, {y} ⊆ a. Similarly, ICa = ∅ if, and only if, a ⊆ {x},
and ICa = X if, and only if, {y} ⊆ a.

One may then see that the following identities hold in S, and therefore hold
in all Sierpinski algebras: (i) δCIa ≤ CIa, (ii) CI(−a) = −CIa, (iii) CI(a∨ b) =
CIa ∨CIb, (iv) (CIa ∨ δ1) ∧ (a ∨ −δ1) = a, (v) CIa = ICa, (vi) CIδ1 = 0, and
(vii) δa ∨ −δ1 = CIa ∨ −δ1.

As these identities hold in the Sierpinski algebra A = (B, δ), we have by (i) that
δCIa ≤ CIa, showing that CIa is closed for any a ∈ B. In particular, CI(−a)
is closed, and by (ii) CI(−a) = −CIa, giving that −CIa is closed, hence CIa is
open. Thus CIa is clopen for each a ∈ B. So a 7−→ CIa provides a mapping
from A to Clopen A, and identities (ii) and (iii) show that this map preserves
finite joins and complements. Similarly, Lemma 6.2 shows that a 7−→ a ∨ −δ1
is a mapping from A to Dense A. This map clearly preserves finite joins, and as
Dense A is the interval [−δ1, 1] of A, it preserves complementation as well. Thus
ηA is a mapping from A to GFA that preserves finite joins and complementations.

Note that if a ∈ B then ηA(δa) = (CIδa, δa ∨ −δ1). Then as δa ≤ δ1,
equations (vi) and (vii) give us that ηA(δa) = (0,CIa ∨ −δ1). Then by Lemma
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6.6, ηA(δa) = δ′(ηAa) where δ′ is the derivative operation of GFA. So ηA is a
Sierpinski algebra homomorphism.

Next note that equation (iv) implies that each element a ∈ B is uniquely
determined by ηAa, so ηA is one-one. To see that ηA is onto, suppose that
c ∈ Clopen A and d ∈ Dense A. We claim that ηA((c ∧ −δ1) ∨ (d ∧ δ1)) = (c, d).
Using the fact that a 7−→ CIa preserves finite joins, meets, and complements, as
well as identity (v) which says CIa = ICa, and identity (vi) which says CIδ1 = 0,
we have CI((c ∧ −δ1) ∨ (d ∧ δ1)) = (CIc ∧ (−CIδ1)) ∨ (CId ∧ CIδ1) = CIc.
Then as c is clopen, this expression reduces simply to c. Also, (c ∧ −δ1) ∨ (d ∧
δ1) ∨ −δ1 = d ∨ −δ1, and by Lemma 6.2 this reduces to d as d is dense. Thus
ηA((c∧−δ1)∨(d∧δ1)) = (c, d) showing that ηA is onto, hence an isomorphism. £

Lemma 6.8. For each triple T = (C, D, ϕ) the maps εT1 : C → Clopen GT and
εT2 : D → Dense GT defined by

εT1c = (c, ϕc),
εT2d = (1, d)

provide a triple isomorphism εT = (εT1 , εT2) from T to FGT .

Proof. Note that by Lemma 6.6, both εT1 : C → Clopen GT and εT2 : D →
Dense GT are well defined, and clearly both εT1 and εT2 are Boolean algebra iso-
morphisms. Lemma 6.6 also provides FGT = (Clopen GT , Dense GT , ϕ′) where
ϕ′(c, ϕc) = (1, ϕc). Then as ϕ′ ◦ εT1(c) = (1, ϕc) = εT2 ◦ ϕ(c) for each c ∈ C,
we have ϕ′ ◦ εT1 = εT2 ◦ ϕ. Thus εT = (εT1 , εT2) is a triple morphism from T
to FGT . Then as ϕ′ ◦ εT1 = εT2 ◦ ϕ we have (εT2)

−1 ◦ ϕ′ = ϕ ◦ (εT1)
−1, hence

((εT1)
−1, (εT2)

−1) is also a triple morphism, and this is easily seen to be the inverse
of εT . Thus εT is a triple isomorphism. £

Theorem 6.9. The functors F, G provide an equivalence between the categories
S and T with η : 1S → GF and ε : 1T → FG as natural isomorphisms.

Proof. In view of Lemmas 6.7 and 6.8, all that remains is to show the naturality
of η and ε. This means that for each Sierpinski algebra homomorphism f : A → B

we must show (GFf) ◦ ηA = ηB ◦ f , and for each triple morphism g : T → U that
(FGg) ◦ εT = εU ◦ g.

From Definitions 14 and 15 we have Ff = (f |Clopen A, f |Dense A) and so
GFf = (f |Clopen A) × (f |Dense A). Thus for any a ∈ A, (GFf) ◦ ηA(a) =
(GFf)(CIa, a∨−δ1) = (fCIa, f(a∨−δ1)). Using the fact that f is a homomor-
phism, (GFf) ◦ ηA(a) = (CIfa, fa∨−δ1) = ηBf(a). Thus (GFf) ◦ ηA = ηB ◦ f .

Again using Definitions 14 and 15, we have Gg = g1 × g2 where g = (g1, g2),
and so FGg = ((g1×g2)|Clopen GT , (g1×g2)|Dense GT ). Suppose T = (C, D, ϕ)
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and U = (P, Q, ψ). So by Lemma 6.8 εT = (εT1 , εT2) where εT1c = (c, ϕc)
and εT2d = (1, d); and εU = (εU1 , εU2) where εU1p = (p, ψp) and εU2q = (1, q).
From Definition 12 we have that (FGg) ◦ εT is given by (((g1× g2)|Clopen GT ) ◦
εT1 , ((g1 × g2)|Dense GT ) ◦ εT2) and εU ◦ g is given by (εU1 ◦ g, εU2 ◦ g). For any
c ∈ C we have that ((g1×g2)|Clopen GT )◦εT1(c) = (g1×g2)(c, ϕc) = (g1c, g2ϕc),
and g being a triple morphism gives g2 ◦ϕ = ψ ◦ g. So this expression is equal to
(g1c, ψg1c) = εU1 ◦ g1(c). For any d ∈ D we have ((g1 × g2)|Dense GT ) ◦ εT2(d) =
(g1 × g2)(1, d) = (1, g2d) = εU2 ◦ g2(d). Thus (FGg) ◦ εT = εU ◦ g. £

Remark. We suspect this triple construction and resulting categorical equivalence
for Sierpinski algebras can be extended to the variety of diagonalizable algebras
whose associated Heyting algebras satisfy Stone’s identity. It would also be worth-
while to determine the relationship between this triple construction other triple
constructions in the literature [10, 11, 35, 25, 36, 12].

6.3. MacNeille completions of Sierpinski algebras. Since the variety of
Sierpinski algebras is a subvariety of Diag, it follows from Corollary 3.4 and
Theorem 5.8 that it is not closed under lower or upper MacNeille completions.
Nevertheless, it is, in a sense, closed under MacNeille completions. We formulate
this statement precisely in the following theorem.

Theorem 6.10. For each Sierpinski algebra A = (B, δ), there is an operation
δ∗ on the MacNeille completion B of B such that the algebra A∗ = (B, δ∗) is a
Sierpinski algebra that contains A as a subalgebra.

Proof. As every Sierpinski algebra is isomorphic to one of the form GT for some
triple T , it is enough to prove this result under the assumption that A = GT for
the triple T = (C, D, ϕ). Thus A = (C ×D, δ) where δ(c, d) = (0, ϕc).

As ϕ : C → D is a Boolean algebra homomorphism and D is a subalgebra of
its MacNeille completion D, we may consider ϕ to be a homomorphism from C to
D. Then as D is a complete Boolean algebra, hence an injective Boolean algebra
[3, Page 113, Theorem 2], and C is a subalgebra of its MacNeille completion C,
there is a Boolean algebra homomorphism ϕ : C → D with ϕ|C = ϕ.

Consider the triple T = (C, D,ϕ) and let A∗ be the Sierpinski algebra GT .
So A∗ = (C × D, δ∗) where δ∗(x, y) = (0, ϕx). Then C × D is the MacNeille
completion of C×D, and for (c, d) ∈ C×D we have δ∗(c, d) = (0, ϕc) = (0, ϕc) =
δ(c, d). Thus A is a subalgebra of A∗, proving our result. £

We have used the axiom of choice, or somewhat weaker statements, in our proof
of Theorems 6.1 and 6.10. In Theorem 6.1, we prove that HSPS is equal to the
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equational class EqΣ where Σ is the set consisting of equations 1–4 of Theorem
6.1 as well as the equations defining Boolean algebras. It may be possible to prove
HSPS = EqΣ solely from the ZF axioms [2], but this is not our main interest
and we shall sidestep this issue by working directly with EqΣ. We then note that
if we interpret the term “Sierpinski algebra” to mean a member of EqΣ, then all
of the above results relating Sierpinski algebras and triples remain valid without
any form of the axiom of choice. One must, however, give direct syntactic proofs
of several identities used in Lemmas 6.2 and 6.7 from Σ, and this is a somewhat
cumbersome job.

The use of some form of the axiom of choice in Theorem 6.10 is more funda-
mental as the following result shows.

Theorem 6.11. Let Σ be the set consisting of equations 1–4 of Theorem 6.1 and
the identities defining Boolean algebras, and consider the following statements.

(1) The axiom of choice.
(2) Sikorski’s theorem that complete Boolean algebras are injective.
(3) For any A = (B, δ) in EqΣ there is A′ = (B′, δ′) in EqΣ with A a

subalgebra of A′ and B′ the MacNeille completion of B.
(4) The Boolean ultrafilter theorem.

Then in ZF we have 1 ⇒ 2 ⇒ 3 ⇒ 4.

Proof. The standard proof of Sikorski’s theorem follows from ZF using choice,
so 1 ⇒ 2. Our proof of Theorem 6.10 uses only our results on triples, which
we have noted remain valid without choice when we consider instead algebras in
EqΣ, and Sikorski’s theorem. So 2 ⇒ 3. It remains only to show 3 ⇒ 4. We first
establish the following.

Claim 5. Suppose A = (B, δ) and A′ = (B′, δ′) are members of EqΣ with A a
subalgebra of A′ and B′ the MacNeille completion of B. Then for FA = (C, D, ϕ)
and FA′ = (C ′, D′, ϕ′) we have C ′ is the MacNeille completion of C, D′ is the
MacNeille completion of D, and ϕ′|C = ϕ.

Proof. To see this, note that ηA : B → C × D and ηA′ : B′ → C ′ × D′

are isomorphisms. So, as B′ is complete, C ′ × D′ is complete, and it follows
that C ′ and D′ are complete. Also, as A ≤ A′ we have ClopenA ≤ ClopenA′

and DenseA ≤ DenseA′, so C ≤ C ′ and D ≤ D′. Let i : B → B′ and j :
C × D → C ′ × D′ be the identical embeddings. Note that for a ∈ B we have
ηAa = (CIa, a ∨ −δ1) and ηA′a = (C′I′a, a ∨ −δ′1), and as A ≤ A′ we have
ηAa = ηA′a. It follows that j ◦ηA = ηA′ ◦ i, and hence that j = ηA′ ◦ i◦η−1

A . Then
as η−1

A , ηA′ are isomorphisms and i is join and meet dense, j : C ×D → C ′ ×D′
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is join and meet dense as well. So for x ∈ C ′ and y ∈ D′ we have (x, 0) and
(0, y) are joins of elements of C × D, hence x, y are joins of elements of C, D

respectively, and similarly, x, y are meets of elements of C, D respectively. So
C ′ is the MacNeille completion of C, and D′ is the MacNeille completion of D.
Finally, for a ∈ C we have ϕa = a∨−δ1 and ϕ′a = a∨−δ′1. Then as A ≤ A′ we
have ϕ′a = ϕa. Thus ϕ′|C = ϕ. £

To show 3 ⇒ 4, let X be an infinite set, C be the Boolean algebra of finite and
cofinite subsets of X, and ϕ : C → 2 be the homomorphism mapping all finite
subsets of X to 0 and all cofinite subsets of X to 1. Then (C, 2, ϕ) is a triple,
and from our discussion of triples, one can construct an algebra A = (B, δ) in
EqΣ that has FA = (C, 2, ϕ) as its triple. By assumption 3 there is A′ = (B′, δ′)
in EqΣ with A ≤ A′ and B′ the MacNeille completion of B. So, by the claim, if
FA′ = (C ′, D′, ϕ′), then C ′ is the MacNeille completion of C, D′ is the MacNeille
completion of 2, and ϕ′|C = ϕ. In particular, C ′ is the power set PX of X,
D′ = 2, and ϕ′ : PX → 2 is a Boolean algebra homomorphism. Thus, for any
infinite set X we have produced a finitely additive 2-valued measure on PX taking
value 0 on each atom, and by [34, page 328], this is equivalent to the Boolean
ultrafilter theorem. £
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