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John Harding

1 INTRODUCTION

Beginning with Birkhoff and von Neumann [4], a central theme in quantum logic
is to consider generalizations of the lattice C(H) of closed subspaces of a Hilbert
space H as models for the propositions of a quantum mechanical system. Husimi
[20] was the first to note that the ortholattices C(H) satisfied the following identity
known as the orthomodular law:

(1) A<B = AV(A*AB)=B.

This fact was rediscovered several times in the 1950’s and 1960’s [23, 28, 30,
31, 35] and lead to the role of orthomodular lattices (abbreviated: OMLs) and
orthomodular posets (abbreviated: OMPs) as abstract models for the propositions
of a quantum mechanical system.

It is instructive to see how the validity of the orthomodular law in C(H) follows
in a transparent way from basic properties of Hilbert spaces. For the non-trivial
containment in (1) note that if b € B, then b = a1 +as for some unique a; € A and
as € A+. Then if A C B we have a; € B, hence b — a; = ay belongs to A+ N B,
and therefore b = a; + ay belongs to AV (At A B). Thus, the validity of the
orthomodular law in C(H) follows as each vector in H can be uniquely expressed
as a sum of vectors from A and A*. This shall be of fundamental importance to
us.

The orthomodular law has several equivalent formulations that highlight differ-
ent aspects of its nature. We mention one of these that provides insight that will be
helpful here. Note first that every ortholattice L is equal to the set-theoretic union
of its Boolean subalgebras as each a € L lies in the Boolean subalgebra {0, a, a’, 1}.
Orthomodular lattices are exactly those ortholattices L where the partial ordering
of L is determined by the partial orderings of its Boolean subalgebras. In this
sense, OMLs are exactly the locally Boolean ortholattices.

While the above comments make a case that the orthomodular law is worthy
of study, the over fifty year longevity of the orthomodular law must be attributed
to its role in developing a large body of deep and beautiful mathematics and to
its role in the theoretical foundations of quantum mechanics. We cannot describe
these results in any depth, but point to the work on the dimension theory of
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projection lattices [33] and the subsequent development of a dimension theory for
certain OMLs [28, 31]; the related development of continuous geometry [34] and
its deep ties to modular ortholattices [24]; the work on Baer*-semigroups [9]; the
beautiful algebraic theory of oMmLs outlined in [5, 22]; generalized Hilbert spaces
[35, 26] and Soler’s theorem [37]; generalized orthomodular structures [11, 12, 27]
and their ties to partially ordered abelian groups [10]; and of the multitude of work
on applications of orthomodularity to the foundations of quantum mechanics of
which [3, 13, 30, 35] is a sample. As a meta-question, one might well ask why such
an innocent looking identity as the orthomodular law should lie at the heart of so
much interesting mathematics.

While the orthomodular law has its origins and many of its application centered
on Hilbert spaces, we present here a very different view of orthomodularity, one
that eliminates the reliance on Hilbert spaces and focuses on a more elementary
mathematical property instead. We present our thesis in an informal manner
below, and provide a more detailed treatment in the body of this chapter. The
crucial item is the following.

Slogan I: The direct product decompositions of many familiar mathematical
structures, including sets, groups, modules, and topological spaces, naturally form
an orthomodular poset. Thus, orthomodularity at its root arises from considering
direct product decompositions.

Of course, we will make this precise in the sequel, in particular in Theorem 13.
The point of this statement is to identify decompositions as the basic mathematical
process that leads to orthomodularity. What then about the about the intimate
link between orthomodularity and Hilbert spaces?

Slogan II: Orthomodularity has nothing to do with Hilbert space, it is a conse-
quence of considering direct product decompositions of a Hilbert space.

Here we mean orthomodularity is not a property of a Hilbert space H, but
arises only when we consider the lattice C(H) of closed subspaces of H. As we
noted above, the key property of Hilbert spaces is that for a closed subspace A,
each vector v in H can be uniquely represented as the sum of a vector v4 €
A and a vector vy. € AL, Viewed another way, this means that each closed
subspace A induces a direct product decomposition H ~ A x A+ of H and all
direct product decompositions of H arise in this manner. Thus the process of
considering the closed subspaces of H is really a disguise for considering the direct
product decompositions of H.

Slogan III: The role of orthomodularity in the foundations of quantum mechanics
is due, at least in part, to an underlying role of direct product decompositions in
the foundations of quantum mechanics.

In support of this statement, we will give an axiomatic development of what
we term an experimental system based essentially on the notion of direct product
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decompositions. This will include the development of a system of yes-no experi-
ments, a type of logic for such experiments, a probabilistic treatment of the results
of such experiments, and an approach to observables and their calculus. The stan-
dard Hilbert space approach to quantum mechanics will be shown to fit exactly
into this framework.

Slogan I'V: Independent of any connection to quantum mechanics, orthomodular-
ity is worthy of study due to its role in the theory of direct product decompositions.

This chapter is organized in the following manner. In the second section we
review well-known facts about the treatment of surjective images of structures
such as sets and groups. This is a familiar topic that is presented from a perhaps
unfamiliar viewpoint. The treatment we give provides a sort of toy model for our
treatment of direct product decompositions.

In Section 3 we begin our study of direct product decompositions of sets and
prove our Main Theorem — that the binary direct product decompositions of a
set, with operations induced in a natural way, forms an OMP. In the fourth section
we illustrate this result with several concrete examples, and in the fifth section
we extend our results on decompositions of sets to decompositions of other types
of mathematical structures, such as groups, modules, topological spaces, Hilbert
spaces, and so forth. A number of well-known methods to construct OMPs arise as
instances of this construction.

Section 6 contains a finer study of the structure of the oMpPs BDec X of de-
compositions of a set X. In particular, we characterize the Boolean subalgebras of
such omPs. The finite Boolean subalgebras with n atoms are shown to correspond
to direct product decompositions of X with n factors, while the infinite Boolean
subalgebras are shown to correspond to a certain type of continuously varying
direct product decomposition known as a Boolean sheaf (or Boolean product).
This characterization of the Boolean subalgebras of BDec X leads to a complete
description of compatibility in such OMPs, and the result that all such omps are
regular. These results are exploited in numerous ways in the subsequent section,
and in particular lead to a type of logic based on decompositions.

In section 7 we give an axiomatic presentation of what we term an experimen-
tal system focused very tightly on the notion of direct product decompositions.
Roughly, the key ingredient is the requirement that each n-ary experiment on a
system induces an n-ary direct product decomposition on the state space of the
system. From this we obtain that the binary experiments (the so-called questions
of the system) form an omp, and that this OMP of questions has a sane interpre-
tation of its logic. With a few more axioms we have the notion of an experimental
system with probabilities. From this we develop an interpretation of the probabil-
ity of an experiment yielding a certain result when the system is in a given state,
and then a theory of observables, their expected values, and their calculus. The
standard Hilbert space model for quantum mechanics is seen as a specific instance
of such an experimental system.
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The material in these first seven sections provides enough of the core work on
decompositions for the reader to gain a good feel for the subject. A number of
additional results not necessary for a first view are given briefly in Section 8 along
with a number of open problems for the reader who wishes to pursue the subject.
A Dbrief conclusion is then presented as Section 9.

This chapter is presented as an invitation to those who may wish to further
explore the subject. It is written in a somewhat informal way, and includes only a
very few proofs whose purpose is to better illustrate the nature of the mathematics
involved in the underlying theory. This subject has unfortunately almost entirely
been my own project, and the results here are (nearly) all contained in the papers
[14, 15, 16, 17, 18] where complete proofs can be found.

2 SURJECTIVE MAPS AND QUOTIENTS

In this section we review some basics about surjective (onto) mappings. While this
material is in some way familiar to us all, it may familiar be at a more subconscious
level, and a more organized treatment of these ideas may not be immediately at
hand. As our treatment of decompositions will in many ways mirror our treatment
of surjective mappings, this section serves as both a review and a preview for later
developments.

DEFINITION 1. Given a set A, a surjection with domain A consists of a set B
and a surjective (onto) mapping f: A — B.

When considering surjections with domain A, or any type of mapping for that
matter, one is often not interested in the particular nature of the elements involved,
but only in the way elements are transformed into others. We make this precise
in the following.

DEFINITION 2. Define an equivalence relation ~ on the collection of all surjec-
tions with domain A by setting f : A — B to be ~-related to g : A — C' if there
is an isomorphism (bijection) ¢ : B — C with io f = g.

We use [f : A — B] to denote the a-equivalence class of the surjection f : A — B,
and we let Surj A be the set of all equivalence classes of surjections with domain

A.
Putting structure on the set Surj A is key.
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DEFINITION 3. Define a relation < on Surj A by setting [f : A — B] < [g:
A — (] if there is a map h: B — C with ho f = g.

Of course, one must verify that the above definition of < is independent of the
representatives of the equivalence classes involved, but this is routine. Our aim is
to prove the following.

THEOREM 4. (Surj A, <) is a complete lattice.

Here we could proceed directly, using obvious arguments to show < is reflexive
and transitive, and the fact that surjections are epic for anti-symmetry, to obtain
that < is a partial ordering. The existence of arbitrary joins can be obtained
from properties of products, and then the existence of meets follows from general
principals. However, it is more common to treat surjections by showing (Surj A, <
) is dually isomorphic to the lattice of equivalence relations on A. In any event,
one must establish this dual isomorphism as it is necessary to make computations
tractable.

DEFINITION 5. For f : A — B set ker f, the kernel of f, to be {(z,y)|f(z) =
fw)}

THEOREM 6. The structure (Surj A, <) is dually isomorphic to (Eq A, C), the
set of equivalence relations on A partially ordered by set inclusion, via the map
that takes [f : A — B] to ker f.

One uses this dual isomorphism and the following description of joins and meets
in the lattice of equivalence relations to effect computations with surjections.

PROPOSITION 7. For A a set, (Eq A, Q) is a complete lattice where
1. Meets are given by intersections.

2. Joins are given by the transitive closure of the union.

One additional detail regarding computations in Fq A will be important. We
recall that for relations 0, ¢ on A that the relational product 6 o ¢ is the relation
{(z, 2)|z0y and y¢z for some y}. The following is well known [6].

PROPOSITION 8. For 0, ¢ equivalence relations on A these are equivalent.
1. Oop=¢o0, ie 0 and ¢ permute.

2. Go ¢ is the join 6V ¢ of 0,¢ in Eq A.

To summarize, we believe that the lattice (Surj A, <) is the primitive notion.
The more familiar (Fq A, C) arises as a means to effectively work with this prim-
itive notion. Essentially, from each equivalence class of surjections [f : A — B,
we choose a canonical representative kg : A — A/6 where 6 = ker f and kg is the
natural quotient map. Then rather than study the surjections kg : A — A/6, we
simply study the equivalence relations 6 that determine them.
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3 DECOMPOSITIONS

This section contains the core material around which the chapter is built — the
notion of direct product decompositions of a set. Our treatment will mirror the
treatment of surjections given in the previous section.

DEFINITION 9. A direct product decomposition, or simply a decomposition,
of a set A consists of a finite sequence of sets A;,..., A, and an isomorphism
fiA— A x---x A,

When the map f is clear from the context, and cumbersome to write, we use
A~ A x---x A,. We need some notation for working with maps and products.

DEFINITION 10. Let A, Ay,..., A, besets, f: A— A; x---x A, and g; : A —
A;.

1. Define m; : A; x --- x A, — A; to be the i*" projection map.

2. Define f; : A — A; to be the composite 7; o f.

3. Define g1 x-+-Xgp : A — Ay x---xA, by (g1 % -Xgn)(a) = (g1(a),...,gn(a)).
Thus for f: A— A; X --- x A, we have f = f1 x--- X f,.

Just as with surjections, when considering a decomposition f : A — Ay x---x A4,

one is often not interested in the particular elements of the sets Aq,...,A,, but
only in how the bijection f maps elements of A into the elements of the product (for
instance, which elements of A are mapped to ones with identical first components).
This is made precise by the following.
DEFINITION 11. Define an equivalence relation =~ on the decompositions of A
by setting f : A — A; X --- X A, to be ~-related to g : A — By X --- X By,
if m = n and there are there isomorphisms i1, ...,4, with i : Ay — By and
(i3 X -+ Xip)o f=g.

/ A X x Ap
A Z'1 J in
x By x---x B,
Then [f : A — A} x --- x A,] denotes the =-equivalence class of f : A —

A x - x A,.

As with Surj A, it is key to place structure on the equivalence classes of de-
compositions. We begin by putting structure on the equivalence classes BDec A
of binary decompositions of a set A, though later we will also place structure on
the collection of all equivalence classes of decompositions. At heart, we use the
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obvious connection between A; x As and A X Aj to define a unary operation on
BDec A, and we use the relationship between A; x (Ag X A3) and (A; x A3) x As
to define a relation < on BDec A. Before giving the precise definitions, we review
a few facts about decompositions and the corresponding notation.

The decomposition f: A — A; x Ag is literally equal to f; x fo: A — Ay x Ao
(as f = fi1 X fa by Definition 10). One sees that fo x f; : A — As X A; is
also a decomposition. However, this decomposition is not even ==-related to the
original! This fact seems unusual as there is an obvious isomorphism i : A; X Ay —
Ay x Ap. But to have these decompositions ~-related, Definition 11 requires a pair
of isomorphisms i1, 4o making the following diagram commute, and clearly this is
not the case.

11

m Ay x Ay

Note aslo that from a ternary decomposition f : A — A; x Ay x Az we can
build several binary decompositions such as f1 x (fa X f3) : A — Ay x (Ag X A3)
and the quite different (f1 x fa) x f3 : A — (A1 X Ag) x As. Again, there is an
isomorphism between A; x (As x Asz) and (A1 x A3) x As, but this is certainly
not sufficient to make these decompositions a-related.

DEFINITION 12. For a set A, let BDec A be the collection of all equivalence
classes of binary decompositions of A. Define a unary operation * on BDec A by
setting

A

[fZA—>A1XAQ]*:[fQXfllA—?AQXAﬂ.
And define < on BDec A by setting [f : A — Ay x A3]) <[g: A— B x By] if

[f:A—>A1XA2} = [hlX(thhg)ZA—>01X(CQX03)]
[g:AHBl><BQ} = [(hlxhg)xhg:AH(Clng)ng]

for some ternary decomposition h: A — Cy x Cy x Cj.

The crucial definition of the relation < can be expressed in a somewhat different
way. Whenever A is isomorphic to a ternary direct product C7; x Cy x C3, then
the equivalence class of the binary decomposition A ~ C} x (Cy x C3) is < that of
the decomposition A ~ (C; x C3) x C3. In a sense, it is this careful treatment of
commutativity and associativity, or rather the lack of these properties, that gives
our structure. We now present our primary result.

THEOREM 13. For A a set, (BDec A, <,%) is an OMP.
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To prove Surj A is a lattice, and to find tractable methods to compute in this
lattice, we showed each equivalence class of surjections has a canonical representa-
tive A — A/ uniquely determined by an equivalence relation on A. Computations
in Surj A are then reduced to computations with equivalence relations. We now
follow a similar path to show BDec A is an OMP, and to give tractable methods
to compute in this omP.

DEFINITION 14. Two equivalence relations 6, ¢ on a set A permute if fo¢p = ¢o6.
A set of equivalence relations on A is pairwise permuting if any two members of
the set permute. A set of equivalence relations on A is called a Boolean subsystem

of Eq A if it is pairwise permuting and forms a Boolean sublattice of the lattice
Eq A.

As we will see, Boolean subsystems are closely linked to direct product decom-
positions. We require one further definition.

DEFINITION 15. A factor n-tuple of a set A is a sequence (61, ...,0,) of equiva-
lence relations on A whose members that differ from the universal (largest) relation

V on A are distinct and comprise exactly the coatoms of a Boolean subsystem of
Eq A.

So a factor pair is an ordered pair (61, 62) of permuting equivalence relations that
are complements in the lattice Fq A. A factor triple (61,602, 03) is formed either
by inserting V into a factor pair, or by taking the coatoms of an eight-element
Boolean subsystem as shown below.

\Y%
91 2

>

CRALE .\.V. 02103

A

The following result is the key link between factor tuples and decompositions.
In the binary case it is well known and easily found in the literature [6]. The
general case follows easily, and is found in [29, pg. 161].

PROPOSITION 16. Let A be a set.

1. If f: A— Ay x--- X A, is an n-ary decomposition, then for 0; = ker f; we
have that (01,...,0,) is a factor n-tuple of A.
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2. If (b1, ...,0,) is a factor n-tuple, then the natural map Ko, X- - - X kg, provides
an n-ary decomposition A~ A/0; x -+ x A/0,,.

This result implies that each equivalence class [f : A — Ay X --+ x A,] has
a canonical representative A ~ A/6; x --- x A/, and this leads to a bijective
correspondence between equivalence classes of n-ary decompositions and factor n-
tuples where [f : A — A; x---x A,] corresponds to (ker f1,...,ker f,,). So instead
of working with the set BDec A of equivalence classes of binary decompositions
of A, we can work instead with the set of all factor pairs (61,62) of A. For this
to be advantageous, the structure on BDec A, particularly the relation <, must
have a tractable description in terms of factor pairs. Fortunately, this is the case.

PROPOSITION 17. Let (01,602) and (é1,p2) be factor pairs of A. These are
equivalent.

1. In BDec A we have [A~ A0, x A/03] < [A~A/p1 x A/ds).

2. 01,05, ¢1, P2 belong to a Boolean subsystem of Eq A and ¢1 C 6.

3. ¢1 C 01, 02 C 2 and p1 00y =030 ¢.

A proof of this result is found in [14, Lemma 3.3]. It provides a very simple
method to work with the relation <, something that seems quite intractable when
dealing directly with decompositions.

DEFINITION 18. For a set A, let Fact A be the set of all factor pairs (61, 62) of
A. Define a unary operation * on Fact A by setting

(01,02)" = (62,61)

and define a relation < on Fact A by setting
(01,02) < (¢1,¢2) if ¢1 C 01,02 C ¢y and ¢y 06y = 00 ¢1.

When convenient, we refer to the structure (Fact A, <,x) simply as Fact A.

The manner in which the above structure is defined on Fact A, in conjunction
with Proposition 17, then immediately provides the following result, which is of
course, the reason we are working with the structure Fact A in the first place.

PROPOSITION 19. For A a set, (BDec A, <,%) is isomorphic to (Fact A, <, x).

Due to this isomorphism, the following result obviously provides our primary
objective of showing that (BDec A, <,#) in an OMP.

THEOREM 20. For a set A, the structure (Fact A, <,%) is an OMP.
Proof. We refer to [14, Theorem 3.5] for a complete proof in a more general
setting, but we will show that < is a partial ordering as this illustrates the nature

of the arguments involved and may encourage the reader to fill the missing details
themselves.
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Note that the definition of a factor pair shows < is reflexive, and anti-symmetry
follows trivially from the definition of <. For transitivity, suppose (61,602) <
(¢1,02) and (¢1,02) < (¢1,%2). Then ¢ C ¢1 C 61, 02 C @2 C )2, and both
01,02 and 11, ¢ permute. To show (61,603) < (¥1,1%9) we must show ¢ C 61 and
0> C 1o, which are obvious, and that v, 2 permute.

Suppose (a,b) € 1 060s. As 1 C ¢1 we have (a,b) € ¢1 002, and as 0 C @2 we
have (a,b) € 1)1 0 ¢a. As ¢1,02 and 11, 3 both permute, we have (a,b) € 03 0 ¢
and (a,b) € ¢ 011. So there are ¢,d with afl2cd1b and agedip1b. Then as b3 C ¢o
we have cooadad s0 cpod, and as 11 C ¢y we have cd1bpid, so cp1d. Then (¢, d)
belongs to ¢1 N ¢2, which is the diagonal relation A, so ¢ = d. Thus aflzc = di1b,
showing (a,b) € 03 0 11. So 1 0 03 C b5 011 and a similar argument shows the
other containment. B

Above we have seen how to tractably work with * and < in Fact A. We next
discuss computation of orthogonal joins @ in Fact A and BDec A. Later, in
Section 6, we discuss compatibility in these structures.

PROPOSITION 21. For a set A, two elements (01,02) and (¢1, ¢d2) of Fact A are
orthogonal if, and only if, o C 01, 02 C ¢ and 02, 2 permute. In this case,

(01,02) © (¢1,92) = (01 N @1,02 0 P2).
Two elements of BDec A are orthogonal if, and only if, they are of the form
[A ~ Al X (A2 X Ag)] and [A ~ A3 X (Al X AQ)]

for some ternary decomposition A ~ A1 x As X As. In this case, their orthogonal
join is given by [A ~ (A1 x A3z) x As).

In sum, we have treated decompositions much the way we treated surjections.
We gave a definition of decompositions, and defined an equivalence relation on the
collection of all decompositions. We then put structure on the collection BDec A
of equivalence classes of binary decompositions of A. To prove this structure gave
an OMP and to provide tractable methods to work with this OMP we passed to an
auxiliary set Flact A built from equivalence relations on A. The key idea is that
each equivalence class of decompositions has a canonical representative that can
be described in terms of equivalence relations.

4 SURJECTIONS AND DECOMPOSITIONS FOR FINITE SETS

Here we provide some concrete examples decompositions to give the reader a more
definite feel for the subject. We begin with one small example of Surj A, primarily
to emphasize a certain point that sometimes causes difficulty.

EXAMPLE 22. Consider the 3-element set A = {a,b,c}. There are 5 equivalence
relations on A; the diagonal relation A, the universal relation V, and the relations
01 = AU{(a,b),(b,a)}, 02 = AU {(a,c),(c,a)}, and 03 = AU{(b,c),(c,a)}. So
the lattice Eq A, which is dually isomorphic to Surj A, is as depicted below.
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A point to emphasize is that an equivalence class of surjections [f : A — B| is
not simply determined by the cardinality of the image set B, but depends also on
how elements of A are collapsed together into elements of B. In this case there
are 3 distinct equivalence classes [f : A — B| where B is a 2-element set as there
are 3 ways to choose a pair of elements of A to collapse together.

Before giving examples of Fact A, we note that if A is a finite set and 6 belongs
to a factor pair of A, then 0 is a regular equivalence relation, which means that
each equivalence class (also called block) of € has the same number of elements.
Thus if (01, 02) is a factor pair of A, then A is isomorphic to A/0; x A/0s, and the
number of blocks of #; is the cardinality of A/6;, while the number of elements in
each block of 6, is the cardinality of A/fy as both are given by the cardinality of
A divided by the cardinality of A/6;.

EXAMPLE 23. Suppose that A is the 4-element set {a,b,c,d}. Then there are
5 regqular equivalence relations on this set; A, V, the equivalence relation 61 whose
blocks are {a,b},{c,d}, the equivalence relation 0 whose blocks are {a,c},{b,d},
and the equivalence relation 03 whose blocks are {a,d}, {b,c}. Fach of the 6 pairs
(0;,0;) where i # j yields a factor pair in this case, and it follows that Fact A is
the height two OMP M Og shown below.

To reiterate, there are 8 equivalence classes of decompositions of a 4-element
set. There is one as the product of a 4-element set and a 1-element set, one as the

product of a 1-element set and a 4-element set, and 6 different decompositions as
the a product of two 2-element sets.
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EXAMPLE 24. Suppose A is the 6-element set {a,b,c,d, e, f}. Aside from AV,
each regular equivalence relation 8 will have either two or three blocks, depending on
whether A/6 is a two or three-element set. Factor pairs (61,02) not involving A,V
will consist of one reqular equivalence relation with two blocks and one with three.
But not all such pairs of reqular equivalence relations will provide a factor pair.
For the relation 6, with blocks {a,b,c},{d, e, f}, 02 with blocks {a,b},{c,d}, {e, f},
and 03 with blocks {a,d}, {b,e},{c, f}, we can see that (01,02) is not a factor pair
as 01 N Oy # A, while (01,03) is a factor pair. Again, the OMP Fact A will be
an MO, for some finite n (the combinatorial exercise of finding n is left to the
reader).

At this point it may seem that the OMPs Flact A are of limited interest as each of
OMPs in the previous two examples is of height two, consisting of blocks (maximal
Boolean subalgebras) having exactly two atoms each. This however, is because
each of the primary decompositions 4 = 2 x 2 and 6 = 2 x 3 involves exactly two
prime factors. The following description of Fact A for a finite set A follows from
results in Section 6.

PROPOSITION 25. Suppose A is an n-element set where n = py - pa - - pg 1S the
primary decomposition of n. Then the OMP Fact A is of height k (the number
of factors in the primary decomposition of n) and consists of blocks all having k
atoms each.

It is useful to consider things from the perspective of BDec A rather than
Fact A.

EXAMPLE 26. Let A= {0,1}3 and let f,g: A — {0,1}x{0,1} x{0,1} be defined
by f(z,y,2) = (x,y,2) and g(z,y,2) = (z + y,y, z), where addition is modulo 2.
These two ternary decompositions give rise to the following binary decompositions

D [f1 x (fa x f3): A—{0,1} x ({0,1} x {0,1})]
E = [g1x(g2axgs):A—{0,1} x ({0,1} x {0,1})]
F o= [(fixf)xfs:A— ({0,1} x {0,1}) x {0,1}]
G = [(g1xg2) xg3:A— ({0,1} x {0,1}) x {0,1}].

By definition, D < F and E < G. Surely D # E as there can be no isomorphism
i1 : {0,1} — {0,1} with i1 o fi = g1 as this would require i;(x) = x +y for
all x,y,z € {0,1}. But F = G as the isomorphism j1 : {0,1} x {0,1} — {0,1}
defined by j1(x,y) = (x+y,y) satisfies j1o(f1 X f2) = g2 X g2, and the isomorphism
Jo : {0,1} — {0,1} defined by jo = id satisfies ja o f3 = gs.

One then obtains that D, F' generate one of the 8-element blocks of BDec A, that
E,G generate another distinct block, and that these two blocks have in common
the coatom F = G and the atom F* = G*. In particular, for this 8-element set
A, the oMp BDec A is of height three and consists of 8-element Boolean algebras
linked in a rather intricate way.

The oMPs Fact A for A a finite set are combinatorially very interesting struc-
tures with many interesting symmetries. Of course, the structure Fact A for A
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an infinite set is surely of primary interest, as are sub-OMPs of Fact A induced
by placing various types of structure on A and restricting to decompositions that
respect this structure. This shall be the focus of the following section.

5 DECOMPOSITIONS OF SETS WITH STRUCTURE

The term “set with structure” is a broad one, meant to include such familiar ob-
jects as groups, rings, vector spaces, and other algebras with finitary or infinatary
operations; relational structures such as posets and graphs; topological structures
and uniform spaces; and so forth. Our aim is to consider structure preserving de-
compositions of such objects. As before, it is instructive to begin with surjections.

DEFINITION 27. For a group G, a surjection of G consists of a group H and
an onto homomorphism f : G — H. An equivalence relation ~ is defined on the
surjections of G as in Definition 2 and a relation < and is defined on the equivalence
classes of surjections of G as in Definition 3.

Of course, a similar definition would apply for any other type of algebra A,
such as a ring, vector space, monoid, and so forth. Key to studying (Surj A, <)
for an algebra A is the correspondence between surjections of A and congruences
of A (certain equivalence relations on the underlying set of the algebra that are
compatible with the basic operations of the algebra [6]).

PROPOSITION 28. For an algebra A with underlying set A, the structure (Surj A, <
) is dually isomorphic to the sublattice (Con A, <) of the lattice (Eq A, <) con-
sisting of all congruence relations on A.

In specific settings, there are alternate, but equivalent, approaches to working
with the lattice of surjections. For example, for groups one often works with the
lattice of normal subgroups, for rings the lattice of ideals, and for vector spaces
the lattice of subspaces. We turn now to decompositions.

DEFINITION 29. A decomposition of a group G consists of a finite sequence
G1,...,G, of groups and a group isomorphism f: G — G X --- X G,,. We define
an equivalence relation ~ on the decompositions of G as in Definition 11 and we
define a unary operation * and binary relation < on the collection BDec G of all
equivalence classes of binary decompositions of G as in Definition 12.

Of course, similar definitions apply for rings, vector spaces, or indeed any type
of algebra. A proof of the following is found in [14, Remark 4.2].

PROPOSITION 30. For an algebra A with A as its underlying set, (BDec A, <, *)
is isomorphic to the sub-oMpP (Fact A,<,*) of (Fact A,<,) consisting of all
factor pairs (01,02) where both 01,05 are congruences.

For relational structures and topological spaces, the situation is similar (see [14,
Theorem 4.4 and 4.6]). A decomposition consists of a finite sequence of relational
structures or topological spaces, and an isomorphism or homeomorphism, as the
case may be, betweem the original structure and the product of this family of
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structures. Exactly as above, one obtains a structure (BDec A, <,x) for any
relational or topological structure A.

PROPOSITION 31. If A is a relational structure (topological space) with under-
lying set A, then (BDec A, <,x) is isomorphic to the sub-oMP (Fact A, <, %) of
(Fact A,<,x*) consisting of all factor pairs (01,62) for which there are relations
(topologies) on A0y and A/0y making A naturally isomorphic (homeomorphic) to
their product.

To be precise, the above result requires the underlying set of the structure to
be non-empty, and for relational structures, we require also that the relation on
the set be non-empty. Next, some examples.

EXAMPLE 32. Consider a vector space V. As all congruences of V permute and
congruences of V correspond to subspaces of V, it follows that Fact V is isomorphic
to the collection of all ordered pairs (S1,S2) of subspaces of V satisfying S1NSy =0
and S + Sy = V. The unary operation on such pairs is given by (S1,S52)* =
(Sa, S1), the partial ordering is given by (S1,S2) < (T1,T%) if S1 C Ty and Ty C Ss,
and orthogonal joins are given by (S1,S2) ® (T1,Te) = (S1 + 11, S N T3).

EXAMPLE 33. For a ring R, if we consider R to be a left R-module Rg over
itself, then Fact Ry is isomorphic to the OMP of idempotents E(R) of the ring
R. This oMP E(R) has been well studied and is known as the logic of idempotents
of R [8, 25]. In it, the orthocomplement e* is given by 1 —e, we have e < f ife, f
commute and ef = e, and orthogonal joins are given by e ® f = e+ f.

There are many examples where the decompositions of a structure that has a
mix of algebraic, relational and topological features form an oMP. One case of
obvious interest is that of a Hilbert space.

EXAMPLE 34. A Hilbert space H consists of a vector space with an inner prod-
uct associating a real or complex number to each pair of vectors in H. There is a
standard definition of the product Hy1 x Ho of two Hilbert spaces where the inner
product on Hy X Hy is the sum of the componentwise inner products. So we may
define the structure BDec H as above. Equivalence classes of binary decomposi-
tions of H correspond to closed subspaces of H. To see this we observe that each
closed subspace A of H gives a decomposition H ~ A x A+ as described in the in-
troduction, and for each decomposition H ~ Hy x Ha we have that {(a,0)|A € H1}
gives a closed subspace of H. Upon examining the definitions of < and x, it follows
that the structure BDec H is isomorphic to the familiar OML of closed subspaces

of H.
A related example is worthwhile examining.

EXAMPLE 35. An inner product space £ is a vector space with an inner product
associating to each pair of vectors a real or complex number. Hilbert spaces are
inner product spaces where the metric induced by this inner product is complete.
If one considers incomplete inner product spaces, also known as pre-Hilbert or
Euclidean spaces, it is well known that the closed subspaces no longer satisfy the
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orthomodular law. In fact, having the closed subspaces be orthomodular character-
1zes Hilbert spaces among inner product spaces as is shown by Amemiya and Araki
[1]. This was long used as an argument that orthomodularity captured the essence
of Hilbert space. However, one can obtain an OMP from even an incomplete inner
product space by considering not the closed subspaces, but the splitting subspaces
(see [7]). This is a standard method to construct oMPs. The crucial observation
to make is that these splitting spaces correspond exactly to the direct product de-
compositions of the inner product space. Thus, for an inner product space &, the
structure BDec & 1is isomorphic to the well-known OMP of splitting subspaces of

€.

There are many other examples of structures whose decompositions form OMPs,
such as uniform spaces and topological groups. One gets the feeling that most
familiar mathematical structures have this property. The matter of developing
the theory of these OMPs of decompositions for particular classes of structures lies
essentially wide open, and seems a worthwhile task.

6 COMPATIBILITY OF DECOMPOSITIONS

Here we begin a study of the fine structure of oMps BDec A for a set A. Our
results will apply equally to BDec A for many classes of structures .A. We begin
with several definitions.

DEFINITION 36. For an oMP P, we say a subset S of P is a subalgebra of P if
S'is closed under orthocomplementation and finite orthogonal joins.

Clearly a subalgebra of an oMP P is itself an oMP. So we will often call a
subalgebra S a sub-omPp of P.

DEFINITION 37. A subalgebra S of an oMP P is called a Boolean subalgebra of
P if, when considered as an oMP, S forms a a Boolean algebra.

By definition, any two elements in a Boolean subalgebra B of an OMP P have
a join and meet in B. One might ask whether these elements also have a join and
meet in P. Fortunately, the situation works out as nicely as one would hope.

PROPOSITION 38. If B is a Boolean subalgebra of an oMP P, then any two
elements of B have a join and meet in P, and these agree with the join and meet
taken in B.

Characterizing the Boolean subalgebras of BDec A, and its alter ego Fact A,
will be a main task for us. We begin by determining when two elements of Fact A
lie in a Boolean subalgebra. For an account of the following important notion, see
[36].

DEFINITION 39. We say elements x,y of an OMP P are compatible if they lie in
a Boolean subalgebra of P.

PROPOSITION 40. For a set A, two elements (01,02) and (¢1, ¢2) of Fact A are
compatible if, and only if, 01,60z, ¢1,¢2 lie in a Boolean subsystem of Eq A. In
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this case, their join and meet are given by

(91702) N ((bla ¢2) = (91 N (bla 92 © ¢2)7
(01,02) A(@1,02) = (01 01,02 N p2).

Further, if (01,602) and (é1,d2) are compatible, the members of 61 o ¢1, 02 o ¢y,
020¢1 and O30 ¢y that are distinct from V are the coatoms of a Boolean subsystem
of Eq A that contains 01,02, ¢1, po.

This result, found in [15, Lemma 3.1], has the following consequence.
PROPOSITION 41. For A a set and B a subset of Fact A, these are equivalent.

1. B is a Boolean subalgebra of Fact A.

2. {0| there is some 0" with (0,0") € B} is a Boolean subsystem of Eq A.

While this yields a workable method to deal with Boolean subalgebras of Fact A,
it is not the kind of insightful characterization we seek. This comes when we pass
back to our object of primary interest, the oMP BDec A of decompositions of A.
Key to translating the above results into results about BDec A is the connection
between finite Boolean subsystems of Eq¢ A and direct product decompositions of
A that was described at the end of Section 3.

PROPOSITION 42. For a set A, two elements of BDec A are compatible if, and
only if, there is a decomposition f : A — Ay X -+ x Ay with the given elements
equal to

[A ~ (A1 X A2) X (Ag X A4)] and [A ~ (A1 X Ag) X (A2 X A4)]
In this case, the join and meet of these elements are given respectively by

[A ~ (A1 X A2 X A3) X A4] and [A >~ A1 X (A2 X A3 X A4)}

Thus, compatible decompositions are ones that are built from a common de-
composition. We then obtain the following characterization of the finite Boolean
subalgebras of BDec A.

PROPOSITION 43. For a decomposition f : A — Ay X --- x A, and S C

{1,...,n},
A~ T4 x ] 4
= jgs
is a binary decomposition of A. The collection of all equivalence classes of such bi-
nary decompositions, where S ranges over all subsets of {1,...,n}, forms a Boolean
subalgebra of BDec A. Further, all finite Boolean subalgebras of BDec A arise in
this manner.

In this result, the product of the empty family is by definition a one-element
set. If we further require that in the decomposition f: A — A; x --- X A, none
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of the factors 4; is a one-element set (whose removal would yield a decomposition
with one fewer factor), then the corresponding Boolean subalgebra BDec A is
isomorphic to the power set of {1,...,n}.

We now turn our attention to infinite Boolean subalgebras of BDec A. The ob-
vious path, that infinite Boolean subalgebras correspond to infinite direct product
decompositions, is clearly not sufficient as countable sets can have no infinite direct
product decompositions. Further, for instances where they do exist, infinite direct
product decompositions will yield only subalgebras of BDec A that are complete
and atomic. We need a more general notion, a type of continuously varying direct
product decomposition known as a Boolean sheaf decomposition. Those familiar
with the closely related notion of Boolean products [6] will have no trouble placing
our treatment in this other context.

DEFINITION 44. A Boolean sheaf S = (S, X,m) consists of two topological
spaces, S and X, and a local homeomorphism 7 : S — X. We often call §
the sheaf space and X the base space. Given any subset U C X we then set

I'U ={f:U — S|f is continuous and 7o f = idy}.

We call members of T'U sections over U. Finally, we call a sheaf a Boolean sheaf
if the base space X is a Boolean space, i.e. a space that is homeomorphic to the
Stone space of a Boolean algebra [2, 6].

For an element z € X, we call S, = 7~!{x} the stalk over x. The requirement
mo f = idy is then equivalent to saying that f(x) € S, for each z € U. Thus
I'U is a subset of the product [], ., Se. Indeed, it is the subset of this product
consisting of all those choice functions that are continuous with respect to the
topologies involved.

PROPOSITION 45. Suppose A is a set, (S, X, ) is a Boolean sheaf, and f : A —
I'X is an isomorphism. Then for each clopen set U C X we have

A~TU xTI'(X - U)

1 a binary direct product decomposition of A. The collection of all equivalence
classes of such binary decompositions, where U ranges over all clopen subsets of
X, forms a Boolean subalgebra of BDec A. Further, all Boolean subalgebras of
BDec A arise in this manner.

This result will be of essential use in the following section where we incorporate
analytic features into the discussion of BDec A. We should note that the various
results in this section lift to the setting of BDec A for various types of structures
A, but in the infinite case it can be a bit delicate to phrase things precisely. We
refer the reader to [15, Section 6] for a complete account. We conclude this section
with a final note of interest.

DEFINITION 46. A subset S of an oMP P is called a compatible set if S is
contained in a Boolean subalgebra of P. The set S is called pairwise compatible
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if every 2-element subset of S is compatible. The oMP P is called regular if every
pairwise compatible subset of P is compatible.

For background on the important notion of regularity see [36].
THEOREM 47. For a set A, the oMp BDec A is reqular.

Again, this result extends to oMPs BDec A for many types of structures A. It
was this way that the regularity of oMPs of splitting subspaces of an inner product
space, and of oMPs formed from idempotents of a ring , was first established. See
[15] for a complete account.

7 DECOMPOSITIONS AND QUANTUM LOGIC

Beside the fact that the structures BDec A provide a rich source of the OMPs
used in quantum logic, we can make a more direct argument that decompositions
are of interest in foundational studies of quantum mechanics. We present an
axiomatic development of what we term an experimental system. Our aim is not
to give a precise definition of the elusive idea of an experiment, but to axiomatize
basic behavior of the collection of experiments of a physical system. One final
introductory comment. The experiments we consider here are intended to be
finitary ones, meaning that each has only finitely many possible outcomes.

DEFINITION 48. A leveled set consists of a non-empty set E together with a
map from F to the natural numbers. The natural number associated to an element
e € E is called the arity of e.

The collection of all experiments F of a physical system naturally forms a leveled
set where the arity of an experiment e € F is the number of possible outcomes of e.
For example, consider the experiment where a particle is sent through a magnetic
device, then follows one of two paths with a detector placed in an appropriate spot
on each path. This experiment has two possible outcomes, either detector 1 goes
off, or detector 2 goes off, and is therefore a binary experiment.

DEFINITION 49. An ordered partition of a natural number n > 1 is a finite
sequence o of pairwise disjoint (possibly empty) subsets of {1,...,n} that cover
{1,...,n}. The number of terms in the sequence is denoted ||c|| and o(¢) denotes
the it term in the sequence.

This notion of ordered partitions is key to our development of an experimental
system. As an example of their intended use, suppose we have an experiment where
a particle is sent through a magnetic device, and depending on whether the particle
is spin +1, spin 0, or spin -1, the particle follows one of three paths. Detectors are
placed along the three paths, and we label the spin +1, 0, -1 outcomes as outcomes
one, two and three, respectively. This describes a ternary experiment e.

If we consider the ordered partition ({1}, {3}, {2}), we intend ({1}, {3}, {2})e to
be the ternary experiment obtained from e by labeling the spin +1, 0, -1 outcomes
as outcomes one, three, and two respectively. Of more interest is applying the
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ordered partition ({1,2},{3}) to e. Here we form a new experiment by placing a
single detector over the spin +1 and spin 0 paths, calling this outcome one, and
leaving in place the detector over the spin -1 path, and calling this outcome two.
The resulting binary experiment is denoted ({1, 2}, {3})e.

DEFINITION 50. Let O be the set of all ordered partitions of natural numbers,
and define a partial binary operation on O as follows. If ¢ is an ordered partition of
n and ¢ is an ordered partition of ||o||, let ¢o be the ordered partition of n whose
it" member is |J{o(j)|j € #(i)}. Finally, define i, to be the ordered partition
({1}, {n}).

Thus ({1,3},{2})({2,4},{1},{5}) = ({2,4,5},{1}), for example. One easily
checks that when defined, this partial binary operation is associative.
DEFINITION 51. An action of O on a leveled set E associates to each n-ary
element e € E and each ordered partition o of n, an ||o||-ary element oe of E such
that (¢o)e = ¢(oe) and ine = e.

Before the definition of an experimental system we require two further defini-
tions.

DEFINITION 52. Let E be a leveled set acted on by O and let e, f be elements
of E. Then f is said to be built from e if there is some o with e = f. A subset
K C E is called compatible if for each finite K’ C K there is some member of E
from which all members of K’ can be built.

Next comes the anticipated link to decompositions.

DEFINITION 53. For aset A, let Dec A be the collection of all equivalence classes
of decompositions of A. Note that Dec A naturally forms a leveled set. Define an
action of @ on Dec A by setting o[f : A — Ay x---x A,] to be the equivalence class
of the obvious ||o||-ary decomposition of A whose i factor is [[{4,|j € o(i)}.

As a simple example, we have that ({1,3},{2})[f : A — A1 x Ay X Aj3] is equal
to [(f1 X f3) X fa: A — (A1 X A3) X Ag]. It is worthwhile to note that for a set K
of equivalence classes of binary decompositions, i.e. for K a subset of BDec A, we
now have two notions of compatibility for K. One is the definition provided above
that requires members of K to be built from a common decomposition. The other
is the usual notion of compatibility in the oMP BDec A. Fortunately, the results
of the previous section show that these notions coincide.

Axioms of an experimental system

DEFINITION 54. An experimental system consists of a leveled set E acted on by
O, a set S, and an embedding D : E — Dec S that satisfies the axioms below.
For convenience, elements of E are called experiments.

Axiom 1 If e is an n-ary experiment, De is an n-ary decomposition.

Axiom 2 D(ce) = o(De) whenever ce is defined.
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Axiom 3 For any K C E, K is compatible if, and only if, D[K] is compatible.

Obviously we could define an experimental system to be a certain type of sub-
algebra of Dec S, and simply eliminate the set E and the embedding D. However,
we feel it is worthwhile to retain a distinction between experiments and decom-
positions, keeping the viewpoint that an experiment induces a decomposition of a
set S associated with the system.

The logic of questions

We develop a type of (partial) logic for the Yes-No experiments of an experimen-
tal system and show that this logic is locally Boolean. In large, the mathematics
of the results here are presented earlier in Section 6, however our terminology,
notation, and context are different, and this can be useful.

DEFINITION 55. Given an experimental system £ = (E, S, D) we let Q(€) be
the set of binary experiments of the system. We call such binary experiments
Yes-No questions, or simply questions, and refer to outcome one of a question as
the Yes outcome, and outcome two as the No outcome.

Results of the previous section immediately give the following.

LEMMA 56. Ife, f are compatible questions, then there is a unique 4-ary exper-
iment g with e = ({1,2},{3,4})g and f = ({1,3},{2,4})g. We call this g the
standard refinement of e, f.

Now the (partial) logical operations we seek.

DEFINITION 57. For e, f compatible questions and g their standard refinement,
we define questions e OR f, e AND f, and NOT e as follows.

1. e or f=({1,2,3},{4})g
2. e AND [ = ({1}7{27374})9
3. Not e = ({2}, {1})e.

Then define a relation IMPLIES on Q(€) by setting e IMPLIES f if e, f are compat-
ible and (NOT €) OR f is the experiment ({1,2,3,4},0)g we call TRUE.

The point here is that we now have an operational interpretation of the join
and meet of compatible questions. Two Yes-No experiments e, f are compatible if
there is a 4-ary experiment g so that e is equivalent to placing a Yes detector over
outcomes 1, 2 of g and a No detector over outcomes 3, 4 of g; and f is equivalent to
placing a Yes detector over outcomes 1, 3 of g and a No detector over outcomes 2,
4 of g. The Yes-No experiment e OR f is equivalent to placing a Yes detector over
outcomes 1, 2, 3 of g and calling outcome 4 of g the No outcome of e OR f. The
Yes-No experiment e AND f is formed by calling outcome 1 of g the Yes outcome,
and placing a single detector over outcomes 2, 3, 4 of g and calling this the No
outome.
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One easily sees that the No outcome of (NOT e) OR f is outcome 2 of g. So
e IMPLIES f holding corresponds to outcome 2 of g being an impossible outcome,
as e IMPLIES [ holding means (NOT €) OR f is equal to TRUE. If we then form a
ternary experiment g’ by ignoring this impossible outcome of g, then e corresponds
to taking the first outcome of g’ as the Yes outcome and the second two outcomes
of ¢’ as the No outcome; while f corresponds to taking the first two outcomes of
g’ as the Yes outcome, and the third outcome of ¢’ as the No outcome. This seems
a sane criteria to say e IMPLIES f.

THEOREM 58. The partial logic on the questions Q(E) satisfies the following
rules of classical logic. For each question e we have

NOT (NOT e) = e, (2)
e OR (NOT ¢) = TRUE. (3)

For each pair e, f of compatible questions we have
NOT (e OR f) = (NOT e) AND (NOT f). (4)
And whenever both sides of the following equation are defined we have equality.
e OR (f AND g) = (e OR f) AND (e OR g). (5)
Other similar identities are easily obtained from these. We say this partial logic is

locally Boolean to express the above properties.

Of course, (2) and (3) are simple consequences of NOT being the orthocomple-
mentation on the oMP Q(£), and condition (4) then follows as OR and AND give the
join and meet of compatible elements. Condition (5) follows as both sides being
defined requires any two of e, f, g to be compatible, hence all three are compatible
as Q(&) is regular, so all three lie in a Boolean subalgebra.

Probabilities

DEFINITION 59. A map p : S — [0,1]™ is called an n-ary probability map on
the set S if D7 pi(s) is either 0 or 1 for each s € S. Prob S denotes the collection
of all n-ary probability maps for all n > 1.

Prob S forms a leveled set where the number associated to p : S — [0,1]™ is n.
DEFINITION 60. Define an action of O on the leveled set Prob S by setting op
to be the ||o||-ary probability map with (op);(s) = > {p;(s)|j € o(i)}.

So if p: S — [0,1]? is a ternary probability map we often write p as (p1, p2, p3)
where each of p1, pa, p3 are maps from S to [0,1]. Then for o = ({2},{1,3}), by
op we mean the binary probability map (p2,p1 + ps3)-

DEFINITION 61. An experimental system with probabilities is given by an ex-
perimental system D : F — Dec S with a map P : E — Prob S that satisfies
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Axiom 4 If e is an n-ary experiment, then Pe is an n-ary probability map.

Axiom 5 P(oe) = o(Pe) for each experiment e and each o of appropriate size.

Often elements of S are called pure states, or simply states, and (Pe);(s) is
called the probability of obtaining the i** outcome of the experiment e when the
system is in state s.

LEMMA 62. If s is a state and Z!e”(Pe)i(s) = 0 for some experiment e, then
gf”(Pf),’(s) = 0 for all experiments f.

The simple proof of this result is found in [16, Lemma 4.4]. States as described
in this lemma are called null states. They are interpreted as being impossible
states of the system.

Observables

Position and momentum are terms used to discuss certain families of compatible
experiments. These are customarily called observable quantities, and the particu-
lar manner in which numerical values are associated with an observable quantity
is called its scaling. Here we define observable quantities and scalings for experi-
mental systems.

DEFINITION 63. An observable quantity is a Boolean subalgebra B of the oMP
Q(€) of questions of the experimental system.

Recall that for a Boolean algebra B, there is a compact Hausdorff space Z
that has a basis of sets that are both closed and open (clopen) such that B is
isomorphic to the clopen sets of Z. The space Z is called the Stone space of B
[2]. The elements of Z are maximal proper filters of B, and the clopen subsets of
Z are exactly the ones of the form e* = {F € Z|e € F'}, where e € B. In addition
to the topology on Z, there is a o-algebra of subsets of Z generated by the clopen
sets. Measures and measurable functions on Z are understood to be with respect
to this o-algebra.

DEFINITION 64. A scaling of an observable quantity B is a real random variable
on the Stone space of B, or in other words, a measurable function from the Stone
space of B to the extended reals [—o0, 50].

We require the following results from [16, Section 5] to flesh out our treatment
of observables, scalings and states.

PROPOSITION 65. For each state s that is not null, the map s : Q(€) — [0, 1]
defined by

Ps(e) = (Pe)i(s)
is a finitely additive state (in the sense of [36]) on the omP Q(E). Further, if B
18 an observable quantity, there is a unique probability measure us on the Stone
space of B satisfying

ps(€") = 1s(e)
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for each e € B.
We introduce some terminology that exhibits our intended interpretation.

DEFINITION 66. Suppose f is a scaling of an observable quantity B and s is a
state that is not null.

1. For a Borel subset U of the reals, we call u(f~U) the probability that a
measurement of the observable B will yield a value in the Borel set U under
the scaling f when the system is in state s.

2. We call [ » fdus the expected value of the observable B under the scaling f
when the system is in state s.

Finally, we develop a calculus of scalings as follows. For any measurable map ¢
on the reals, define ¢(f) to be the scaling p o f.

An easy finite example is of use.

EXAMPLE 67. Consider the observable quantity B = {FALSE, TRUE, e, NOT e}
where FALSE, TRUE are the bounds of Q(E). Note, B has two mazximal proper
filters, eT and NOT eT, hence the Stone space Z of B is the two-element discrete
space {eT, NOT el}. For a state s that is not null, the measure us is is given by
us({e1}) = vse = (Pe)1(s), the probability of obtaining a Yes outcome to e when
the system is in state s, and ps({NOT e 1}) is the probability of obtaining a No
outcome. The scaling f(eT) = 1.2 and f(NOT e1) = 1.7 associates the value 1.2
to a Yes outcome and the value 1.7 to a No outcome. The expected value when the
system is in state s is given by fZ fdus = 1.2 (the probability of a Yes outcome)+
1.7 x (the probability of a No outcome).

Of course, we should connect our treatment of observables and scalings to what
is done in the standard treatment of quantum mechanics, where an observable
quantity and its scaling are collectively given by a self-adjoint operator A on the
underlying space H of the system. The key result will be the following.

PROPOSITION 68. Let ¢ be a Boolean algebra homomorphism from the Borel
subsets of the reals to an observable quantity B. Then the map f from the Stone
space of B to the extended reals defined by

f(F) =1inf{\ € Rlp(—o0, \] € F}

s both continuous and measurable, so in particular is a scaling.

The standard Hilbert space model

We consider the standard quantum model based on a Hilbert space H, place
this in the context of an experimental system with probabilities, and consider
observable quantities and scalings both from the perspective of the Hilbert space
model, and from the perspective of the experimental system built from this Hilbert
space.
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DEFINITION 69. For a Hilbert space H, define a set E of experiments, a set S
of states, a mapping D : E — Dec S and a mapping P : E — Prob S as follows.

1. F is all finite sequences (P, ..., P,) of pairwise orthogonal projection oper-
ators that sum to the identity.

2. S is the underlying set of the Hilbert space H.

3. D(P,...,P,) the direct product decomposition of H as the product of the
ranges of the projections Py, ..., P,.

1Pis|?
4. P(Pl,,Pn)z(S) = ||;H2

for each s # 0.

Note E is a leveled set where the natural number associated to (Pi,...,P,) is
n, and that there is a natural action of O on E given by summing projection
operators.

One easily obtains the following.

PROPOSITION 70. For H a Hilbert space, Ex = (E, S, D, P) is an experimental
system with probabilities whose only null state is the zero vector of 'H.

We have seen the following result earlier in Example 34.

PROPOSITION 71. For H a Hilbert space, the questions Q(Ex) of the system Ex
1s isomorphic to the OML of closed subspaces of H.

In the standard quantum model, it is assumed that to each observable there
corresponds a self-adjoint operator on H (but not conversely!). If A is such a self-
adjoint operator, then its spectral measure ¢ is a o-complete homomorphism from
the Borel subsets of the reals to a complete Boolean subalgebra B of Proj H.
Thus B is a Boolean subalgebra of Q(&), hence an observable quantity of our
experimental system &, and Proposition 68 shows that this homomorphism ¢ gives
a scaling of the observable quantity B. So each observable of the standard quantum
model gives a self-adjoint operator on H, which in turn gives an observable quantity
and scaling of the experimental system .

physical c self-adjoint
observables - operators on H

observable quantities

C
= and scalings of &y

None of the reverse implications will generally hold. Of course, what is crucial is
that the standard approach to observables and the experimental system approach
give the same results for those observables they do share (or at least for the ones
that do correspond to actual physical observables).
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THEOREM 72. Suppose A is a self-adjoint operator on the Hilbert space H whose
spectral measure is @, and that B is the observable quantity and f the scaling of
the experimental system Ey given by A. Then for any state s that is not null, and
any Borel subset U of the reals we have the following.

1. The probability that a measurement of the observable yields a result in U
when the system is in state s is the same whether computed in the standard
way using A and its spectral measure ¢, or computed in the experimental
system Ey using the scaling f and the measure s on the Stone space of B.

2. The expected value is the same whether computed in the standard way using
A and its spectral measure v, or computed in the experimental system Ep
using the scaling f and the measure us on the Stone space of B.

A more detailed account of this matter is given in [18], but at heart this is noth-
ing more than a well-developed (but possibly unfashionable) part of the spectral
theory of self-adjoint operators [21].

Observables and decompositions

We conclude this section by giving operational motivation for using Stone spaces
and Boolean sheaves in the treatment of observable quantities and their scalings.

EXAMPLE 73. The situation for a measurement of a finitary observable quantity,
such as measurement of the spin of a particle that has three possibilities for its spin,
1s described in Example 67. One conducts a ternary experiment e that tests spin;
then the questions built from e form an 8-element Boolean subalgebra B of Q(E);
the Stone space Z of B has three elements that correspond to the outcomes of e;
for a state s the measure s on Z is a point charge that gives the probabilities of
these outcomes when the system is in state s; and a scaling f is just a way to
associate numerical values to these outcomes, such as calling them spin —%, 0, %

In the finitary case, the following is a dictionary for an observable quantity B,
its Stone space Z, a scaling f and the measure s for a state s.

B = All Yes-No questions built from a single n-ary experiment e.
Z = The discrete space whose points correspond to outcomes of e.
f = A map assigning numerical values to the outcomes of e.

Lhs A point charge on Z giving probabilities of the outcomes in state s.

We move to the general case of observable quantities that are not finitary.

EXAMPLE 74. For an observable quantity such as position, the situation is much
different. Fven in classical mechanics, the best one can do is test whether a par-
ticle lies in a given interval (we deal here with position in one-dimension for con-
venience). The idea of associating a single real number to position is an ideal
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representing a limiting process of a family of ever finer questions. These ideal
questions can never be realized, only approximated.

Suppose the observable quantity for position is the Boolean subalgebra B of the
oMP Q(&) of questions of the system. Then these ideal questions for position are
mazximally consistent families of questions in B. But these maximally consistent
sets of questions are exactly the maximal proper filters of B, or in other words,
the points of the Stone space of B. A scaling f assigns numerical values to these
ideal questions, and for a state s the measure pus is a probability distribution on
these ideal questions.

These ideal questions can never be experimentally tested, only approrimated.
This is reflected in the topology of the Stone space Z by the fact that each ideal
question has a neighborhood basis of clopen sets, and it is exactly these clopen sets
that correspond to the questions that can be conducted. For such a clopen set K,
the measure pus(K) is then the probability that when the system is in state s the
question corresponding to K will yield a Yes answer.

In the general case, the following is a dictionary for an observable quantity B,
its Stone space Z, a scaling f and the measure pu, for a state s.

B = A Boolean algebra of compatible questions. Operationally the
meaning of position is that it is the answer to a certain type of
question, namely a question that asks whether a thing is in a
certain interval.

Z = A topological space whose points are the maximally consistent sets
of questions of B, or in other words, ideal questions of the system.
The topology on Z has as a basis clopen sets that correspond to
the questions which are used to approximate these ideal questions.

f = A map assigning numerical values to the ideal questions.

s = A probability distribution on the ideal questions so that for any
clopen set K corresponding to an actual question e, the measure
of K is the probability of obtaining a Yes outcome to e when in
state s.

This chapter centers around the idea that a question e will yield a decomposition
S ~ S, x S of the state space. How then do these ideal questions, built through
a limiting process of actual questions, relate to decompositions? The answer is
a well-known part of sheaf theory [38]. For an ideal question F, let Sp be the
limit (in the precise categorical sense) of the directed family S, where e ranges
over F'. Then the sheaf space for the continuously varying decomposition given
by the Boolean sheaf for B (see Section 6) is built by topologizing the union of
the sets Sp where F' ranges over all points in the Stone space of B. Thus, not
only are ideal questions for position built through limiting processes, so also is the
decomposition of the state space.
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PROPOSITION 75. Suppose B is an observable quantity of an experimental sys-
tem.

1. If B is finitary and given by an n-ary experiment e, then B induces an n-ary
direct product decomposition S ~ S1 X -+ X Sp,.

2. In general, B induces a decomposition of S as the continuous members of
th duct Sk where Sp = lim S,.
e produc FI;IZ r where Sp = lim S

So in the general case, not only are the points F of the indexing set Z constructed
through a limiting process, but so also are the stalks Sp of the product.

A concluding example shows that in certain practical situations, this use of
Stone spaces can allow more realistic treatments of measurements.

EXAMPLE 76. Consider a measurement of the energy of a system whose energy
can take the values An? where X\ is a constant and m ranges over the natural
numbers. Surely a single experiment can determine only whether the energy takes
on one of finitely many specified values. It does mot seem possible to construct
an experiment to determine whether the energy belongs to {\n?|n is odd }. The
Boolean algebra of questions for such energy measurements will be isomorphic to
the set of all finite subsets of the natural numbers and their complements. Its Stone
space is the one-point compactification of the natural numbers, with this extra point
being an ideal outcome oo of infinite energy. The clopen sets of this Stone space
are exactly the ones that are either finite and do not contain oo, or infinite and do
contain oo, corresponding exactly to our conception of the possible questions. For
any state s, the measure ps will vanish on {oco}, reflecting the fact that this ideal
outcome is not possible.

To conclude this section, note that the standard Hilbert space treatment of the
experiment in the above example forces us to deal with questions such as the one
asking if energy lies in {\n?|n is odd }. Likely this causes no harm, but we should
be aware that in many respects this Hilbert space model is not such a tight fit.

8 FURTHER RESULTS AND OPEN PROBLEMS

Here we briefly describe some additional results on decompositions, and present a
few open problems whose solution would advance the study of the subject.

Which OMPs arise as Fact A?

One might hope that every oMP arises as Fact A for some structure A, or
at least that every OMP can be embedded into Fact A for some set A. Here an
oMP-embedding is a one-one map that preserves orthocomplementation and finite
orthogonal joins. The following shows this hope is not realized, but the situation
may in fact be more interesting.
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THEOREM 77. There is a finite OMP that can’t be embedded in Fact A for any
set A.

One such OMP is presented in [14] where it was further shown that this same
OMP provided the first example of an OMP that cannot be embedded into an OML.
In unpublished work, further methods of constructing OMPs not embeddable in
Fact A are given, and again none of these can be embedded in an OML.

OPEN PROBLEM 78. For an oMP P are these equivalent?
1. P can be embedded into Fact A for some set A.

2. P can be embedded into an OML.

The following result from [17] points to some of the difficulties in this problem.

THEOREM 79. There is a finite OMP that cannot be embedded into Fact A for
any finite set A, but can be embedded into Fact A for an infinite set A.

This result is established by finding a stateless oMP P that can be embedded
into Flact A for A infinite, and noting that for every finite set A that Fact A has
at least one state. One additional problem on this topic is prompted by the earlier
result that each OMP Fact A is regular.

OPEN PROBLEM 80. Characterize those OMPs that can be embedded into a
regular OMP. In particular, can every OMP be embedded into a regular omMp?

Fact A and BDec A in a more general setting

A relation algebra (R,o,—1,A) is a type of algebra modeled after the algebra
(Pow X x X,0,—1,A) of all binary relations on a set X. Relation algebras were
introduced by Tarski [39] and have been extensively studied since. We define z € R
to be an equivalence element if A < 2 = 27! = z o 2, and call an ordered pair of
equivalence elements (x,z’) a factor pair if z A2’ = A and x o2’ = 1. We then
set R to be the set of all factor pairs of R and define < and * on R in a way
obviously similar to the way these are defined on Fact A in Definition 18.

THEOREM 81. For a relation algebra R, the structure (R(Q), <,x) is a regular
OMP.

This clearly generalizes the construction of Fact A. For another modification,
consider the situation for Fact V where V is a vector space. The congruences of V
correspond to subspaces of V, and as all congruences of ¥V permute, the elements
of Fact V correspond to ordered pairs of complementary elements of the modular
lattice of subspaces of V. This can be extended as follows.

THEOREM 82. For a bounded modular lattice M, let M) be the set of ordered
pairs of complementary elements of M. Define (x,2')* = (¢/,z) and set (z,z') <
(y,y) if v <y andy < a'. Then (M®), < %) is a reqular OMP.

As it stands, the omps arising as M(?) for some modular lattice M can be
shown [14] to be a special case of those of the form R(?) for some relation algebra
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R. However, Mushtari [32] independently discovered the above result in a more
general setting — the lattice M needn’t be modular, only M-symmetric and M*-
symmetric, provided one considers those complementary pairs that are modular
and dual modular pairs.

OPEN PROBLEM 83. Compare the generality of the following constructions.
1. Fact A for a set A.
2. R® for a relation algebra R.
3. M® for an M-symmetric and M*-symmetric lattice M.

In particular, are there OMPs that can be embedded into one produced by one of
these constructions and not another?

Looking at our definition of BDec A, one sees easily that it is an essentially
categorical definition at heart. In [18] we define the notion of an honest category
as one that has finite products and for certain ternary products A x B x C, the
obvious diagram built from A x B x C, A x B, B x C, B is a pushout.

THEOREM 84. For an object A in an honest category C, the structure BDec A
s a generalization of an OMP known as an orthoalgebra.

While this result gives the first steps toward developing a categorical treat-
ment of decompositions, it seems highly likely that improvement is possible. In
particular, if the following can be achieved, it would seem worthwhile.

OPEN PROBLEM 85. Develop a categorical treatment of BDec A that includes
sets, algebras, topological spaces, as well as the constructions R and M®) de-
scribed above, and produces regular OMPs as a result.

Fact A for specific structures A

Consider Fact L for a bounded lattice L. It is easily seen that the decompo-
sitions of £ correspond to central elements of £, so Fact L is isomorphic to the
center of £ and is therefore Boolean. This obviously extends to any algebra with
a lattice reduct, or more generally, to any algebra with a distributive congruence
lattice. Similarly, for a ring R we have Fact R is isomorphic to the central idempo-
tents of R, and therefore is Boolean. Deep results for binary relational structures
[29, Theorem 5.18] show that any connected poset P has the strict refinement
property [29, pg. 312], and therefore Fact P is Boolean. So there are a good
number of classes of structures where Fact A is Boolean, and for these structures
the behaviour of Fact A is obviously well understood. However, there are many
classes of structures, including many common ones, where Fact A need not be
Boolean, and here here there is very little known about the structures Fact A.

OPEN PROBLEM 86. Further develop the theory of Fact A as it applies to
familiar structures such as groups, vector spaces, graphs, and topological spaces.

One type of structure with a non-trivial theory of decompositions has been
studied in some detail. These are normed groups with operators whose basic theory
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is developed in [14]. These consist of groups G, perhaps with additional operators
in the sense of van der Waerden [40], with a map || - || : G — [0, 00) that satisfies
(i) llz]l = 0 i, and only if, & = 0, (ii) [l2]) = | — |, and (iti) [+ yl| < [le]| + [}
We have written the group structure additively, but these groups need not be
abelian. These structures admit an algebraic and topological theory similar to
that of Hilbert spaces, and have ties to experimental systems with probabilities.

OPEN PROBLEM 87. Develop further the theory of decompositions of normed
groups with operators.

Experimental systems

There is likely much more that can be done in the development of the notion
of an experimental system with probabilities, especially if one begins restricting
somewhat the types of examples we have in mind.

OPEN PROBLEM 88. Develop further the theory of experimental systems with
probabilities. In particular, examine the possibilities for a dynamics, and a treat-
ment for compound systems.

9 CONCLUSIONS

Perhaps it is poor form, but I will present a few of my own opinions. First, OMPs
are a generalization of the structures Flact A much the way that modular lattices
are generalizations of lattices of permuting equivalence relations. To me, this
connection to such a basic principal as direct product decompositions goes far in
explaining why the orthomodular law leads to such interesting mathematics.

Second, I believe decompositions are a primitive notion, and a development of
their properties is overdue.

Finally, I seem to periodically change my opinion whether orthomodularity has
anything substantial to do with quantum mechanics. But I have grown to believe
that if such a connection exists, it is due to an underlying connection between
direct product decompositions and quantum mechanics.
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