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Abstract. We show that the variety generated by the three-element Heyt-

ing algebra admits a meet dense, regular completion even though it is not

closed under MacNeille completions.

1. Introduction

We recall that an embedding of one ordered structure into another is called a
regular embedding if it preserves all existing joins and meets, and a meet dense
embedding if every element of the co-domain is a meet of elements of the image.
It is the purpose of this note to prove the following.

Main Theorem. Every algebra in the variety V (3) generated by the three-
element Heyting algebra can be embedded into a complete algebra in V (3) via
an embedding that is both regular and meet dense.

Our primary interest in this result is that it provides an example of a variety
that admits a regular completion, but is not closed under MacNeille completions.
While there must surely be other examples, this one involves a particularly simple
variety. This result may also be of interest in the study of Heyting algebras, and
it yields the completeness with respect to algebraic semantics [8] of the predicate
logic associated with the three-element Heyting algebra.
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2. Preliminaries on Stone algebras

A Stone algebra is a pseudocomplemented distributive lattice L that satisfies
x∗ ∨ x∗∗ = 1. An element x ∈ L is central if x = x∗∗ and dense if x∗ = 0. The
central elements form a subalgebra of L called the center, and the dense elements
are a filter of L. The standard representation x = x∗∗ ∧ (x ∨ x∗) is the unique
representation of x as the meet of a central element c and a dense element d with
c∗ ≤ d. Further, for b, c central and d, e dense, we have b ∧ d ≤ c ∧ e if, and only
if, b ≤ c and d ≤ c∗ ∨ e. The reader should consult [1, 4, 5] for background.

Definition 1. A dual generalized Boolean algebra is a distributive lattice D with
top element 1 such that each interval [d, 1] in D is complemented.

For convenience, we include a proof of the following known results.

Proposition 2.1. The members of V (3) are exactly the Stone algebras whose
dense sets are dual generalized Boolean algebras. Further, the Stone algebra
homomorphisms between members of V (3) are exactly the Heyting algebra ho-
momorphisms.

Proof. Let A ∈ V (3) with dense set D. As 3 satisfies x∗ ∨ x∗∗ = 1, so does A,
so A is a Stone algebra. For f in the interval [d, 1] of D set g = f → d. By basic
properties of Heyting algebras g belongs to the interval [d, 1] and f ∧ g = d. As
3 satisfies the identity (x∨ x∗)∨ [(x∨ x∗)→ (y ∨ y∗)] = 1, so does A, and as f, d
are dense it follows that f ∨ g = f ∨ (f → d) = 1. So D is a dual generalized
Boolean algebra.

Conversely, supposeA is a Stone algebra whose dense setD is a dual generalized
Boolean algebra. For x, y ∈ A with y ≤ x, let xy be the complement of x ∨ y∗ in
the interval [y ∨ y∗, 1] of D. In [1, pg. 167] it is shown that xy ∧ (x∗ ∨ y∗∗) is the
pseudocomplement of x in [y, 1], hence is x → y. It follows that A is a Heyting
algebra. To see A belongs to V (3), suppose S is a subdirectly irreducible Heyting
algebra and ϕ is a Heyting algebra homomorphism from A onto S. As S is a
subdirectly irreducible Heyting algebra, the top element 1 of S is join irreducible,
and as x∗ ∨ x∗∗ holds in A, it holds in S. So for each s ∈ S we have that either
s∗ = 1 or s∗∗ = 1. Suppose s is a non-zero element of S and a ∈ A is such that
ϕ(a) = s. As a = a∗∗ ∧ (a∨ a∗), we have s = ϕ(a)∗∗ ∧ϕ(a∨ a∗). As s is non-zero
and s ≤ ϕ(a)∗∗ we have ϕ(a)∗∗ = 1, so s = ϕ(a∨a∗). So each non-zero element of
S is the image of a dense element of A. Therefore the non-zero elements of S are
a dual generalized Boolean algebra. But the top element of S is join irreducible,
and it follows that S has at most two non-zero elements. Thus S is the one, two
or three-element Heyting algebra.
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For the further remark, suppose ϕ : A→ B is a Stone algebra homomorphism
between members of V (3). We must show ϕ preserves implication. It is sufficient
to show this in the case that y ≤ x ∈ A. From above, x→ y = xy ∧ (x∗∨y∗∗). As
ϕ preserves the lattice operations and the pseudocomplement, to show ϕ(x→ y)
equals ϕ(x) → ϕ(y), it is sufficient to show ϕ(xy) is equal to ϕ(x)ϕ(y). But
this follows as xy is the complement of x in the interval [y, 1], so ϕ(xy) is the
complement of ϕ(x) in the interval [ϕ(y), 1]. �

The following result is similar in nature to [5, Theorem 5, pg. 900].

Lemma 2.2. For a Stone algebra L with center C, dense set D, and S ⊆ L, the
meet of S in L exists and has standard representation c∧d if, and only if, both of

(1) c = max{b ∈ C|there exists e ∈ D with b ∧ e a lower bound of S}.
(2) d =

∧
D{c∗ ∨ s|s ∈ S}.

We next consider when an embedding of Stone algebras is meet dense and
regular.

Lemma 2.3. Suppose L ≤ L1 are Stone algebras with centers C ≤ C1 and dense
sets D ≤ D1 such that

(1) C ≤ C1 is meet dense.
(2) D ≤ D1 is meet dense and meet regular.
(3) Beneath each non-zero element of L1 is a non-zero element of L.

Then L ≤ L1 is regular and meet dense.

Proof. Let x ∈ L1. Then x = c ∧ d for some c ∈ C1 and d ∈ D1. As C ≤ C1

and D ≤ D1 are meet dense c =
∧

C1
S for some S ⊆ C and d =

∧
D1
T for

some T ⊆ D. The center is a meet regular sublattice of any Stone algebra, and
the dense set is a regular sublattice of any Stone algebra, so c =

∧
L1
S and

d =
∧

L1
T . It follows that c ∧ d =

∧
L1

(S ∪ T ), showing that L ≤ L1 is meet
dense. As any meet dense embedding is join regular, L ≤ L1 is join regular.

It remains to show L ≤ L1 is meet regular. Suppose S ⊆ L and the meet of S
in L exists and has standard representation c ∧ d. Set

X = {b ∈ C|there exists e ∈ D with b ∧ e a lower bound of S},

Y = {β ∈ C1|there exists ε ∈ D1 with β ∧ ε a lower bound of S}.
By Lemma 2.2 c = maxX and d =

∧
D{c∗ ∨ s|s ∈ S}. Surely X ⊆ Y and as D1

is a filter of L1 one sees that Y is an ideal of C1. Suppose β ∈ Y with c ≤ β and
let ε ∈ D∗ be such that β ∧ ε is a lower bound of S. If c < β, then (β ∧ c∗) ∧ ε is
a non-zero element of L1. So there is a non-zero element b∧ e in L lying beneath
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it. Then 0 < b ≤ c∗. But b ∧ e lies beneath the lower bound β ∧ ε of S, so b ∧ e
is a lower bound of S, giving b ∈ X . This contradicts the fact that c = maxX ,
and it follows that c is the maximum of Y as well. Then as d =

∧
D{c∗ ∨ s|s ∈ S}

and D ≤ D1 is meet regular, we have d =
∧

D1
{c∗ ∨ s|s ∈ S}. It follows from

Lemma 2.2 that S has a meet in L1 and that c∧ d is the standard representation
of this meet. �

We recall a few facts about the triple construction of Chen and Grätzer [4, 5].

Definition 2. A triple (C,D,ϕ) is a Boolean algebra C, a distributive lattice D
with largest element, and a bound preserving lattice homomorphism ϕ from C to
the filter lattice of D.

For a Stone algebra L with center C and dense setD we obtain a triple (C,D,ϕ)
by setting ϕ(c) to be the filter of dense elements lying above c∗. The following
result of Chen and Grätzer [4] shows all triples arise this way.

Theorem 2.4. For a given triple, there is up to isomorphism a unique Stone
algebra whose triple is the given one. We call this the Stone algebra for the triple.

Chen and Grätzer also described homomorphisms in terms of triples. We need
the following consequence of their results.

Lemma 2.5. Suppose (C,D,ϕ) and (C1, D1, ϕ1) are triples such that
(1) C is a subalgebra of C1,
(2) D is a meet-dense subalgebra of D1 having the same top element,
(3) ϕ1(c) ∩D = ϕ(c) for each c ∈ C.

Then the algebra for (C,D,ϕ) is a subalgebra of that for (C1, D1, ϕ1).

Proof. This will follow from [4, Theorem 1, pg. 891] if we can show that for
each c ∈ C and d ∈ D that the least element e in ϕ(c) that lies above d is also
the least element in ϕ1(c) that lies above d. As ϕ(c) ⊆ ϕ1(c) we have that e is
an element of ϕ1(c) above d. Suppose δ is an element of ϕ1(c) above d and that
f is an upper bound of δ with f ∈ D. Then as ϕ1(c) is a filter, f belongs to
ϕ1(c)∩D = ϕ(c), and f lies above d, so e ≤ f . As D ≤ D1 is meet dense and all
upper bounds of δ in D lie above e we have e ≤ δ. So e is the least element of
ϕ1(c) above d. �

3. Extending a triple

In the following we use the fact that for any distributive lattice D, there is a
Boolean algebra called the free Boolean extension of D [1, pg. 97] that contains
D as a sublattice, is generated by D, and preserves any existing bounds in D.
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Proposition 3.1. For (C,D,ϕ) a triple and M the MacNeille completion of the
free Boolean extension of D the map

ϕ̃(c) =
∧

M ϕ(c∗)

is a homomorphism from C to M with ϕ(c) = ϕ̃(c∗)↑ ∩D for each c ∈ C.

Proof. As ϕ is a bounded homomorphism from C to the filter lattice of D we
have ϕ(1∗) = ϕ(0) is the smallest filter {1} of D, and ϕ(0∗) = ϕ(1) is the largest
filter D of D. Also, ϕ(b∗ ∧ c∗) = ϕ(b∗)∧ϕ(c∗) and as the meet in the filter lattice
is given by intersection, ϕ(b∗ ∧ c∗) equals {d ∨ e|d ∈ ϕ(b∗), e ∈ ϕ(c∗)}. Similarly
ϕ(b∗∨ c∗) = ϕ(b∗)∨ϕ(c∗), and as the join in the filter lattice is given by the filter
generated by the union, ϕ(b∗ ∨ c∗) equals {d ∧ e|d ∈ ϕ(b∗), e ∈ ϕ(c∗)}.

We first show that ϕ̃ preserves bounds. Note ϕ̃(1) =
∧

M ϕ(1∗) =
∧

M{1} = 1.
Also, as the meet of D in its free Boolean extension is zero, and the MacNeille
completion preserves existing joins and meets, ϕ̃(0) =

∧
M ϕ(0∗) =

∧
M D = 0.

Having established that ϕ̃ is a bound preserving map between Boolean algebras,
to show it is a Boolean homomorphism it suffices to show that it preserves finite
joins and meets. Suppose b, c ∈ C. Then

ϕ̃(b ∧ c) =
∧

M ϕ(b∗ ∨ c∗)

=
∧

M{d ∧ e|d ∈ ϕ(b∗), e ∈ ϕ(c∗)}
=

∧
M{d|d ∈ ϕ(b∗)} ∧

∧
M{e|e ∈ ϕ(c∗)}

= ϕ̃(b) ∧ ϕ̃(c).

And to show that ϕ̃ preserves finite joins, we make a similar calculation and use
the complete distributivity of the complete Boolean algebra M .

ϕ̃(b ∨ c) =
∧

M ϕ(b∗ ∧ c∗)

=
∧

M{d ∨ e|d ∈ ϕ(b∗), e ∈ ϕ(c∗)}
=

∧
M{d|d ∈ ϕ(b∗)} ∨

∧
M{e|e ∈ ϕ(c∗)}

= ϕ̃(b) ∨ ϕ̃(c).

It remains to show that ϕ(c) = ϕ̃(c∗)↑ ∩D for each c ∈ C. Suppose a ∈ ϕ(c).
Then ϕ̃(c∗) =

∧
M ϕ(c) ≤ a, so a belongs to ϕ̃(c∗)↑ ∩D, giving ϕ(c) ⊆ ϕ̃(c∗)↑ ∩D.

For the converse, let a ∈ ϕ̃(c∗) ∩D. So a belongs to D and
∧

M ϕ(c) ≤ a. Note
ϕ(c) and ϕ(c∗) are complements in the filter lattice, so the meet of these filters is
the smallest filter {1}. So for any d ∈ ϕ(c) and e ∈ ϕ(c∗) we have d ∨ e = 1, so
in M we have e∗ ≤ d. Thus for each e ∈ ϕ(c∗), we have e∗ is a lower bound in
M of ϕ(c), hence e∗ ≤

∧
M ϕ(c) ≤ a. As ϕ(c) and ϕ(c∗) are complements in the

filter lattice, their join in the filter lattice is the largest filter D, and as a ∈ D, it



654 JOHN HARDING

follows that a = d ∧ e for some d ∈ ϕ(c) and e ∈ ϕ(c∗). Then as e ∈ ϕ(c∗), we
have that e∗ ≤ a ≤ e, and this gives e = 1. So a = d ∧ 1 = d, and as d ∈ ϕ(c) we
have a ∈ ϕ(c). �

Proposition 3.2. For C a Boolean algebra, B a bounded distributive lattice, E
a filter of B, and ψ : C → B a bound preserving lattice homomorphism, the map

ψ̂(c) = ψ(c∗)↑ ∩E

is a bounded lattice homomorphism from C to the filter lattice of E.

Proof. Note that ψ̂(0) = ψ(1) ↑ ∩E = {1} is the smallest filter of E and
ψ̂(1) = ψ(0) ↑ ∩E = E is the largest filter of E, so ψ̂ preserves bounds. For
b, c ∈ C we have ψ̂(b ∧ c) = (ψ(b∗) ∨ ψ(c∗))↑ ∩E = (ψ(b∗)↑ ∩E) ∩ (ψ(c∗)↑ ∩E),
so ψ̂ preserves finite meets. For finite joins, note ψ̂(b ∨ c) = (ψ(b∗) ∧ ψ(c∗))↑ ∩E
is clearly a filter of E containing both ψ(b∗)↑ ∩E and ψ(c∗)↑ ∩E. We must show
it is the least such filter. Suppose e belongs to (ψ(b∗) ∧ ψ(c∗)) ↑ ∩E. Then as
ψ(b∗) ∧ ψ(c∗) ≤ e we have e = (ψ(b∗) ∨ e) ∧ (ψ(c∗) ∨ e), and as E is a filter both
ψ(b∗)∨e and ψ(c∗)∨e belong to e. Thus e is the meet of an element of ϕ(b∗)↑ ∩E
and one of ψ(c∗)↑ ∩E, hence e belongs to any filter containing these. �

Lemma 3.3. Let (C,D,ϕ) be a triple and M be the MacNeille completion of the
free Boolean extension of D. Suppose further that

(1) B is a Boolean algebra containing C as a subalgebra.
(2) E is a filter of M containing D.

Then there is a triple (B,E, ϕ1) with ϕ(c) = ϕ1(c) ∩D for each c ∈ C.

Proof. By Proposition 3.1 there is a Boolean algebra homomorphism ϕ̃ : C →M

with ϕ(c) = ϕ̃(c∗) ↑ ∩D for each c ∈ C. As M is a complete Boolean algebra,
hence injective [1, pg. 113], and C is a subalgebra of B, there is a homomorphism
γ : B →M with γ(c) = ϕ̃(c) for each c ∈ C. As E is a filter in M , Proposition 3.2
shows that the map ϕ1 from B to the filter lattice of E defined by ϕ1(b) = γ(b∗)↑
∩E is a bounded lattice homomorphism from B to the filter lattice of E. So
(B,E, ϕ1) is a triple, and for c ∈ C we have ϕ(c) = ϕ̃(c∗) ↑ ∩D = γ(c∗) ↑ ∩D =
γ(c∗)↑ ∩E ∩D = ϕ1(c) ∩D. �

We recall that a lattice is called conditionally complete if every non-empty
subset that has an upper bound has a least upper bound, and every non-empty
subset that has a lower bound has a greatest lower bound.

Theorem 3.4. Each algebra in V (3) can be regularly and meet densely embedded
into an algebra in V (3) with a complete center and a conditionally complete dense
set.
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Proof. Suppose L belongs to V (3) has triple (C,D,ϕ). Let B be the MacNeille
completion of C and note that C ≤ B is meet dense. As L belongs to V (3) its
dense set D is a dual generalized Boolean algebra, and therefore a filter in its free
Boolean extension [1, pg. 101]. Let E be the filter of the MacNeille completion
M of the free Boolean extension of D generated by D. Then E is conditionally
complete and E contains D. As the free Boolean extension of D is join and meet
dense in M and D is a filter in its free Boolean extension, D is join and meet
dense in E, hence D is meet dense and meet regular in E.

By Lemma 3.3 there is a triple (B,E, ϕ1) with ϕ(c) = ϕ1(c) ∩ D for each
c ∈ C. Let L1 be the algebra for this triple. Then as D is meet dense in E,
Lemma 2.5 gives that L is a subalgebra of L1. As C is meet dense in its MacNeille
completion B and D is meet dense and meet regular in E, our result will follow
from Lemma 2.3 if we can show that beneath each non-zero element of L1 lies a
non-zero element of L. Suppose b ∧ e is a non-zero element of L1. Then b 6= 0,
and as B is the MacNeille completion of C there is a non-zero element c of C
with c ≤ b. Also, from the definition of E, there is some d ∈ D with d ≤ e. Then
c ∧ d is the required non-zero element of L beneath b ∧ d. �

4. The Main Theorem

We are to show that for an algebra L in V (3), with center C and dense set D,
that L can be regularly and meet densely embedded into a complete algebra in
V (3). Theorem 3.4 shows that we may assume, without loss of generality, that
C is complete and D is conditionally complete. Throughout this section we shall
make these assumptions, and we further let M be the MacNeille completion of
the free Boolean extension of D. We begin with the following simple observation.

Lemma 4.1. For S ⊆ D, c ∈ C and d ∈ D these are equivalent.
(1) c ∧ d is a lower bound of S.
(2) d is a lower bound of {c∗ ∨ s|s ∈ S}.

Recall that we have assumed D is conditionally complete, so any subset of D
that has a lower bound in D has a greatest lower bound in D. We make use of
this in the second part of the following definition.

Definition 3. For S ⊆ D define
(1) X (S) = {c ∈ C|there exists d ∈ D with c ∧ d a lower bound of S}.
(2) d(S, c) =

∧
D{c∗ ∨ s|s ∈ S} for each c ∈ X (S).

Remark. For those familiar with Pierce sheaves or Boolean products [3, 6] the
above definitions can be profitably considered in these terms. The stalks of the
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Pierce sheaf of a Stone algebra L are directly irreducible, hence have all non-zero
elements dense. For S a subset of the dense elements of L, each member of S
gives a global section that is never zero. The set X (S) is an ideal of the center of
L, hence gives an open subset of the Stone space of L. This open set is the largest
one on which S locally has a dense lower bound. For each c ∈ X (S) the dense
element d(S, c) then is the choice function taking value 1 outside of the clopen set
for c, and taking the greatest lower bound of D as its value on c.

Lemma 4.2. If S, T ⊆ D and
∧

M S =
∧

M T then
(1) X (S) = X (T ).
(2) d(S, c) = d(T, c) for each c ∈ X (S).

Proof. It is enough to show that if c ∈ X (S), then c ∈ X (T ), as symmetry
then gives X (S) = X (T ); and that d(S, c) ≤ d(T, c), as symmetry then gives
equality. So it is sufficient to show that if c ∈ X (S) then d(S, c) ≤ c∗ ∨ t for each
t ∈ T as this shows c ∧ d(S, c) is a lower bound of T , hence c ∈ X (T ), and that
d(S, c) ≤ d(T, c).

The key point is that D is a sublattice of both L and M , so for two elements
of x, y of D we may write x ≤L y, or x ≤D y or x ≤M y, and that all these mean
the same. Similar comments hold for x ∨L y, x ∨D y and x ∨M y.

Suppose c ∈ X (S) and t ∈ T . We must show d(S, c) ≤ c∗ ∨L t, or equivalently,
that z ≤ c∗ ∨L t where z = (c∗ ∨L t) ∨D d(S, c). Note that for each s ∈ S

we have d(S, c) ≤D c∗ ∨L s, so z ≤M (c∗ ∨L t) ∨D (c∗ ∨L s) = (c∗ ∨L t) ∨D s.
It then follows that z ≤M

∧
M{(c∗ ∨L t) ∨M s|s ∈ S}, and using the complete

distributivity of M we have z ≤M (c∗∨L t)∨M

∧
M S. As

∧
M S =

∧
M T we have∧

M S ≤M t ≤M (c∗ ∨L t). So z ≤M (c∗ ∨L t) as required. �

Lemma 4.3. D is meet dense in M .

Proof. Let x ∈ M . As noted earlier 0 =
∧

M D, so x = x ∨
∧

M D and using
complete distributivity, x =

∧
M{x ∨ d|d ∈ D}. But D is a filter in its free

Boolean extension and each element of M is a meet of elements of the free Boolean
extension, therefore x ∨ d is a meet of elements of D for each d ∈ D. �

Definition 4. Let x ∈M and suppose S is a subset of D with x =
∧

M S. Define
(1) X (x) = X (S).
(2) d(x, c) = d(S, c) for each c ∈ X (x).

Note that Lemmata 4.2 and 4.3 ensure this is a proper definition.
To construct the completion we desire we use again the results of the previous

section on extending triples. We are happy with the center of our Stone algebra,
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but must modify the dense set. To do so, we require a filter of M to build a new
triple.

Definition 5. Define E = {x ∈M |
∨

C X (x) = 1}.

Lemma 4.4. E is a filter of M that contains D.

Proof. Let x, y ∈ M and set S = {s ∈ D|x ≤ s} and T = {t ∈ D|y ≤ t}. Then
x =

∧
M S and y =

∧
M T so X (x) = X (S) and X (y) = X (T ). Suppose x ∈ E

and x ≤ y. As x ≤ y we have T ⊆ S, and it follows that X (S) ⊆ X (T ). As∨
C X (S) = 1 we then have

∨
M X (y) = 1, so y ∈ E. Suppose x, y ∈ E. Then as∧

M (S∪T ) = x∧y, we have X (x∧y) = X (S∪T ). Suppose b ∈ X (S) and c ∈ X (T ).
Then there are d, e ∈ D with b∧d a lower bound of S and c∧e a lower bound of T .
Then (b∧c)∧ (d∧e) is a lower bound of S∪T , so b∧c ∈ X (S∪T ). It follows that
X (x ∧ y) contains {b ∧ c|b ∈ X (x), c ∈ X (y)}. Using complete distributivity, we
have 1 =

∨
M X (x) ∧

∨
M X (y) =

∨
M{b ∧ c|b ∈ X (x), c ∈ X (y)} ≤

∨
M X (x ∧ y).

Thus x∧y ∈ E. This shows E is a filter of M . To see that E contains D, suppose
d ∈ D. Then as 1 ∧ d ≤ d we have 1 ∈ X (d), so

∨
M X (d) = 1, giving d ∈ E. �

Theorem 4.5. If L ∈ V (3) has a complete center and conditionally complete
dense set, L can be regularly and meet densely embedded into a complete algebra
in V (3).

Proof. Suppose (C,D,ϕ) is the triple for L and let E be the filter in the Mac-
Neille completion M of the free Boolean extension of D constructed in Definition 5
above. By Lemma 3.3 there is a triple (C,E, ϕ1) with ϕ(c) = ϕ1(c) ∩D for each
c ∈ C. Let L1 be the algebra for this triple.

Surely C is meet dense in itself, and by its construction D is meet dense in E.
As D is a generalized Boolean algebra, it is a filter in its free Boolean extension,
hence is a regular sublattice of its free Boolean extension, and therefore is also
a regular sublattice of M , and therefore of E as well. So if we can show that
beneath each non-zero element of L1 there is a non-zero element of L, it will
follow from Lemma 2.3 that L ≤ L1 is regular and meet dense.

Claim. If x ∈ E and c ∈ X (x), then c∗ ∨L1 x = d(x, c).

By the definition of E we have x =
∧

M S for S = {s ∈ D|x ≤ s}, hence x =
∧

E S

and as the dense elements E are a regular sublattice of L1 we have x =
∧

L1
S.

By the definition of d(x, c) we have d(x, c) =
∧

D{c∗ ∨ s|s ∈ S} and as D is a
regular sublattice of E and hence of L1 we have d(x, c) =

∧
L1
{c∗ ∨ s|s ∈ S}.

As c∗ is central we have c∗ ∨
∧

L1
S =

∧
L1
{c∗ ∨ s|s ∈ S} as this is true in any

bounded distributive lattice. Thus c∗ ∨L1 x = d(x, c).
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Suppose b∧x is a non-zero element of L1 where b ∈ C and x ∈ E. As b is non-
zero, X (x) is an ideal, and as

∨
C X (x) = 1, there is some non-zero c in X (x) with

c ≤ b. The above claim shows c∗ ∨L1 x = d(x, c), hence c∧ d(x, c) = c∧x ≤ b∧x.
But c∧d(x, c) is an element of L and is non-zero as c is non-zero. We have shown
that L ≤ L1 is meet dense and regular.

It remains to show L1 is complete. It suffices to show each subset of L1 has a
meet, and as each element is the meet of a central element and a dense element,
it suffices to show each subset of the center and each subset of the dense elements
has a meet in L1. As the center C is complete and the center of any Stone algebra
is a meet regular sublattice, every subset of the center has a meet in L1. We need
only show that every subset of E has a meet in L1, and as D is meet dense in E,
it is enough to show each subset of D has a meet in L1. Suppose S ⊆ D.

Claim.
∧

L1
S = c ∧ x where c =

∨
C X (S) and x =

∧
M{c∗ ∨ s|s ∈ S}.

Set T = {c∗ ∨ s|s ∈ S}. Then c∗ ∈ X (T ) and X (S) ⊆ X (T ), so
∨

C X (T ) = 1.
Then as x =

∧
M T we have x ∈ E. Since x ≤ c∗ ∨ s for each s ∈ S, we have

c ∧ x ≤ s for each s ∈ S, so c ∧ x is a lower bound of S in L1. To show c ∧ x is
the greatest lower bound, it is sufficient to show there is no strictly greater lower
bound. Suppose b ∧ y is a lower bound of S where b ∈ C and y ∈ E, and that
c ∧ x ≤ b ∧ y. We must show c ∧ x = b ∧ y.

We first show b = c. If not, then as c∧x ≤ b∧y we have c ≤ b, so c < b, giving
b∧c∗ 6= 0. As X (y) is an ideal with

∨
C X (y) = 1 there is some non-zero a in X (y)

with a ≤ b∧c∗. By the previous claim a∗∨y = d(y, a), so a∧d(y, a) = a∧y ≤ b∧y
giving a ∧ y is a lower bound of S. This yields a ∈ X (S), so a ≤

∨
C X (S) = c, a

contradiction. So b = c, hence b ∧ y = c ∧ y, and as b ∧ y is a lower bound of S
we have c∧ y ≤ s for each s ∈ S. Then y ≤ c∗ ∨ s for each s ∈ S. But y ∈ E and
x =

∧
E{c∗ ∨ s|s ∈ S}, hence y ≤ x. �

Main Theorem. Every algebra in the variety V (3) generated by the three-
element Heyting algebra can be embedded into a complete algebra in V (3) via
an embedding that is both regular and meet-dense.

Proof. Theorem 3.4 shows that every algebra in V (3) can be regularly and
meet densely embedded into an algebra in V (3) that has a complete center and
a conditionally complete dense set, and Theorem 4.5 shows that every algebra
in V (3) that has a complete center and conditionally complete dense set can be
regularly and meet densely embedded into a complete algebra in V (3). �
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5. Concluding remarks

One cannot be too ambitious in generalizing the above result as the following
remark shows that variety of all Stone algebras admits no regular completion.

Remark. It is well known [1, pg. 233] that there is a bounded distributive lattice D
that cannot be regularly embedded into any complete distributive lattice. Taking
the Stone algebra L for the triple (2, D, ϕ) where 2 is the two-element Boolean
algebra and ϕ is the obvious bound preserving map into the filter lattice of D, the
dense set for L is D. Any regular embedding of L into a complete Stone algebra
would yield a regular completion of D, an impossibility.

One possible generalization of our results is described below.

Remark. A key step in our proof is that an algebra in V (3) is a Stone algebra
whose dense set D is a dual generalized Boolean algebra. This means that every
interval [d, 1] in D belongs to V (2). It is true that for n the n-element chain,
any algebra in V (n + 1) is a Stone algebra whose dense set is a dual generalized
algebra from V (n), meaning that each interval [d, 1] belongs to V (n). Perhaps
there is an inductive proof that each variety V (n) admits a meet dense and regular
completion. A useful step may be to show that each generalized V (n) algebra
can be regularly embedded into a filter of an algebra in V (n).

The variety of linear Heyting algebras is the one generated by all chains.

Question. Does the variety of linear Heyting algebras admit a regular comple-
tion?

The following remark shows a direct construction of our completion, similar to
the construction of the MacNeille completion via normal ideals, is problematic.

Remark. In proving the Main Theorem we use a weak version of the axiom of
choice by invoking Sikorski’s Theorem on injective Boolean algebras. This is
unavoidable. For an infinite set X, consider the triple consisting of the Boolean
algebra C of finite and cofinite subsets of X, and the homomorphism from C to
2 mapping all finite sets to zero. Let L be the algebra for this triple and suppose
L ≤ L1 is a meet dense and regular completion. Each dense element of L1 is the
meet of dense elements of L, so there are two dense elements of L1. It follows
that the center of L is meet dense in the center of L1, so the center of L1 is the
MacNeille completion of C, hence is the power set of X. The triple for L1 consists
of a homomorphism from the power set of X to 2 mapping all finite sets to zero.
The existence of such a homomorphism for each infinite set X is equivalent to
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the Boolean ultrafilter theorem [7, page 328]. See [2, Theorem 6.18] for a related
result.

Question. Can one prove the variety V (3) admits a regular completion (that is
not necessarily meet dense) without any form of the axiom of choice?

In conclusion, I thank Guram Bezhanishvili for helpful discussions during the
preparation of this note.
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