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Abstract Abramsky and Coecke (Proceedings of the 19th Annual IEEE Symposium on
Logic in Computer Science, pp. 415–425, IEEE Comput. Soc., New York, 2004) have re-
cently introduced an approach to finite dimensional quantum mechanics based on strongly
compact closed categories with biproducts. In this note it is shown that the projections of
any object A in such a category form an orthoalgebra ProjA. Sufficient conditions are given
to ensure this orthoalgebra is an orthomodular poset. A notion of a preparation for such an
object is given by Abramsky and Coecke, and it is shown that each preparation induces a
finitely additive map from ProjA to the unit interval of the semiring of scalars for this cat-
egory. The tensor product for the category is shown to induce an orthoalgebra bimorphism
ProjA × ProjB → Proj (A ⊗ B) that shares some of the properties required of a tensor
product of orthoalgebras.

These results are established in a setting more general than that of strongly compact
closed categories. Many are valid in dagger biproduct categories, others require also a sym-
metric monoidal tensor compatible with the dagger and biproducts. Examples are considered
for several familiar strongly compact closed categories.

Keywords Orthomodular · Strongly compact closed category · Quantum logic ·
Biproducts · Tensor products

1 Introduction

Abramsky and Coecke [2] introduced an axiomatic approach to finite dimensional quantum
mechanics based on strongly compact closed categories with biproducts. In this setting they
are able to develop many features familiar to quantum mechanics, including scalars, mea-
surements, probabilities, as well as tensor products for treating compound systems. They
also find interesting links to linear logic, and develop a graphical calculus that has appealing
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application to matters such as quantum information protocols. For a good introduction to
this area see [1, 3, 21, 22].

Our aim is to connect the approach of Abramsky and Coecke to the quantum logic ap-
proach to the axiomatics of quantum mechanics initiated by Birkhoff and von Neumann
[4, 14, 17, 19, 20, 23]. It turns out that many features of the quantum logic approach fit
very nicely within the framework of Abramsky and Coecke’s method, as we briefly describe
below.

For an object A in a strongly compact closed category, the projections ProjA form a
type of orthomodular structure known as an orthoalgebra (abbreviated: OA). This OA is
shown to belong to an enveloping orthomodular poset, and under a natural assumption about
idempotents splitting they coincide. Scalars are maps from the tensor unit to itself. These
scalars form a quasiordered semiring with unit interval [0,1]C . Preparations of A are certain
maps from the tensor unit to A and each preparation induces a finitely additive measure from
ProjA to [0,1]C . Finally, the OA Proj (A ⊗ B) has many of the properties one would ask of
a tensor product of the OAs ProjA and ProjB .

Our results do not require the full strength of strongly compact closed categories
with biproducts. For basic properties of ProjA we need only a dagger biproduct cate-
gory [21]. This is a category C with finite biproducts (for each A1, . . . ,An there is an object
A1 ⊕· · ·⊕An that serves as both a product and coproduct in a special way) and a period two
contravariant functor † : C → C , called the adjoint, that is compatible with biproducts. Fur-
ther results require also a symmetric monoidal tensor ⊗ that is compatible with the adjoint
and biproducts. In particular, tensor distributes over biproducts. We do not use the strong
compact closed property of Abramsky and Coecke, and it is not apparent what impact this
condition has at the level of ProjA.

The categorical and quantum logic approaches are somewhat complementary; the cat-
egorical approach is built to deal with the compound systems and processes the quantum
logic approach struggles with, while the quantum logic approach is designed to deal with
properties of isolated systems which are not primitive in the categorical approach. It seems
advantageous for both approaches to be combined in a common setting.

From a practical standpoint, having quantum logic built into the categorical approach
allows access to a large body of work. This may point to refinements of the conditions one
places on the categories such as the splitting of idempotents mentioned above. Further, the
categorical approach will have to be modified to accommodate infinite dimensional quantum
mechanics. This realization of quantum logic within the categorical approach is based on the
simple notion of direct product decompositions, and may be sufficiently resilient to persist
through, and help guide, such modifications.

This paper is organized in the following fashion. In the second section we provide back-
ground on dagger biproduct categories. In the third we introduce the weak projections of an
object A in a dagger biproduct category. These are certain self-adjoint idempotents of A.
We show that these weak projections of A naturally form an orthomodular poset. Here the
idea is similar to the familiar idea from quantum logic that the idempotents of a ring form an
orthomodular poset [11, 15]. In this case we are taking certain idempotents of the semiring
of endomorphisms of A.

In the fourth section we introduce the projections of A. These are certain weak projec-
tions that arise from biproduct decompositions of A. We show the projections of A form an
OA ProjA. The structure placed on these projections comes from the notion of one decom-
position refining another as in [11]. Projections and weak projections are related in the fifth
section, and it is shown that the two notions coincide if self-adjoint idempotents strongly
split.



Int J Theor Phys (2009) 48: 769–802 771

In the sixth section we give the basics of dagger biproduct symmetric monoidal cate-
gories (abbreviated: DBSM-categories). These are dagger biproduct categories with a tensor
⊗ that is compatible with both the dagger and biproducts. These are more general than the
strongly compact closed categories of Abramsky and Coecke. In the seventh section we
review the fact that the endomorphisms of the tensor unit in such a category form a commu-
tative semiring, called the semiring of scalars, and define a quasiordering on this semiring.
The unit interval [0,1]C of the category is the unit interval in this semiring. It is then shown
that the preparations of an object A, as defined by Abramsky and Coecke [2], give rise to
finitely additive measures ProjA → [0,1]C which we call states.

In the eighth section we consider tensor products of the OAs ProjA and ProjB . We show
the OA Proj (A ⊗ B) has a number of the more physically motivated conditions one would
ask of a tensor product. In particular, there is a bimorphism into this OA, and certain states
on ProjA and ProjB lift to a state on Proj (A ⊗ B), at least when states are considered as
mappings into the unit interval [0,1]C of the category, rather than into the usual real unit
interval.

In the ninth section the notions we have discussed are considered in the categories Rel
of sets and relations, the category FDHilb of finite dimensional Hilbert spaces, and in the
category MatK of matrices over a field K . In Rel things behave somewhat classically with
ProjA being the Boolean algebra of subsets of A, and in FDHilb we have Proj H is the usual
orthomodular lattice of closed subspaces of H. In MatK there is interesting behavior with
an example of Projm being an orthomodular lattice that is not modular. The final section
contains concluding remarks.

It is hoped that this paper is of interest to people working on the categorical foundations
of quantum mechanics, and to ones working in quantum logic. We have tried to present
the results in a manner that is accessible to both groups. For experts on one side or the
other, please have patience with the pedestrian approach. Good references for the categories
we consider are [2, 10, 18, 21, 22] and for aspects of quantum logic considered here see
[7, 14, 20].

2 Dagger Biproduct Categories

We provide basic definitions and results. For a complete account of these categories and
their properties see [1–3, 21, 22], and for general references on those aspects of category
theory most pertinent here, see [10, 18].

Definition 2.1 A dagger category is a category C with an involutive contravariant functor
† : C → C , called adjoint, that is the identity on objects. Specifically

1. A† = A for any object A.
2. If f : A → B then f † : B → A.
3. id†

A = idA.
4. (f ◦ g)† = g† ◦ f †.
5. f †† = f .

Dagger categories are also known as involutive categories and categories with involution.
We use the term dagger category for consistency with [21, 22]. The term adjoint is motivated
by the familiar notion of the adjoint of a map in linear algebra, not because of the categorical
meaning of the word.
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Definition 2.2 An object 0 in a category is a zero object if it is both initial and terminal. For
such a zero object, for each pair of objects A,B there is a unique morphism A → 0 → B

that we denote 0A,B .

Recall a product of a family of objects (Ai)I is an object A and a family of morphisms
πi : A → Ai called projections that satisfy a certain universal property [10]. A coproduct
of this family is an object A and a family of morphisms μi : Ai → A called injections
that satisfy the dual universal property. We next recall the standard notion of a biproduct,
sometimes called a direct sum, [10, p. 306].

Definition 2.3 A biproduct of a family of objects (Ai)I in a category with zero object is an
object A with two families of morphisms πi : A → Ai and μi : Ai → A that simultaneously
gives a product and a coproduct of the family (Ai)I and satisfies

πi ◦ μj =
{

1Ai
if i = j

0Aj ,Ai
if i �= j

A family of objects might not have a biproduct, or it may have many. We say a category
with zero has finite biproducts if each finite family of objects has a biproduct. It is convenient
to assume that for each finite family A1, . . . ,An in a category with finite biproducts, that
we have selected a specific biproduct consisting of an object we denote A1 ⊕ · · · ⊕ An,
projections πi : A1 ⊕ · · · ⊕ An → Ai , and injections μi : Ai → A1 ⊕ · · · ⊕ An. There is
no harm in this as two biproducts of the same family are linked by a unique isomorphism
that commutes with the projections and injections involved [10, p. 307]. We use also the
following notation from [10].

Definition 2.4 In a category with finite biproducts, suppose A
fi−→ Ai , Bi

gi−→ B and

Ai

hi−→ Bi for i = 1,2. We define 〈f1, f2〉 : A → A1 ⊕ A2, [g1, g2] : B1 ⊕ B2 → B , and
h1 ⊕ h2 : A1 ⊕ A2 → B1 ⊕ B2 to be the unique morphisms with

1. πi ◦ 〈f1, f2〉 = fi .
2. [g1, g2] ◦ μi = gi .
3. πi ◦ (h1 ⊕ h2) = hi ◦ πi and (h1 ⊕ h2) ◦ μi = μi ◦ hi .

For objects A,B in a category C we use C(A,B) for the homset of morphisms from A

to B . In a category with finite biproducts there is a unique way to equip each homset with the
structure of a commutative monoid in way that is compatible with composition [10, p. 310].
We outline this below.

Definition 2.5 For objects A,B in a category with finite biproducts and morphisms f,g :
A → B , we define f + g = [1B,1B ] ◦ (f ⊕ g) ◦ 〈1A,1A〉

A → A ⊕ A
f ⊕g−→ B ⊕ B → B

Proposition 2.6 In a category with finite biproducts, + on C(A,B) satisfies

1. + is commutative and associative.
2. 0A,B is an identity element for +.
3. (f + g) ◦ e = f ◦ e + g ◦ e and h ◦ (f + g) = h ◦ f + h ◦ g.
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We next describe a matrix calculus for categories with finite biproducts [10]. This will
be our primary tool for calculations in such categories.

Proposition 2.7 For families of objects A1, . . . ,Am,B1, . . . ,Bn in a category with finite
biproducts, any morphism f : A1 ⊕ · · · ⊕ Am → B1 ⊕ · · · ⊕ Bn is determined by the matrix
F = (fij ) where fij : Aj → Bi is given by fij = πi ◦ f ◦ μj

F =
⎛
⎜⎝

f11 f12 · · · f1m

...
...

...
...

fn1 fn2 · · · fnm

⎞
⎟⎠

To illustrate, consider the identity map on A ⊕ B . This map has a representation via
a 2 by 2 matrix. Computing the ij th entry of this matrix as πi ◦ 1 ◦ μj , the conditions in

Definition 2.3 give this matrix as
( 1A 0B,A

0A,B 1B

)
. Often we omit the subscripts on the identity

and zero maps and simply write the matrix for the identity map on A ⊕ B as the identity
matrix

( 1 0
0 1

)
. Similarly, the matrix for the morphism μ1 ◦ π1 from A ⊕ B to itself is

( 1 0
0 0

)
,

the matrix for μ2 ◦ π2 is
( 0 0

0 1

)
, and the matrix for the zero map from A ⊕ B to itself is

( 0 0
0 0

)
.

Obvious extensions to A1 ⊕ · · · ⊕ An hold.

Proposition 2.8 Suppose A1 ⊕ · · · ⊕ Ak

e,f−→ B1 ⊕ · · · ⊕ Bm

g−→ C1 ⊕ · · · ⊕ Cn are mor-
phisms in a category with finite biproducts whose matrices are E,F,G. Then

1. e + f has matrix E + F .
2. g ◦ f has matrix GF .

Here matrix addition and multiplication are defined in the natural way using + and compo-
sition for the addition and multiplication of the entries.

For example, suppose f,g : A → B . Then [1,1]◦(f ⊕g) ◦〈1,1〉 in matrix form becomes
( 1 1)

( f 0
0 g

)( 1
1

)
which simplifies to f + g as expected. As another illustration, the identity

below follows by computing the matrices of each morphism.

Proposition 2.9 In a category with finite biproducts, μ1 ◦ π1 + · · · + μn ◦ πn is the identity
map on A1 ⊕ · · · ⊕ An.

We come now to the categories of primary interest here.

Definition 2.10 A dagger biproduct category is a dagger category where every finite family
of objects A1, . . . ,An has a biproduct with object A1 ⊕· · ·⊕An, projections πi : A1 ⊕· · ·⊕
An → Ai , and injections μi : Ai → A1 ⊕ · · · ⊕ An, satisfying π

†
i = μi .

A dagger biproduct category is more than just a dagger category with finite biproducts.
We require that each finite family of objects has a biproduct where the injections and pro-
jections are adjoints of one another.

We note that while any two biproducts of the same family are linked by an isomorphism
commuting with the injections and projections involved, one biproduct may have the prop-
erty that the projections and injections are adjoints of each other while another does not.
If one biproduct of a family has this property, a second biproduct of the same family will
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have this property if, and only if, the isomorphism α between them satisfies α† = α−1. Such
isomorphisms are called unitary isomorphisms. While it is important that we work with
biproducts where the projections and injections are adjoints of one another, it is immaterial
which particular such biproducts with this property we use.

We next consider the matrix calculus for dagger biproduct categories.

Proposition 2.11 In a dagger biproduct category, if f : A1 ⊕· · ·⊕Am → B1 ⊕· · ·⊕Bn has
matrix F = (fij ), then the adjoint f † has matrix F † = (f

†
j i). So F † is the transpose with the

adjoint taken of each entry

F † =
⎛
⎜⎝

f
†
11 f

†
21 · · · f

†
n1

...
...

...
...

f
†

1m f
†
2m · · · f †

mn

⎞
⎟⎠

Proof (f †)ij = πi ◦ f † ◦ μj = (μ
†
i ◦ f † ◦ π

†
j ) = (πj ◦ f ◦ μi)

† = (fji)
†. �

The following useful facts are easily established from the definitions.

Proposition 2.12 In a dagger biproduct category,

1. 〈f,g〉† = [f †, g†].
2. [f,g]† = 〈f †, g†〉.
3. (f ⊕ g)† = f † ⊕ g†.
4. (f + g)† = f † + g†.
5. 0†

A,B = 0B,A.

We conclude this section with a simple example to illustrate a few points that may be
easily missed. Consider the category of finite dimensional real inner product spaces and
linear maps with † being the usual linear adjoint. Suppose μi : R → V and πi : V → R

for i = 1,2. If the μi form a coproduct diagram then b1, b2 are a basis of V where bi =
μi(1), and each basis of V arises this way. If the πi form a product diagram there is a basis
e1, e2 of V where πi(ej ) = δij , and each basis of V arises this way. For μi,πi i = 1,2
to be a biproduct, we require the μi to give a coproduct, the πi to give a product, and
the compatibility condition involving πi ◦ μj given in Definition 2.3. In this setting, the
compatibility condition is equivalent to having the basis b1, b2 for the coproduct μi to be
equal to the basis e1, e2 for the product πi . If μi,πi i = 1,2 do form a biproduct with
associated basis b1, b2, having πi and μi be adjoints of one another means μi(1) · bj =
1 · πi(bj ) for i, j = 1,2. This is equivalent to having the basis b1, b2 be an orthonormal
basis.

3 Weak Projections

Throughout this section we assume C is a dagger biproduct category and A is an object in C .
We will show that the collection of all weak projections of A forms an orthomodular poset.
The motivating example is the well known fact that the projection operators of a Hilbert
space form an orthomodular lattice.
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Definition 3.1 A morphism p : A → A is a weak projection of A if there is a morphism
p′ : A → A such that

1. Both p,p′ are idempotent and self-adjoint.
2. pp′ = 0 = p′p.
3. p + p′ = 1.

We set Projw A to be the set of all weak projections of A.

Proposition 3.2 If p is a weak projection of A, the morphism p′ is unique and is a weak
projection, so there is a function ′ : Projw A → Projw A.

Proof Suppose that p′,p′′ are two such morphisms. We then have p′ = p′ ◦ 1A = p′(p +
p′′) = p′p + p′p′′ = p′p′′, and p′′ = 1A ◦ p′′ = (p + p′)p′′ = p′p′′. So p′ is unique. By
definition p′ is a weak projection of A using p as its companion. �

Definition 3.3 Define ≤w on Projw A by p ≤w q iff pq = p = qp.

Lemma 3.4 If p ≤w q then

1. pq = p = qp.
2. p′q ′ = q ′ = q ′p′.
3. pq ′ = 0 = q ′p.
4. p′q = qp′.
5. p + p′q = q and q ′ + p′q = p′.

This is shown in the figure below where all nodes are weak projections.

Proof 1. This is from the definition. 2. q ′ = q ′(p + p′) = q ′(qp + p′) = q ′p′ and q ′ =
(p + p′)q ′ = (pq + p′)q ′ = p′q ′. 3. pq ′ = pp′q ′ = 0 = q ′p′p = q ′p. 4. Note 1 = (p +
p′)(q + q ′) = p + p′q + q ′ and 1 = (q + q ′)(p + p′) = p + qp′ + q ′. So p′q = p′q(p +
qp′ +q ′) = p′qp′ and qp′ = (p +p′q +q ′)qp′ = p′qp. 5. By 4, (p +p′q)† = p† +q†p′† =
p + p′q and (p + p′q)(p + p′q) = p + p′q . So p + p′q is self-adjoint and idempotent.
But (p + p′q)q ′ = 0 = q ′(p + p′q) and p + p′q + q ′ = (p + p′)(q + q ′) = 1. So by the
uniqueness in Proposition 3.2 p + p′q = q . That q ′ + p′q = p′ is similar. �

Definition 3.5 (P,≤,0,1,⊥) is an orthomodular poset (abbreviated: OMP) if
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1. (P,≤,0,1) is a bounded poset.
2. ⊥: P → P is order inverting, period two, and x⊥ is a complement of x.
3. x ≤ y ⇒ x, y⊥ have a least upper bound x ∨ y⊥.
4. x ≤ y ⇒ x ∨ (x ∨ y⊥)⊥ = y.

Orthomodular posets [20] are the building blocks of the quantum logic approach to the
foundations of quantum mechanics. They serve as models of the Yes-No propositions of a
quantum mechanical system. The partial ordering ≤ reflects that one proposition implies
another, orthocomplementation ⊥ gives the negation of a proposition, and for orthogonal
propositions (x ≤ y⊥) their join x ∨ y gives their disjunction. Mackey [17] provided an
argument why the propositions of a quantum system should form an OMP. It is difficult to
argue that arbitrary propositions should have a disjunction, this is why OMPs are used rather
than their lattice counterparts orthomodular lattices.

Theorem 3.6 (Projw A,≤w, ′,0,1) is an orthomodular poset (OMP). Further, when ele-
ments p,q are orthogonal, their join is given by p ∨ q = p + q .

Proof First, 0 and 1 are self-adjoint idempotents with 0◦1 = 0 = 1◦0 and 0+1 = 1. So 0,1
are weak projections with 0′ = 1. Also, for any weak projection p we have 0◦p = 0 = p ◦0
and p ◦ 1 = p = 1 ◦ p, so 0 ≤w p and p ≤w 1. We next show ≤w is a partial order. Suppose
p,q, r are weak projections. As p is idempotent we have p ≤w p. Suppose p ≤w q and
q ≤w p. Then pq = p = qp and qp = q = pq , so p = q , giving antisymmetry. Suppose
p ≤w q and q ≤w r . Then pr = (pq)r = p(qr) = pq = p = qp = (rq)p = r(qp) = rp, so
p ≤w r .

Consider the map ′. If p ≤w q , the above lemma gives q ′p′ = q ′ = p′q ′, so q ′ ≤w p′.
Thus ′ is order inverting, and it is period two by definition. Suppose p,p′ ≤w q . Then q =
(p + p′)q = pq + p′q = p + p′ = 1. This shows p ∨ p′ = 1, and as ′ is order inverting and
period two, p ∧ p′ = 0.

Suppose p ≤w q . We claim p +q ′ is the least upper bound of p,q ′. First, by Lemma 3.4,
we know p + q ′ is a weak projection with companion p′q . As p(p + q ′) = p = (p + q ′)p
and q ′(p + q ′) = q ′ = (p + q ′)p we have p + q ′ is an upper bound of p,q ′. If r is another
such upper bound, then (p+q ′)r = pr +q ′r = p+q ′ = rp+rq ′ = r(p+q ′). So p+q ′ ≤ r

showing p + q ′ is the least upper bound. Finally, if p ≤w q , by Lemma 3.4 p ∨ (p ∨ q ′)′ =
p + (p + q ′)′ = p + p′q = q . �

Remark 3.7 It is well-known that the idempotents of a commutative ring with unit form a
Boolean algebra. This construction can be extended [11, 14, 15] to show that the idempotents
of a ring with unit form an OMP. The above result may be viewed as an extension to the
setting of a semiring, i.e. a commutative semigroup equipped with a multiplication that
distributes over addition. One takes the idempotents e that have a companion e′ that behaves
like 1 − e, namely, that satisfies ee′ = 0 and e + e′ = 1. The existence of a dagger is not a
vital part of this construction, rather it something tolerated by the construction.

4 Projections

Here we specialize the weak projections of the previous section to involve the dagger struc-
ture in an essential way and link more closely with the work of Abramsky and Coecke [2].
Throughout we assume C is a dagger biproduct category and A is an object in C . We freely
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employ the matrix calculus for such categories, using lower case letters such as p for a
morphism and the corresponding upper case letter P for its matrix.

Definition 4.1 For objects A,B in C , a morphism u : A → B is called unitary if it is an
isomorphism and u† = u−1.

This terminology is motivated by the familiar notion of a unitary isomorphism between
inner product spaces.

Proposition 4.2 The composition of unitaries is unitary.

Definition 4.3 A standard projection matrix on A1 ⊕· · ·⊕An is a matrix where off-diagonal
entries are 0 and each diagonal entry is either 0 or 1. A permutation matrix is a matrix for
the obvious morphism p : A1 ⊕ · · · ⊕ An → Aσ(1) ⊕ · · · ⊕ Aσ(n) for some permutation σ of
1, . . . , n. Such a permutation matrix is one whose entries are all either 0 or 1, and each row
and column has exactly one 1.

Proposition 4.4 Each permutation matrix is unitary.

Definition 4.5 A morphism p : A → A is a projection of A if there are objects A1,A2 and
a unitary isomorphism u : A → A1 ⊕ A2 that satisfies the following equivalent conditions.

1. p = u†μ1π1u.
2. P = U †

( 1 0
0 0

)
U .

Let ProjA be the set of all projections of A.

Proposition 4.6 ProjA ⊆ Projw A.

Proof If p is a projection, p has matrix U †
( 1 0

0 0

)
U for some unitary u : A → A1 ⊕ A2. Let

p′ : A → A have matrix U †
( 0 0

0 1

)
U . Simple matrix calculations show that p,p′ are self-

adjoint idempotents with pp′ = 0 = p′p and p + p′ = 1. �

The definition of a projection says that in matrix form it can be represented U †
( 1 0

0 0

)
U .

One might ask whether a matrix representation such as U †
( 0 0

0 1

)
U also yields a projection.

This is the case. Indeed, as the following result shows, projections are obtained from any
U †SU where S is a standard projection matrix, meaning that S is all 0’s except for some of
its diagonal entries which are 1’s.

Proposition 4.7 If u : A → A1 ⊕ · · · ⊕ An is unitary then for any distinct i1, . . . , ik , the
morphism u†(μi1πi1 + · · · + μikπik )u is a projection.

Proof We treat the typical case p = u†(μ1π1 + μ3π3)u where u : A → A1 ⊕ A2 ⊕ A3 and
leave the reader to formulate the general argument. The matrix for p is given by

U †

⎛
⎝1 0 0

0 0 0
0 0 1

⎞
⎠U
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Consider the morphism v : A1 ⊕ A2 ⊕ A3 → (A1 ⊕ A3) ⊕ A2 whose matrix is given by
V = (

μ1 0 μ2
0 1 0

)
. We recall μ1 : A1 → A1 ⊕ A3 and μ2 : A3 → A1 ⊕ A3 are the biproduct

injections. By Definition 2.10 and Proposition 2.11,

V † =
⎛
⎝π1 0

0 1
π2 0

⎞
⎠

So

V V † =
(

μ1π1 + μ2π2 0
0 1

)
and V †V =

⎛
⎝π1μ1 0 π1μ2

0 1 0
π2μ1 0 π2μ2

⎞
⎠

Using Proposition 2.9 and Definition 2.3, both of these are identity matrices, and it follows
that V is unitary. Then V U is unitary, giving that U †V †

( 1 0
0 0

)
V U is a projection. But

U †V †

(
1 0
0 0

)
V U = U †

⎛
⎝1 0 0

0 0 0
0 0 1

⎞
⎠U

�

Definition 4.8 Projections p,q of A are orthogonal, written p ⊥ q , if there is a unitary
u : A → A1 ⊕ A2 ⊕ A3 with p = u†μ1π1u and q = u†μ3π3u.

A proof very similar to that of Proposition 4.7 above provides the following.

Proposition 4.9 If p = u†μiπiu and q = u†μjπju for some i �= j and some unitary u :
A → A1 ⊕ · · · ⊕ An, then p,q are orthogonal.

While the sum p + q of arbitrary projections need not be a projection, it follows from
Proposition 4.7 that the sum of orthogonal projections is a projection. Therefore the re-
striction of + to orthogonal pairs of projections yields a partial operation on ProjA. The
following is a standard notion in quantum logic [7].

Definition 4.10 An orthoalgebra (abbreviated: OA) is a set X with constants 0,1, a binary
relation ⊥ called orthogonality, and a partial binary operation ⊕ defined for orthogonal pairs
and called orthogonal sum, satisfying

1. If f ⊥ g then g ⊥ f and f ⊕ g = g ⊕ f .
2. For each f ∈ X there is a unique f ′ ∈ X with f ⊥ f ′ and f ⊕ f ′ = 1.
3. If f ⊥ f then f = 0.
4. If e ⊥ f and (e ⊕ f ) ⊥ g, then f ⊥ g, e ⊥ (f ⊕ g) and (e ⊕ f ) ⊕ g = e ⊕ (f ⊕ g).

There is a close relationship between OAs and OMPs that we discuss in detail in the
following section. Here our objective is to show that ProjA forms an OA.

Lemma 4.11 0,1 are projections.

Proof Let u : A → 0 ⊕ A have matrix U = ( 0A,0
1A

)
. Then U † = ( 00,A 1A ). As 0 is initial, there

is exactly one morphism from 0 to itself, so 0A,000,A = 10. This yields that UU † = ( 1 0
0 1

)
and
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U †U = ( 1), showing U is unitary. Note U †
( 1 0

0 0

)
U = ( 0) and U †

( 0 0
0 1

)
U = ( 1), giving that

0,1 are projections. �

Lemma 4.12 If p,q ∈ ProjA and p ⊥ q , then q ⊥ p and p + q = q + p.

Proof Definition 4.8 and Proposition 4.9 show that if p ⊥ q then q ⊥ p, and we know + is
commutative. �

Lemma 4.13 If p ∈ ProjA there is a unique p′ ∈ ProjA with p ⊥ p′ and p + p′ = 1.

Proof Suppose p is a projection given by U †
( 1 0

0 0

)
U . Then for p′ having matrix U †

( 0 0
0 1

)
U ,

Proposition 4.7 gives p′ is a projection and Proposition 4.9 gives p ⊥ p′. Clearly
p + p′ = 1, and this gives existence. For uniqueness, Proposition 4.6 shows such p,p′

are a weak projection and its complement, so uniqueness follows by Proposition 3.2. �

Lemma 4.14 If p ∈ ProjA and p ⊥ p, then p = 0.

Proof Suppose p ⊥ p. By definition, there is a unitary u : A → A1 ⊕ A2 ⊕ A3 with p =
u†μ1π1u and p = u†μ3π3u. So p = pp = 0. �

Proposition 4.15 If w : A → B is unitary, there is a map ϕ : ProjA → ProjB defined by
ϕp = wpw†. This map is a bijection, satisfies p ⊥ q iff ϕp ⊥ ϕq , as well as ϕ(p + q) =
ϕp + ϕq whenever p ⊥ q .

Proof This is a simple consequence of the definitions and the fact that the composite of
unitaries is unitary. �

Lemma 4.16 Suppose p,q, r ∈ ProjA and p ⊥ q , p + q ⊥ r . Then q ⊥ r , p ⊥ q + r and
(p + q) + r = p + (q + r).

Proof If w : A → B is unitary and ϕ : ProjA → ProjB is the map given by Proposi-
tion 4.15, then for p,q, r ∈ ProjA we have p ⊥ q and p + q ⊥ r iff ϕp ⊥ ϕq and
ϕp + ϕq ⊥ ϕr , and we have q ⊥ r and p ⊥ q + r iff ϕq ⊥ ϕr and ϕp ⊥ ϕq + ϕr . So
to verify our result for p,q, r , it is sufficient to choose some unitary w : A → B and prove it
for ϕp,ϕq,ϕr . In particular, as we consider p ⊥ q , there is a unitary w : A → A1 ⊕A2 ⊕A3

with p = w†μ1π1w and q = w†μ3π3w. Then using this unitary w, we have ϕp = μ1π1 and
ϕq = μ3π3. In sum, we may assume without loss of generality that A = A1 ⊕ A2 ⊕ A3, and
that p,q, r are projections of A with p = μ1π1, q = μ3π3, and p + q ⊥ r . We must show
q ⊥ r and p ⊥ q + r . That (p + q) + r = p + (q + r) is obvious as + is always associative.

Establishing our result requires a series of calculations; we first make a few guiding
remarks. The projections p = μ1π1 and q = μ3π3 on A = A1 ⊕ A2 ⊕ A3 come from the
natural projections onto A1 and A3. If A2 = X ⊕ Y , then the projection r of A coming
from a projection onto one of the factors X or Y satisfies p + q ⊥ r . In our proof, we show
that all such morphisms r with p + q ⊥ r essentially arise this way up to some unitary
isomorphisms.

We begin the calculations. As p+q ⊥ r there is a unitary u : A1 ⊕A2 ⊕A3 → B1 ⊕B2 ⊕
B3 with p + q = u†μ̃1π̃1u and r = u†μ̃3π̃3u. Here μ̃i , π̃i are the injections and projections
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associated with B1 ⊕ B2 ⊕ B3. In matrix form these conditions become

⎛
⎝1 0 0

0 0 0
0 0 1

⎞
⎠ = U †

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠U and R = U †

⎛
⎝0 0 0

0 0 0
0 0 1

⎞
⎠U (4.1)

Writing U in component form and multiplying the first of these matrix equations on the
left by U , we obtain the following after simple matrix multiplications.

⎛
⎝u11 0 u13

u21 0 u23

u31 0 u33

⎞
⎠ =

⎛
⎝u11 u12 u13

0 0 0
0 0 0

⎞
⎠ (4.2)

Therefore we know that U and its adjoint U † look as follows.

U =
⎛
⎝u11 0 u13

0 u22 0
0 u32 0

⎞
⎠ and U † =

⎛
⎝u

†
11 0 0
0 u

†
22 u

†
32

u
†
13 0 0

⎞
⎠ (4.3)

Computing, we obtain

UU † =
⎛
⎝u11u

†
11 + u13u

†
13 0 0

0 u22u
†
22 u22u

†
32

0 u32u
†
22 u32u

†
32

⎞
⎠ (4.4)

as well as

U †U =
⎛
⎝u

†
11u11 0 u

†
11u13

0 u
†
22u22 + u

†
32u32 0

u
†
13u11 0 u

†
13u13

⎞
⎠ (4.5)

As U is unitary, both UU † are identity matrices. This provides the following: (a) u11u
†
11 +

u13u
†
13 = 1B1 , (b) u22u

†
22 = 1B2 , (c) u32u

†
32 = 1B3 , (d) u22u

†
32 = 0, (e) u32u

†
22 = 0, (f) u

†
11u11 =

1A1 , (g) u
†
22u22 + u

†
32u32 = 1A2 , (h) u

†
13u13 = 1A3 , (i) u

†
11u13 = 0, and (j) u

†
13u11 = 0.

To digest these conditions, note they say the morphism A1 ⊕ A3 → B1 with matrix
( u11 u13 ) is unitary and the morphism A2 → B2 ⊕ B3 with matrix

( u22
u32

)
is unitary. There-

fore A1 ⊕ A2 ⊕ A3 is unitarily isomorphic to A1 ⊕ (B2 ⊕ B3) ⊕ A3, and u behaves like the
obvious morphism A1 ⊕ A2 ⊕ A3 → (A1 ⊕ A3) ⊕ B2 ⊕ B3 that uses the isomorphism

( u22
u32

)
to split A2 into B2 ⊕ B3.

We next define v : A1 ⊕ A2 ⊕ A3 → A3 ⊕ (A1 ⊕ B2) ⊕ B3 to be the unique morphism
whose matrix V and its adjoint V † are given by

V =
⎛
⎝ 0 0 1A3

μ1 μ2u22 0
0 u32 0

⎞
⎠ and V † =

⎛
⎝ 0 π1 0

0 u
†
22π2 u

†
32

1A3 0 0

⎞
⎠ (4.6)

Here we use μi and πi for the canonical injections and projections associated with A1 ⊕B2.

In particular, A1
μ1→ A1 ⊕ B2, A2

u22−→ B2
μ2→ A1 ⊕ B2 and A2

u32−→ B3.
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To see that V is unitary we compute

V V † =
⎛
⎝1 0 0

0 μ1π1 + μ2u22u
†
22π2 μ2u22u

†
32

0 u32u
†
22π2 u32u

†
32

⎞
⎠ (4.7)

Note μ1π1 +μ2u22u
†
22π2 = μ1π1 +μ2π2 by condition (b) above, and by Proposition 2.9 this

is the identity map 1A1⊕B2 . Also, u32u
†
32 = 1B3 by (c), u32u

†
22π2 = 0 by (e), and μ2u22u

†
32 = 0

by (d). Note also

V †V =
⎛
⎝ π1μ1 π1μ2u22 0

u
†
22π2μ1 u

†
22π2μ2u22 + u

†
32u32 0

0 0 1

⎞
⎠ (4.8)

As πiμj = δij we have π1μ1 = 1A1 , π1μ2u22 = 0, and u
†
22π2μ1 = 0. We also have

u
†
22π2μ2u22 + u

†
32u32 = u

†
22u22 + u

†
32u32 = 1A2 by (g). This shows that V is unitary.

Making computations with this unitary V , we find

V †

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠V =

⎛
⎝0 π1 0

0 u
†
22π2 u

†
32

1 0 0

⎞
⎠

⎛
⎝0 0 1

0 0 0
0 0 0

⎞
⎠ =

⎛
⎝0 0 0

0 0 0
0 0 1

⎞
⎠ (4.9)

and

V †

⎛
⎝0 0 0

0 0 0
0 0 1

⎞
⎠V =

⎛
⎝0 π1 0

0 u
†
22π2 u

†
32

1 0 0

⎞
⎠

⎛
⎝0 0 0

0 0 0
0 u32 0

⎞
⎠ =

⎛
⎝0 0 0

0 u
†
32u32 0

0 0 0

⎞
⎠ (4.10)

The matrix in (4.9) is that of q = μ3π3. Equations (4.1) and (4.3), give

R =
⎛
⎝u

†
11 0 0
0 u

†
22 u

†
32

u
†
13 0 0

⎞
⎠

⎛
⎝0 0 0

0 0 0
0 0 1

⎞
⎠

⎛
⎝u11 0 u13

0 u22 0
0 u32 0

⎞
⎠ =

⎛
⎝0 0 0

0 u
†
32u32 0

0 0 0

⎞
⎠ (4.11)

and it follows that the matrix in (4.10) is R. So q and r are orthogonal via the unitary v, that
is, q ⊥ r .

It remains to show p ⊥ q + r . To do so, we must construct another unitary. Let w :
A1 ⊕ A2 ⊕ A3 → A1 ⊕ B2 ⊕ (A3 ⊕ B3) be the unique morphism whose matrix W and its
adjoint W † are given by

W =
⎛
⎝1A1 0 0

0 u22 0
0 μ2u32 μ1

⎞
⎠ and W † =

⎛
⎝1A1 0 0

0 u
†
22 u

†
32π2

0 0 π1

⎞
⎠ (4.12)

Here we use μi and πi for the canonical injections and projections associated with A3 ⊕B3.

In particular, A2
u32−→ B3

μ2→ A3 ⊕ B3 and A3
μ1→ A3 ⊕ B3. Computing, we have

WW † =
⎛
⎝1 0 0

0 u22u
†
22 u22u

†
32π2

0 μ2u32u
†
22 μ2u32u

†
32π2 + μ1π1

⎞
⎠ (4.13)
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and

W †W =
⎛
⎝1 0 0

0 u
†
22u22 + u

†
32π2μ2u32 u

†
32π2μ1

0 π1μ2u32 π1μ1

⎞
⎠ (4.14)

Then using the properties (a) through (i) given after (4.5) we see that WW † and W †W

both evaluate to identity matrices, so W is unitary. Computing,

W †

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠W =

⎛
⎝1 0 0

0 u
†
22 u

†
32π2

0 0 π1

⎞
⎠

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠ =

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠ (4.15)

and

W †

⎛
⎝0 0 0

0 0 0
0 0 1

⎞
⎠W =

⎛
⎝1 0 0

0 u
†
22 u

†
32π2

0 0 π1

⎞
⎠

⎛
⎝0 0 0

0 0 0
0 μ2u32 μ1

⎞
⎠ =

⎛
⎝0 0 0

0 u
†
32u32 0

0 0 1

⎞
⎠ (4.16)

The matrix in (4.15) is that of p = μ1π1 and the matrix in (4.16) is the that of q + r . Thus,
p ⊥ q + r , concluding the proof of the lemma. �

Using Lemmas 4.11, 4.12, 4.13, 4.14, 4.16, we have the following.

Theorem 4.17 (ProjA,0,1,⊥,+) is an orthoalgebra.

5 Relating Projections and Weak Projections

It is well known [7] that any orthoalgebra X carries a partial ordering given by x ≤ y if there
is z with x ⊥ z and x ⊕z = y. We have seen in Proposition 4.6 that each projection is a weak
projection, hence the partial ordering ≤w on the weak projections given by Definition 3.3
restricts to a partial ordering on the projections as well. In this section we investigate the
connection between these two partial orderings, and the connection between the orthoalge-
bra ProjA and the orthomodular poset Projw A. Our strongest results will come under the
additional assumption that self-adjoint idempotents strongly split. In this natural setting, we
show that the OA of projections and the OMP of weak projections coincide. Throughout this
section we assume A is an object in a dagger biproduct category C .

Definition 5.1 Define ≤ on ProjA by p ≤ q iff there exists a projection r with p ⊥ r and
p + r = q .

Proposition 5.2 If p,q ∈ ProjA, then p ≤ q ⇒ p ≤w q .

Proof If p ≤ q there is r with p ⊥ r and p + r = q . As p ⊥ r there is a unitary u : A →
A1 ⊕ A2 ⊕ A3 with p = u†μ1π1u, r = u†μ3π3u, and so q = u†(μ1π1 + μ3π3)u. It is then
routine to verify pq = p = qp, hence p ≤w q . �

For an OA X, the partial ordering ≤ on X described above makes X into an orthocom-
plemented poset where the orthocomplement x ′ of x is the unique element with x ⊥ x ′ and
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x ⊕ x ′ = 1. In this orthocomplemented poset, if x ⊥ y are orthogonal elements, then x ⊕ y

is a minimal, but not necessarily least, upper bound of x, y. If x ⊕ y is the least upper bound
of x, y whenever x ⊥ y, then the orthocomplemented poset given by X is an OMP. In this
case, the OA structure of X can be recovered from the orthocomplemented poset given by
X as there is only one minimal upper bound for each orthogonal pair x, y. On the other
hand, every OMP gives rise to an OA where x ⊥ y iff x ≤ y ′ and x ⊕ y is the join of x, y

when x, y are orthogonal. So OMPs naturally correspond to the class of OAs where x ⊕ y is
the least upper bound of x, y for every orthogonal x, y. All these facts are found in [7]. In
the following, we naturally consider an OA as an orthocomplemented poset, and an OMP as
an OA.

Definition 5.3 For OAs P,Q, a map f : P → Q is called an OA morphism if f (0) = 0, and
a ⊥ b ⇒ f (a) ⊥ f (b) and f (a ⊕ b) = f (a) ⊕ f (b).

Proposition 5.4 The inclusion map i : ProjA → Projw A is an OA morphism.

Proof Suppose p,q are projections with p ⊥ q . By the definition of orthogonality of pro-
jections, there is a unitary u : A → A1 ⊕ A2 ⊕ A3 with p = u†μ1π1u and q = u†μ3π3u.
The orthocomplement q ′ of q in the OMP Projw A is the unique weak projection with
qq ′ = 0 = q ′q , and it follows that q ′ = u†(μ1π1 + μ2π2)u. Then a simple calculation gives
pq ′ = p = q ′p, so p ≤w q ′, and therefore p,q are orthogonal in the OMP Projw A. In ProjA
the orthosum of the orthogonal elements p,q is given by p + q . In the OMP Projw A, the
orthosum of the orthogonal elements p,q is their join, which by Theorem 3.6 is given by
p + q . �

Remark 5.5 The inclusion map i : ProjA → Projw A is a one-one OA morphism and Propo-
sition 5.2 shows i is order preserving (in fact every OA morphism is order preserving). But
we do not have that p ≤w q ⇒ p ≤ q , so it might not be an order embedding. This explains
why ProjA may be an OA but not an OMP. Suppose p,q are orthogonal in ProjA. So their
orthosum p + q is a minimal upper bound of p,q in ProjA. As the inclusion is order pre-
serving, p,q are orthogonal also in the OMP Projw A, and p + q is their join in this OMP.
If we take a projection r that is an upper bound of p,q in ProjA, then r is an upper bound
of p,q in Projw A, hence p + q ≤w r . However, we may fail to have p + q ≤ r in ProjA
as there may fail to be a unitary isomorphism to witness this. So p + q may be a minimal
upper bound of p,q in ProjA rather than a minimum upper bound.

We next consider matters under an additional assumption regarding the self-adjoint idem-
potents in C . It is common practice to consider conditions related to splitting of idempotents
in a category [10, 18], and the condition we consider naturally arises in Selinger’s work as
well [22]. As a final comment, we note that each weak projection is by definition a self-
adjoint idempotent.

Definition 5.6 Self-adjoint idempotents strongly split in C if for each self-adjoint idempo-
tent e : A → A, there is an f : A → B with e = f †f and 1B = ff †.

Theorem 5.7 If self-adjoint idempotents strongly split in C , then for each object A, every
weak projection of A is a projection and p ≤ q iff p ≤w q . Therefore the OA ProjA coincides
with the OMP Projw A.
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Proof Suppose p is a weak projection of A with orthocomplement p′. Then as p,p′ are
self-adjoint idempotents, there are objects B,C and morphisms f : A → B and g : A → C

with f †f = p, ff † = 1B , g†g = p′ and gg† = 1C . Consider the morphism u : A → B ⊕ C

with matrix U where U = ( f

g

)
and U † = ( f † g† ). Then

UU † =
(

ff † fg†

gf † gg†

)
and U †U = (

f †f + g†g
)

(5.17)

Note ff † = 1B and gg† = 1C . Also fg† = (ff †)fg†(gg†) = f (f †f )(g†g)g† =
fpp′g† = 0, and similarly gf † = 0. This shows the first of the above matrices is an identity
matrix. As f †f + g†g = p + p′ = 1A the second is also an identity matrix. Thus u is uni-
tary. Clearly U †

( 1 0
0 0

)
U = ( f †f ) = ( p ) and U †

( 0 0
0 1

)
U = ( g†g ) = ( p′ ). It follows that p,′ p

are projections given by the unitary u.
We have still to show that if p,q are projections with p ≤w q , then p ≤ q . To do so, we

must use the algebraic conditions given by Lemma 3.4 to build a unitary v realizing p ≤ q .
In particular, we use the fact that p′q is a weak projection, that the product of any two of
p,p′q, q ′ is 0, and that the sum p + p′q + q ′ = 1, all provided by Lemma 3.4.

As p,p′q, q ′ are weak projections, they are self-adjoint idempotents. So there are objects
B,C,D and morphisms f : A → B , g : A → C, and h : A → D with f †f = p, ff † = 1B ,
g†g = p′q , gg† = 1C , h†h = q ′ and hh† = 1D . We consider then the morphism v : A →
B ⊕ C ⊕ D with matrix V = ( f

g

h

)
and V † = ( f † g† h† ). Then

V V † =
⎛
⎝ff † fg† f h†

gf † gg† gh†

hf † hg† hh†

⎞
⎠ and V †V = (

f †f + g†g + h†h
)

(5.18)

Each of ff †, gg†, hh† is an identity map, and as the product of any two of p,p′q, q ′ is 0,
calculations similar to the ones above show the off-diagonal entries of the first matrix, such
as fg† are all 0. So the first of these matrices is an identity matrix. But f †f + g†g + h†h =
p + p′q + q ′ = 1, so the second is also an identity matrix. So V is unitary. One sees that

V †

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠V = (f †f ) = (p) and V †

⎛
⎝0 0 0

0 0 0
0 0 1

⎞
⎠V = (h†h) = (q ′)

This shows p,q ′ are orthogonal in the OA ProjA, and this implies p ≤ q . �

6 Dagger Symmetric Monoidal Structure

In this section we give background on the categories we consider in the remainder of the
paper, the dagger biproduct symmetric monoidal categories. These are the dagger biproduct
categories considered earlier equipped with a tensor ⊗ that is compatible with the dagger and
biproducts as described below. They are weaker than the strongly compact closed categories
with biproducts of Abramsky and Coecke [2]. None of our results require the symmetry of
the tensor, but it seems so natural we have included it anyway.

Definition 6.1 For a category C , a bifunctor ⊗ : C × C → C is a functor from the product
category C × C to C . Specifically, this means



Int J Theor Phys (2009) 48: 769–802 785

1. For objects A,B of C there is an object A ⊗ B of C.
2. For morphisms f : A → A′ and g : B → B ′ there is f ⊗ g : A ⊗ B → A′ ⊗ B ′.
3. (f ◦ f ′) ⊗ (g ◦ g′) = (f ⊗ g) ◦ (f ′ ⊗ g′) when the composites are defined.
4. 1A ⊗ 1B = 1A⊗B .

Definition 6.2 A symmetric monoidal category is a category C with a bifunctor ⊗ called
tensor product, an object I called the tensor unit, and natural isomorphisms

αA,B,C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C)

σA,B : A ⊗ B → B ⊗ A

λA : A → I ⊗ A

ρA : A → A ⊗ I

where these natural isomorphisms satisfy standard coherence conditions [18, p. 158].
Among these conditions is the requirement λI = ρI .

We next consider categories with some combination of a dagger †, biproducts, and a
tensor ⊗ that are in some sense compatible. The first instance of this was Definition 2.10
where dagger biproduct categories were defined.

Definition 6.3 A dagger symmetric monoidal category is a category equipped with a dagger
structure † and a symmetric monoidal structure ⊗ such that

1. (f ⊗ g)† = f † ⊗ g†.
2. α

†
A,B,C = α−1

A,B,C .

3. σ
†
A,B = σ−1

A,B .

4. λ
†
A = λ−1

A and ρ
†
A = ρ−1

A .

Dagger symmetric monoidal categories are considered in [21]. We next consider cate-
gories that combine a symmetric monoidal structure ⊗ with finite biproducts. We connect
the two through the additive structure + that the biproduct induces on each homset C(A,B).
The close connection between the additive structure and the biproduct structure is detailed
in [10, p. 310].

Definition 6.4 A biproduct symmetric monoidal category is a category equipped with
symmetric monoidal structure given by ⊗ and having finite biproducts so that for any
f,f ′ : A → B and g,g′ : C → D we have

1. f ⊗ (g + g′) = (f ⊗ g) + (f ⊗ g′) and (f + f ′) ⊗ g = (f ⊗ g) + (f ′ ⊗ g).
2. f ⊗ 0 = 0 and 0 ⊗ g = 0.

In a category with finite biproducts, a functor F : C → C is additive [10] if the induced
map C(A,B) → C(FA,FB) is a monoid homomorphism for each A,B .

Lemma 6.5 If a category C has a symmetric monoidal structure given by ⊗ and has finite
biproducts, then C is a biproduct symmetric monoidal category iff for each object A, the
functors A ⊗− and −⊗ A are additive.
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Proof As ⊗ is a bifunctor and composition distributes over +, the first condition is equiv-
alent to 1A ⊗ (g + g′) = (1 ⊗ g) + (1 ⊗ g′) and (f + f ′) ⊗ 1 = (f ⊗ 1) + (f ′ ⊗ 1). Thus
these conditions are equivalent to having A ⊗− and −⊗ A additive. �

Definition 6.6 A category C with a dagger † and symmetric monoidal structure ⊗ is a
dagger biproduct symmetric monoidal category (abbreviated: DBSM-category) if it has finite
biproducts and is simultaneously a dagger biproduct category, a dagger symmetric monoidal
category, and a biproduct symmetric monoidal category.

In a DBSM-category we have use of all the properties in Sect. 2 as well as those in the
definitions above. We next compare these categories with the strongly compact closed cate-
gories with biproducts of Abramsky and Coecke [2] which are also called biproduct dagger
compact closed categories by Selinger [21].

Proposition 6.7 DBSM-categories are more general than the strongly compact closed cate-
gories with biproducts of Abramsky and Coecke.

Proof Each strongly compact closed category with biproducts has a dagger †, tensor ⊗, and
finite biproducts. That it is a dagger symmetric monoidal category, and a dagger biproduct
category is outlined in [21] and follows directly from [2]. It remains to show ⊗ and +
satisfy the conditions of Definition 6.4, or by Lemma 6.5, that the functors A⊗− and −⊗A

are additive. Any strongly compact closed category is compact closed, hence a symmetric
monoidal closed category, and this implies that these functors A⊗− and −⊗A have a right
and left adjoint respectively. It follows by [10, p. 318] that they are both additive. �

7 Scalars and States

In this section we review the known results that the scalars in a DBSM-category form a
commutative semiring, and use the notion of positivity of morphisms to define a quasiorder
on this semiring. We consider the unit interval [0,1]C in this quasiordered semiring, and use
this to define finitely additive measures, or states, on the orthostructures ProjA constructed
earlier. Throughout we work in a DBSM-category C , and remark that the first lemma below
is valid in any symmetric monoidal category.

Definition 7.1 A scalar is a morphism s : I → I .

In a monoidal category, the set of scalars is the homset C(I, I ), and this naturally forms
a monoid under composition. It is well known that in any monoidal category this monoid is
commutative [16]. We give the proof below as we need a detail for later results.

Lemma 7.2 If s, t are scalars, then

s ◦ t = I
λI−→ I ⊗ I

s⊗t−→ I ⊗ I
λ−1
I−→ I = t ◦ s (7.19)



Int J Theor Phys (2009) 48: 769–802 787

Proof Consider the following diagram.

Here we are using the coherence condition that λI = ρI of Definition 6.2. As λ and ρ are
natural isomorphisms, the two squares on the left of the diagram commute, as λ−1 and ρ−1

are natural isomorphisms, the two squares on the right of the diagram commute, and as ⊗ is
a bifunctor, the two squares in the middle commute. It follows that the top path agrees with
the middle and bottom path, giving the result. �

Recall that composition distributes over sum in any category that has finite biproducts.
This gives the following.

Corollary 7.3 The scalars C(I, I ) are a commutative semiring under ◦,+,0,1 with involu-
tion † satisfying (s ◦ t)† = t† ◦ s† and (s + t)† = s† + t†.

Definition 7.4 A scalar s is positive if there is a morphism α : I → A with s = α†α.

Proposition 7.5

1. 0,1 are positive scalars.
2. If s is a positive scalar, then s† = s.
3. If s, t are positive scalars, so are s + t and s ◦ t .

Thus the set C+(I, I ) of positive scalars is a sub-involutive semiring of C(I, I ).

Proof 1. 0 = 0†0 and 1 = 1†1. 2. If s is positive, then s = α†α, for some α, so s† = α†α†† =
α†α. 3. Suppose s, t are positive with s = α†α and t = β†β for some α : I → A and β :
I → B . Consider f,g : I → A ⊕ B with matrices

( α

0

)
and

( 0
β

)
, so the matrix for f + g

is
( α

β

)
. Then (f + g)†(f + g) = ( α† β† )

( α

β

) = α†α + β†β = s + t . This shows s + t is

positive. Finally, we show s ◦ t is positive. Using (7.19) we have s ◦ t = λ−1
I (s ⊗ t)λI =

λ−1
I (α† ⊗ β†)(α ⊗ β)λI . Then using the condition λ−1

I = λ
†
I of Definition 6.3, this equals

[(α ⊗ β)λI ]†[(α ⊗ β)λI ]. So s ◦ t is positive. �

Definition 7.6 For scalars s, t , define s ≤ t iff s + p = t for some positive scalar p.
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Proposition 7.7 The relation ≤ is a quasiordering on C(I, I ) that satisfies (i) if s1 ≤ t1 and
s2 ≤ t2 then s1 + s2 ≤ t1 + t2, and (ii) if s ≤ t and p ≥ 0 then ps ≤ pt .1

Proof As 0 is positive, ≤ is reflexive, and as the positives are closed under +, we have ≤ is
transitive, hence a quasiorder. Statement (i) follows as the sum of positives is positive, and
statement (ii) follows as p ≥ 0 means p is positive, and the fact that the product of positives
is positive. �

Definition 7.8 Define the unit interval in the category C to be

[0,1]C = {p : p is a scalar and 0 ≤ p ≤ 1}

We next turn our attention to states. Recall that in quantum logic, it is common to use
the term state in different ways. A unit vector in a Hilbert space H is often called a pure
state of H, and an additive mapping from the lattice of projection operators of H to the real
unit interval is called a state on the OML of projections. Gleason’s theorem [6, 20] provides
the tie between these notions. Here we replace pure states of A with normal morphisms and
preparations defined below, and states on ProjA with finitely additive measures into the unit
interval [0,1]C of the category.

For the rest of this section we assume A is an object in the DBSM-category C .

Definition 7.9 A normal morphism of A is a morphism ϕ : I → A with ϕ†ϕ = 1.

In the category of finite dimensional Hilbert spaces and linear maps, a normal morphism
ϕ on H is a map ϕ : C → H with ϕ†ϕ = 1, and these correspond to unit vectors in H.
Each unit vector induces a special biproduct decomposition of H, and this is the idea behind
Abramsky and Coecke’s definition of a preparation [2].

Definition 7.10 A preparation of A is a morphism ϕ : I → A for which there is an object
A′ and unitary u : I ⊕ A′ → A making the following diagram commute.

Proposition 7.11 Each preparation of A is a normal morphism.

Proof For a preparation ϕ we have an object A′ and unitary u : I ⊕A′ → A with ϕ = u◦μ1.
Then ϕ†ϕ = μ

†
1u

†uμ1 = π1μ1 = 1. �

A finitely additive measure, or state, on an OA P is a map σ : P → [0,1] satisfying
(i) σ(0) = 0, (ii) σ(1) = 1, and (iii) if x ⊥ y, then σ(x ⊕ y) = σ(x) + σ(y). We generalize
these definitions by replacing the real unit interval with [0,1]C .

1One can further show that the equivalence relation induced by the quasiorder is a congruence on the semiring
of positive elements, and that the quotient is a partially ordered semiring under the induced partial order.
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Definition 7.12 A state on the OA ProjA is a function s : ProjA → [0,1]C into the unit
interval of C that satisfies (i) σ(0) = 0, (ii) σ(1) = 1, and (iii) if p ⊥ q then σ(p + q) =
σ(p) + σ(q). States on the OMP Projw A are defined identically.

Proposition 7.13 Each state on Projw A restricts to a state on ProjA.

Proof This follows as p ⊥ q in ProjA implies p ⊥w q in Projw A. �

Proposition 7.14 Each normal morphism ϕ of A, hence each preparation of A, yields a
state σϕ of Projw A where

σϕ : Projw A → [0,1]C is given by σϕ(p) = ϕ†pϕ

Further, this state σϕ restricts to a state on ProjA.

Proof As p is a weak projection, it is a self-adjoint idempotent. So ϕ†pϕ = ϕ†p†pϕ =
(pϕ)†(pϕ), showing that ϕ†pϕ is a positive scalar. So σϕ(p) ≥ 0. For p′ the orthocomple-
ment of p, we have ϕ†p′ϕ is a positive scalar. Note ϕ†pϕ + ϕ†p′ϕ = ϕ†(p + p′)ϕ = ϕ†ϕ

which equals 1 as ϕ is a normal morphism. It follows that ϕ†pϕ ≤ 1. So σϕ is a map into
the unit interval [0,1]C . Clearly σϕ(0) = 0 and σϕ(1) = 1. If p ⊥w q , then σϕ(p + q) =
ϕ†(p + q)ϕ = σϕ(p) + σϕ(q). �

Remark 7.15 It is relatively common practice in quantum logic to consider states mapping
orthostructures into partially ordered abelian groups. Indeed, this is a central ingredient in
Foulis’s work on OA’s and unigroups [8]. It would be of interest to see if there are natural
conditions on our categories moving us closer to this situation. In particular, it would be
desirable to know when the quasiorder ≤ is a partial order, and when the additive monoid
structure on the positive scalars is cancellative.

8 Tensor Products

In this section, we consider objects A,B in a DBSM-category C , and show that the orthoal-
gebra Proj (A ⊗ B) has many of the properties one would ask of a tensor product of the
orthoalgebras ProjA and ProjB . We begin by recalling some facts about tensor products of
orthoalgebras.

Definition 8.1 For OAs A,B,C a map f : A × B → C is called a bilinear mapping if for
all a1, a2, a ∈ A and b1, b2, b ∈ B we have

1. a1 ⊥ a2 ⇒ f (a1, b) ⊥ f (a2, b) and f (a1 ⊕ a2, b) = f (a1, b) ⊕ f (a2, b).
2. b1 ⊥ b2 ⇒ f (a, b1) ⊥ f (a, b2) and f (a, b1 ⊕ b2) = f (a, b1) ⊕ f (a, b2).
3. f (1,1) = 1.

To organize our discussion of tensor products of OAs, we collect a number of conditions
in the following definition.

Definition 8.2 For OAs A,B,C and f : A × B → C consider the conditions:
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T1 f is bilinear.
T2 C is generated as an OA by the image of f .
T3 For any bilinear map g : A × B → D there is an OA-morphism e : C → D making the

following diagram commute.

T4 If σ, τ are states on A,B , then there is a state ω on C with ω(f (a, b)) = σ(a)τ (b) for
all a ∈ A,b ∈ B .

T5 States on C are determined by their value on the image of f .

The common definition of a tensor product of OAs [5, 9] is via a universal property in-
volving bilinear maps, much as one defines tensor products of modules. Specifically, the
tensor product of OAs A and B is a map f : A × B → C satisfying T1 and T3. The other
conditions above also arise in discussions of tensor products [5, 9], and their physical mo-
tivation is more apparent than that of the universal property. If A and B represent OAs of
propositions of two physical systems and C represents the propositions of the compound
system, physical considerations ask for a map f : A × B → C satisfying at least T1 and T4.

The states in T4 and T5 are ordinarily taken to be maps σ into the real unit interval
satisfying x ⊥ y ⇒ σ(x ⊕ y) = σ(x) + σ(y). To interpret these conditions for the OAs
ProjA,ProjB , we replace these states with states into the unit interval of the category [0,1]C
as in Definition 7.12.

Proposition 8.3 If p,q are weak projections of A and B respectively, then p ⊗ q is a weak
projection of A ⊗ B .

Proof First, suppose p,q are weak projections with p′, q ′ their orthocomplements. Then
p = pp = p†, pp′ = 0 and p + p′ = 1, with similar conditions for q . As ⊗ is a bifunctor,
(a ⊗ b)† = a† ⊗ b†, and composition distributes over +, we obtain that p ⊗ q and r =
p ⊗ q ′ + p′ ⊗ q + p′ ⊗ q ′ are self adjoint idempotents with pr = 0 and p + r = 1. Thus
p ⊗ q is a weak projection. �

Proposition 8.4 If p,q are projections of A and B respectively, then p ⊗ q is a projection
of A ⊗ B .

Proof Suppose u : A → A1 ⊕ A2 and v : B → B1 ⊕ B2 are unitary isomorphisms with
p = u†μ1π1u and q = v†μ1π1v. Note, μ1,π1 are used in different roles in these expressions,
they come from the biproduct A1 ⊕ A2 in the first expression, and B1 ⊕ B2 in the second.
Throughout the proof, the reader must determine injections and projections from context.
Note also, as ⊗ is a biproduct and (a ⊗ b)† = a† ⊗ b†, it follows that u ⊗ v is unitary as
well.
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Define w : (A1 ⊕ A2) ⊗ (B1 ⊗ B2) → (A1 ⊗ B1) ⊕ (A2 ⊗ B1) ⊕ (A1 ⊗ B2) ⊕ (A2 ⊗ B2)

to be the morphism whose matrix is given by

W =

⎛
⎜⎜⎝

π1 ⊗ π1

π2 ⊗ π1

π1 ⊗ π2

π2 ⊗ π2

⎞
⎟⎟⎠ and W † = (

μ1 ⊗ μ1 μ2 ⊗ μ1 μ1 ⊗ μ2 μ2 ⊗ μ2
)

The morphism π1 ⊗ π1 in the top row of the matrix for W is the morphism from (A1 ⊕
A2) ⊗ (B1 ⊗ B2) to A1 ⊗ B1 given by tensoring the projections π1 : A1 ⊕ A2 → A1 and
π1 : B1 ⊕ B2 → B1. Its adjoint is π

†
1 ⊗ π

†
1 = μ1 ⊗ μ1 and so forth.

In computing WW † each entry is of the form (πi ⊗ πj )(μk ⊗ μl) which equals
πiμk ⊗ πjμl . If i = k and j = l this equals 1 ⊗ 1 = 1, otherwise at least one of the
morphisms in the tensor product is zero, so by Definition 6.4 the result is 0. Thus
WW † is a 4 × 4 identity matrix. The matrix W †W has one entry that can be written
[(μ1π1 ⊗ μ1π1) + (μ2π2 ⊗ μ1π1)] + [(μ1π1 ⊗ μ2π2) + (μ2π2 ⊗ μ2π2)]. Applying Defi-
nition 6.4 and the fact that μ1π1 + μ2π2 = 1 this becomes (1 ⊗ μ1π1) + (1 ⊗ μ2π2), and
by the same argument this equals 1 ⊗ 1 = 1. Thus W †W is a 1 × 1 identity matrix, and this
shows w is unitary.

As u ⊗ v and w are unitary, we have that w ◦ (u ⊗ v) is unitary. Note

W †

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠W = (μ1π1 ⊗ μ1π1)

Therefore (u ⊗ v)†w†μ1π1w(u ⊗ v) = (u† ⊗ v†)(μ1π1 ⊗ μ1π1)(u ⊗ v) and this is equal to
u†μ1π1u ⊗ v†μ1π1v, and hence to p ⊗ q . So p ⊗ q is a projection. �

Definition 8.5 Define mappings

1. �w : Projw A × Projw B → Projw (A ⊗ B) by �w(p,q) = p ⊗ q .
2. � : ProjA × ProjB → Proj (A ⊗ B) by �(p,q) = p ⊗ q .

Note that Propositions 8.3 and 8.4 show these are well-defined.

Proposition 8.6 The map �w : Projw A × Projw B → Projw (A ⊗ B) is bilinear.

Proof Suppose p1,p2 are weak projections of A with p1 ⊥w p2 and q is a weak projection
of B . Note p1 ⊥w p2 means p1 ≤w p′

2 where p′
2 is the orthocomplement of p2, and by

Definition 3.3 this means p1p
′
2 = p1 = p′

2p1. In the proof of Proposition 8.3 we showed
r = p2 ⊗ q ′ +p′

2 ⊗ q +p′
2 ⊗ q ′ is the orthocomplement of p2 ⊗ q in Projw A⊗B . A simple

calculation gives (p1 ⊗ q)r = p1p
′
2 ⊗ qq = p1 ⊗ q and similarly r(p1 ⊗ q) = p1 ⊗ q . So

p1 ⊗ q ≤w r , giving p1 ⊗ q ⊥w p2 ⊗ q . Clearly (p1 + p2) ⊗ q = p1 ⊗ q + p2 ⊗ q , and this
provides the first condition of Definition 8.1. The second condition follows by symmetry,
and the third is 1 ⊗ 1 = 1, which is valid as ⊗ is a bifunctor. �

Proposition 8.7 The map � : ProjA × ProjB → Proj (A ⊗ B) is bilinear.

Proof Suppose p1,p2 are projections of A with p1 ⊥ p2, and q is a projection of B . By
Definitions 4.8 and 4.5 there are unitaries u : A → A1 ⊕ A2 ⊕ A3 and v : B → B1 ⊕ B2
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with p1 = u†μ1π1u, p2 = u†μ3π3u and q = v†μ1π1v. Again, the reader keeps track of the
various injections and projections μi,πi by context.

Consider w : (A1 ⊕ A2 ⊕ A3) ⊗ (B1 ⊕ B2) → (A1 ⊗ B1) ⊕ · · · ⊕ (A3 ⊗ B2) where

W =

⎛
⎜⎜⎜⎝

π1 ⊗ π1

π2 ⊗ π1
...

π3 ⊗ π2

⎞
⎟⎟⎟⎠ and W † = (

μ1 ⊗ μ1 μ2 ⊗ μ1 · · · μ3 ⊗ μ2
)

Using arguments similar to those in Proposition 8.4 we find WW † is a 6 × 6 identity matrix
and W †W is a 1 × 1 identity matrix, so w is unitary. Then w(u ⊗ v) is also unitary. We note
that

W †

⎛
⎜⎜⎜⎝

1 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

⎞
⎟⎟⎟⎠W = (μ1π1 ⊗ μ1π1)

To avoid confusion we let μ̃i , π̃i i = 1, . . . ,6 be the injections and projections for the biprod-
uct (A1 ⊗ B1) ⊕ · · · ⊕ (A3 ⊗ B2). In morphism form, the above equation says w†μ̃1π̃1w =
μ1π1 ⊗μ1π1, giving (u⊗v)†w†μ̃1π̃1w(u⊗v) = u†μ1π1u⊗v†μ1π1v and therefore is equal
to p1 ⊗ q . Similarly, as w†μ̃3π̃3w = μ3π3 ⊗ μ1π1 we have (u ⊗ v)†w†μ̃3π̃3w(u ⊗ v) =
p2 ⊗q . Proposition 4.9 then gives p1 ⊗q ⊥ p2 ⊗q . Clearly (p1 +p2)⊗q = p1 ⊗q +p2 ⊗q

giving the first condition of Definition 8.1. The second condition follows by symmetry, and
the third is 1 ⊗ 1 = 1, which is valid as ⊗ is a bifunctor. �

Remark 8.8 We have shown that the map ProjA × ProjB → Proj (A ⊗ B) satisfies the
condition T1 one requires of a tensor product of OAs, with the corresponding result holding
also for weak projections. A later example shows T2 need not hold, and it does not seem
likely that T3 will be satisfied, at least without further conditions on the category. These
conditions are more algebraically inspired, and less physically motivated than conditions
T4 and T5 involving states. We next see that rudimentary versions of T4 hold, namely ones
where we restrict consideration to states taking values in the unit interval [0,1]C of the
category and arising from normal morphisms or preparations. It doesn’t seem that stronger
versions of T4, or T5, need hold without further conditions on the category.

The reader might want to review Definitions 7.9 and 7.10 of normal morphisms and
preparations I

α→ A and Proposition 7.14 showing each such normal morphism and prepa-
ration α induces a state σα on Projw A and on ProjA.

Proposition 8.9 For normal morphisms α : I → A and β : I → B

1. γ = (α ⊗ β) ◦ λI is a normal morphism of A ⊗ B .
2. If α,β are preparations, so also is γ .
3. σγ is a state on Projw (A ⊗ B) with σγ (p ⊗ q) = σα(p)σβ(q).
4. σγ restricts to a state on Proj (A ⊗ B).

Proof For the first statement, Definition 6.3 gives λ−1
I = λ

†
I , and a calculation shows [(α ⊗

β)λI ]†[(α⊗β)λI ] = λ−1
I (α† ⊗β†)(α⊗β)λI = λ−1

I (α†α⊗β†β)λI . Then as α,β are normal
morphisms, this equals λ−1

I (1 ⊗ 1)λI = 1. So γ is normal.
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For the second statement, as α,β are preparations there are A′,B ′ and unitaries u : I ⊕
A′ → A and v : I ⊕ B ′ → B with α = u ◦ μ1 and β = v ◦ μ1. So the triangle in the diagram
below commutes.

In this diagram C = (A′ ⊗ I ) ⊕ (I ⊗ B ′) ⊕ (A′ ⊗ B ′) and r, s have matrices

R =

⎛
⎜⎜⎝

π1 ⊗ π1

π2 ⊗ π1

π1 ⊗ π2

π2 ⊗ π2

⎞
⎟⎟⎠ and S =

(
λ−1

I 0 0 0
0 μ1 μ2 μ3

)

Simple calculations show r, s are unitary and the matrix for sr(μ1 ⊗ μ1)λI is
( 1

0

)
. Thus

sr(μ1 ⊗μ1)λI is the injection I
μ1−→ I ⊕C. Further, (u⊗ v)r†s† is unitary and the diagram

below commutes. So γ = (α ⊗ β)λI is a preparation of A ⊗ B .

For the third statement, Proposition 7.14 shows σγ is a state. We need only show
σγ (p ⊗ q) = σα(p) ◦ σα(q). By definition, σγ (p ⊗ q) = γ †(p ⊗ q)γ . As λ

†
I = λ−1

I , this
becomes λ−1

I (α† ⊗ β†)(p ⊗ q)(α ⊗ β)λI , which equals λ−1
I (α†pα ⊗ β†qβ)λI . By defini-

tion of σα,σβ this becomes λ−1
I (σα(p)⊗σβ(q))λI . Equation (7.19) provides this expression

equals σα(p) ◦ σβ(q), as required. The fourth statement follows directly as each state of
Projw (A ⊗ B) restricts to a state on Proj (A ⊗ B). �

Remark 8.10 Normal morphisms are sufficient to build finitely additive states, but the ex-
amples below show that preparations may be closer to what one would want.
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9 Examples

In this section we consider examples of orthostructures of projections and their states in
several categories. We look at the category Rel of sets and relations, FDHilb of finite-
dimensional Hilbert spaces, and the category MatK whose objects are natural numbers and
whose morphisms are matrices over a field K . Each example is not only a DBSM-category,
but even a strongly compact closed category with biproducts. The first two behave in a reg-
ular fashion, the third exhibits some pathology.

9.1 The Category Rel

In this category, objects are sets, and the morphisms from a set A to a set B are the binary
relations R ⊆ A × B from A to B . Composition of morphisms is usual composition of
relations, and the identity morphisms are identity functions considered as relations in the
usual way. This category has a unique zero object, the emptyset, and the zero map from A

to B is the empty relation. The following is trivial to verify from Definition 2.1.

Proposition 9.1 Rel is a dagger category where R† is the relational converse.

For sets A1,A2, their disjoint union A1 � A2 is A1 × {1} ∪ A2 × {2}. We let μi,πj be the

relations Ai

μi→ A1 � A2
πj→ Aj defined by μi = {(a, (a, i)) : a ∈ Ai} and πj = {((a, j), a) :

a ∈ Aj } and note that μi and πi are converses of each other.

Proposition 9.2 Rel is a dagger biproduct category with dagger being converse and biprod-
ucts being disjoint unions.

Proof For morphisms Ai

Ri→ B one checks [R1,R2] = {((a, i), b)|(a, b) ∈ Ri} is the unique

morphism from A1 �A2 to B with [R1,R2]◦μi = Ri , and for B
Si→ Ai one checks 〈S1, S2〉 =

{(b, (a, i)) : (b, a) ∈ Si} is the unique morphism from B to A1 � A2 with πi ◦ 〈S1, S2〉 = Si .
A simple calculation gives πi ◦ μi is the identity relation if i = j and is empty, hence the
zero morphism, if i �= j . So this provides a biproduct structure. As μi and πi are converses
of one another, this yields a dagger biproduct category. �

We consider the additive structure on homsets. For R1,R2 : A → B , recall R1 ∨R2 is the
relation from A to B defined by a(R1 ∨ R2)b iff aR1b or aR2b.

Proposition 9.3 R1 + R2 = R1 ∨ R2.

Proof By definition 2.5 R1 + R2 = [1B,1B ] ◦ (R1 ⊕ R2) ◦ 〈1A,1A〉. From above,
〈1A,1A〉 = {(a, (a, i)) : i = 1,2}, [1B,1B] = {((b, i), b) : i = 1,2} and R1 ⊕ R2 is the
unique morphism with πi ◦ (R1 ⊕ R2) = Ri ◦ π1 and (R1 ⊕ R2) ◦ μi = μi ◦ Ri . So
R1 ⊕ R2 = {((a, i), (b, i)) : (a, b) ∈ Ri}. So a(R1 + R2)b iff aR1b or aR2b. �

For objects A1,A2 let the tensor product A1 ⊗ A2 be the usual Cartesian product, and

for relations Ai

Ri→ Bi let R1 ⊗R2 = {((a1, b1), (a2, b2)) : a1R1b1 and a2R2b2}. It is a simple
matter to see ⊗ is a bifunctor. Let the unit I = {∗} be a particular one-element set, and
let αA,B,C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C), σA,B : A ⊗ B → B ⊗ A, λA : A → I ⊗ A and
ρA : A ⊗ I be the obvious bijections considered as relations.
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Proposition 9.4 Rel is a DBSM-category with tensor being Cartesian product.

Proof That ⊗ yields a symmetric monoidal structure is similar to the situation for sets. As
† is converse, it is clear that (R ⊗ S)† = R† ⊗ S†, and as the α,σ,λ,ρ are bijections, their
converses are their inverses, so they are unitary. So the dagger is compatible with ⊗. To see
that ⊗ is compatible with the additive structure note R ⊗ (S1 + S2) = R ⊗ S1 + R ⊗ S2 as
+ is given by ∨, and as the zero morphism is the empty relation, R ⊗ 0 = 0. �

Proposition 9.5 Rel is a strongly closed category with biproducts.

Proof This is established in [2]. �

As I = {∗} is a singleton, there are two morphisms from I to itself, 0,1, with both
positive. The above description of + gives 1 + 1 = 1, establishing the following.

Proposition 9.6 The unit interval [0,1]Rel in the category Rel is the set {0,1} with the
obvious partial ordering, addition being max, and multiplication being the ordinary multi-
plication.

We next consider projections. For a set A, a relation A
R→ A is a self-adjoint idempotent

if R ◦ R = R and R = R†, which means that R is symmetric and transitive. For such R, let
its support be Supp(R) = {a ∈ A : aRa}, and note that a ∈ Supp(R) iff aRa′ for some a ∈ A.
Suppose R,R′ are self-adjoint idempotents on A with RR′ = 0 = R′R and R + R′ = 1. As
R + R′ = R ∨ R′ = 1, we have aRa′ ⇒ a = a′, so R and R′ are completely determined by
their supports. The condition RR′ = 0 implies these supports are disjoint, and the condition
R + R′ = 1 implies that their union is all of A. So each weak projection and its partner are
determined by a subset of A and its complement, and one easily sees that each subset and
its complement arise this way. Further, for weak projections R and S, we have RS = S iff
Supp(S) ⊆ Supp(R). We have shown the following.

Proposition 9.7 In the category Rel, the OMP Projw A is isomorphic to the power set of A,
hence is Boolean.

Recall that a self-adjoint idempotent A
e→ A strongly splits if there is A

f→ B with e =
f †f and 1B = ff †.

Proposition 9.8 Self-adjoint idempotents strongly split in the category Rel.

Proof Suppose A
R→ A is a self adjoint idempotent. Let A′ = Supp(R) and let R′ be the

restriction of R to A′. Then R′ is an equivalence relation on A′ and we may consider B =
A′/R′. Define a relation A

S→ B by setting aS(a′/R′) iff aRa′. One checks that S is well
defined, that S† ◦ S = R and S ◦ S† = 1B . �

Corollary 9.9 In Rel, we have ProjA = Projw A.

We next consider normal morphisms and preparations of an object A in Rel. Recall that a
normal morphism is an {∗} ϕ→ A with ϕ† ◦ ϕ = 1. Any relation from {∗} to A is determined
by the set of elements related to ∗, which we denote Im(ϕ), and the relation ϕ will be a
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normal morphism iff this set is non-empty. The condition for ϕ to be a preparation is more
stringent, there must be a set A′ and a unitary u : {∗}�A′ → A with ϕ = u◦μ1. As unitaries
in Rel are precisely bijections, ϕ is a preparation iff there is a single element of A to which
∗ is related. We have shown the following.

Proposition 9.10 Normal morphisms of A correspond to non-empty subsets of A, and
preparations of A correspond to singleton subsets of A.

Normal morphisms and preparations ϕ of A induce states σϕ : ProjA → [0,1]Rel where
σϕ(R) = ϕ†Rϕ. If ϕ corresponds to the non-empty subset T ⊆ A, so ∗ϕa iff a ∈ T , and R

corresponds to the subset S of A, so aRb iff a = b and a ∈ S, then we compute σϕ(R) = 1
iff S ∩ T �= ∅. This gives the following.

Proposition 9.11 Identifying ProjA with its power set P(A), the states on ProjA given
by normal morphisms are ones mapping all elements of a proper principal ideal of P(A)

to 0 and all other elements to 1. The states arising from preparations are the two-valued
homomorphisms mapping all elements of a principal prime ideal given by a coatom to 0
and all other elements to 1.

Consider now the tensor product � : ProjA × ProjB → Proj (A ⊗ B) mapping (R,S)

to R ⊗ S and recall R ⊗ S = {((a, b), (a′, b′)) : aRa′ and bSb′}. Then if R is the projection
corresponding to the subset A′ ⊆ A and S is the projection corresponding to the subset
B ′ ⊆ B , we have R ⊗ S is the projection of A × B corresponding to the subset A′ × B ′ =
{(a, b) : a ∈ A′ and b ∈ B ′}. This shows the following.

Proposition 9.12 Identifying ProjA, ProjB and Proj (A ⊗ B) with the power sets of A,B

and A × B , the tensor product of these orthostructures in this category is the embedding
P(A) × P(B) → P(A × B) sending (A′,B ′) � A′ × B ′.

Remark 9.13 Roughly, the behavior is classical in the category Rel. For finite sets, the or-
thostructures one obtains are finite Boolean algebras and the states obtained from prepara-
tions are homomorphisms into the two-element Boolean algebra. Further, the tensor product
satisfies conditions T1–T5. For infinite sets the Boolean algebras are the power set Boolean
algebras, states from preparations are exactly the complete homomorphisms into the two-
element Boolean algebra, and the tensor product behaves well if we consider complete gen-
eration and complete maps.

9.2 The Category FDHilb

This is the prime example. Objects are finite dimensional complex Hilbert spaces, and mor-
phisms are linear transformations. The dagger structure is given by the usual adjoint of a
map, biproducts and tensor products are the usual ones. The additive structure on a homset
is given by the usual addition of linear maps. The tensor unit is the field C. The scalars are
naturally identified with C, with the positive scalars being the positive real numbers, and the
unit interval [0,1]C being the usual real unit interval. A similar treatment can be given for
the category of all finite dimensional real Hilbert spaces.

Proposition 9.14 Self-adjoint idempotents strongly split, so weak projections and projec-
tions agree, and Proj H is the OML of projection operators of H. Further, as the spaces
involved are finite dimensional, this OML is even a modular ortholattice.
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Proof If e : H → H is a self-adjoint idempotent of H then its image H′ is a Hilbert space,
and the obvious map f : H → H′ satisfies f †f = e and ff † = 1H′ . So weak projections
and projections agree. That weak projections are projection operators on H is by defini-
tion, and the ordering and orthocomplementation in Proj H are defined as is standard when
considering the OML of projection operators. �

Normal morphisms are linear maps ϕ : C → H with ϕ†ϕ being the identity map. Such
ϕ is determined by ϕ(1) = v and ϕ†ϕ being the identity implies v is a unit vector. All unit
vectors arise this way. For such ϕ there is a unitary isomorphism u : S ⊕ S⊥ → H where
S is the subspace spanned by v. This shows each normal morphism is a preparation. The
connection between unit vectors and states of H is well-known through Gleason’s theorem
[6], giving the following.

Proposition 9.15 Normal morphisms and preparations of H coincide. The resulting states
on Proj H are exactly the ones that cannot be expressed as a non-trivial convex combination
of states.

Finally, the tensor product Proj (H1 ⊗ H2) has the properties T1–T5. This is the motivat-
ing example for these conditions.

Remark 9.16 A real problem is the restriction to finite dimensional Hilbert spaces, as quan-
tum mechanics involves infinite dimensional Hilbert spaces in an essential way. This is a
problem that is not easily remedied. The existence of adjoints is closely tied to completeness
of the inner product space and boundedness of the maps. One might consider the category
of Hilbert spaces and bounded linear maps, but this leaves out the position operator (which
is not bounded).

9.3 The Category MatK

Here the objects are natural numbers, the morphisms from m to n are the m×n matrices (m
columns and n rows) with entries from a field K , and composition of morphisms is usual
matrix multiplication. We note that an m × 0 or 0 × n matrix has no entries, so there is
exactly one such matrix. This shows that 0 is a zero object.

Proposition 9.17 MatK is a dagger biproduct category where † is transpose and m ⊕ n is
given by addition m + n with the canonical injections and projections being the matrices
having block form μ1 = (

Im

0

)
, μ2 = ( 0

In

)
, π1 = ( Im 0) and π2 = ( 0 In ).

Proof That transpose gives a dagger category is obvious. If m
M→ k and n

N→ k, then the
unique morphism [M,N ] from the coproduct completing the cone has block form ( M N ),

and if k
M→ m and k

N→ n, then the unique morphism 〈M,N〉 into the coproduct completing
the cone has block form

(
M

N

)
. That πiμj = δij and μ

†
i = πi are easily seen. �

For matrices P,Q, one can check that P ⊕Q is the matrix with block form
( P 0

0 Q

)
. From

this it follows that the addition on a homset MatK(m,n) is given by usual matrix addition.

Proposition 9.18 MatK is a DBSM-category with tensor product m ⊗ n given by multipli-
cation on objects, and R ⊗ S being usual Kronecker product of matrices.
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Proof That ⊗ is a bifunctor amounts to well known properties of Kronecker products. For
the natural isomorphisms α,λ,ρ, given m,n,p let αm,n,p : mnp → mnp, λm : m → m · 1
and ρm : m → 1 · m be identity maps. That these are natural amounts to the associativity
(R ⊗S)⊗T = R ⊗ (S ⊗T ) of Kronecker product, and the obvious conditions R ⊗ (1) = R

and (1) ⊗ S = S. So MatK is a strict monoidal category.
The natural isomorphism σ for symmetry is more delicate. Given R : m → m′ and

S : n → n′, there is a permutation matrix Pm,n : mn → nm depending only on m,n

and a permutation matrix Pm′,n′ : m′n′ → n′m′ depending only on m′, n′ with Pm′,n′ ◦
(R ⊗ S) = (S ⊗ R) ◦ Pm,n. The idea behind the permutation matrix Pm,n is to permute
a1b1, . . . , a1bn, . . . , amb1, . . . , ambn into a1b1, . . . , amb1, . . . , a1bn, . . . , ambn. Set σm,n =
Pm,n, and note that the above gives the naturality of σ . Showing the compatibility condition
involving σ [18, p. 180] is a chore.

This shows MatK is a symmetric monoidal category, and we have seen above it is a
dagger biproduct category. As Kronecker product distributes over matrix addition on both
sides, R ⊗ 0 = 0 and 0 ⊗ S = 0, we have MatK is a DBSM-category. �

Proposition 9.19 MatK is a strongly compact closed category with biproducts.

Proof We follow Selinger [21] where strongly compact closed categories with biproducts
are called biproduct dagger compact closed categories. We first show MatK is compact
closed. As MatK is a symmetric monoidal category with the natural isomorphisms α,λ,ρ

given by identity maps, this means we must define for each object n an object n∗ and mor-
phisms ηn : 1 → n∗ ⊗ n and εn : n ⊗ n∗ → 1 so that (i) (εn ⊗ 1n) ◦ (1n ⊗ ηn) = 1n and
(ii) (1n∗ ⊗ εn) ◦ (ηn ⊗ 1n∗) = 1n∗ .

Let n∗ = n. We define εn : n · n → 1 to be the matrix with one row and n2 entries formed
from the n × n identity matrix In by placing its rows one after another.

εn = (1 0 · · · 0︸ ︷︷ ︸
n

0 1 · · · 0︸ ︷︷ ︸
n

· · · 0 · · · 0 1︸ ︷︷ ︸
n

)

More precisely, εn = (a11 . . . a1n . . . an1 . . . ann) where aij = δij . Set ηn to be the transpose
of εn. Then in block form (εn ⊗ In) ◦ (In ⊗ ηn) becomes

⎛
⎜⎜⎜⎝

εn 0 · · · 0
0 εn · · · 0
...

...
. . .

...

0 0 · · · εn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

In

...

0
—
...

—
0
...

In

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9.20)

Note εn times the first block of the above matrix (the portion above the line) equals the
first row of the identity matrix In, that εn times the second block equals the second row of
the identity matrix, and so forth. Thus equation (9.20) evaluates to the identity matrix In,
showing that (i) holds. A similar argument shows (In ⊗ εn) ◦ (ηn ⊗ In) = In, hence (ii) holds
as well. Therefore MatK is compact closed.
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We know MatK is a dagger symmetric monoidal category that is compact closed. To show
it is a dagger compact closed category [21] we must show that for each n (iii) σn,n∗ ◦ε†

n = ηn.
As ε†

n = ηn and σn,n∗ is the permuation matrix Pn,n, we must show Pn,n ◦ ηn = ηn. This
amounts to showing the column vector ηn is fixed by Pn,n. Recall Pn,n is the permutation
matrix taking a1b1, . . . , a1bn, . . . , anb1, . . . , anbn to a1b1, . . . , anb1, . . . , a1bn, . . . , anbn. But
this leaves the aibi fixed, so Pn,n leaves the non-zero entries of ηn fixed, and permutes the
zeros. So MatK is dagger compact closed. The further properties needed to be a biproduct
dagger compact closed category were already established when we showed it was a dagger
biproduct category. �

Proposition 9.20 The scalars are the morphisms from I to itself, hence the 1 × 1 matrices,
and therefore the semiring of scalars is isomorphic to the field K . The positive scalars are
exactly the ones that are sums of squares of elements of K .

Proof We have only to show the statement about positivity. But this follows as a scalar s is
positive iff it is of the form α†α for some 1

α→ n. But such α is a column matrix with entries
x1, . . . , xn so α†α = (x2

1 + · · · + x2
n). �

Remark 9.21 If K has finite characteristic, then as 1 is a square we have 0 ≤ 1 and 1 ≤ 0, so
the unit interval in this case has a quasiorder that relates all elements to one another. Clearly
this is not such a useful notion of an ordering.

We next consider various notions of projections in the category MatK . First, the mor-
phisms from m to n are exactly the m × n matrices over K , hence are exactly the linear
transformations from Km to Kn expressed as matrices using the standard bases. Thus the
idempotent endomorphisms Idemm of m are the idempotents of the endomorphism ring
of Km. It is well known that this forms an OMP [11, 15] with partial ordering M ≤ N iff
MN = M = NM and orthocomplement M ′ = I − M . We then have the following.

Proposition 9.22 The idempotent endomorphisms Idemm of m form an OMP. The weak
projections Projw m are a sub-OMP of this, and the projections Projm are a sub-OA of this.

We consider the specific case where the field is Z2 and m = 4, and describe the or-
thostructure Projm. Note 4 = 1 ⊕ 1 ⊕ 1 ⊕ 1 and that all projections of 4 are obtained as
U †SU for some unitary u : 4 → 1 ⊕ 1 ⊕ 1 ⊕ 1 and some standard projection matrix S. Re-
call a standard projection matrix is one of all 0’s and 1’s with off-diagonal entries all 0. For a
fixed unitary u, the projections U †SU , where S ranges over all standard projection matrices,
form a Boolean subalgebra of Proj 4. The atoms of this Boolean subalgebra are

U †

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠U, U †

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠U

U †

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎠U, U †

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎠U
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As any permutation matrix P is unitary, we have PU is unitary for any unitary U , and
the Boolean algebras for PU and U agree. We say two unitary isomorphisms are equivalent
if one is obtained from the other by a permutation matrix in this way. One can check that
there are two non-equivalent 4 × 4 unitary matrices shown below.

U =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ and V =

⎛
⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎠

The Boolean algebras for U and V have only the zero matrix and the identity matrix in
common (it is not difficult to verify this using symmetry). So Proj 4 consists of two 16-
element Boolean algebras pasted together along 0, I as shown below. This means Proj 4 is
the horizontal sum of two 16-element Boolean algebras, and therefore is an orthomodular
lattice that is not modular.2

We next consider the matter of preparations of 4. These are morphisms 1
ϕ→ 4 so that

there is a unitary u : 1 ⊕ 3 → 4 with ϕ = u ◦ μ1. From the above description of the matrix
for μ1, in this case a column vector with just the first spot 1 and the rest 0, the preparations
are exactly the column vectors that arise as the first column of some 4 × 4 unitary matrix.
The state arising from a preparation σϕ : Proj 4 → Z2 satisfies σϕ(P ) = ϕ†Pϕ. In the case
that ϕ is the first column of the identity matrix, the state σϕ(P ) simply takes the entry in the
top left corner of P . In total, there are eight such preparations yielding eight states.

Finally, we remark that the tensor product behaves in an unusual fashion. Up to permuta-
tion, the identity is the only unitary 2×2 matrix, so Proj 2 is a four-element Boolean algebra
whose elements are

( 1 0
0 1

)
,
( 1 0

0 0

)
,
( 0 0

0 1

)
, and

( 0 0
0 0

)
. But the tensor product 2 ⊗ 2 = 4, and the

map � : Proj 2 × Proj 2 → Proj 4 takes (P,Q) to P ⊗ Q. As each of P,Q is a standard
projection matrix and P ⊗Q is their Kronecker product, each P ⊗Q is also a standard pro-
jection matrix. So � maps entirely into the one of the two 16-element Boolean subalgebras
of Proj 4.

In effect, the tensor product of these two four-element Boolean algebras Proj 2 is a
sixteen-element Boolean algebra just as in the classical case, but with a phantom sixteen-
element Boolean algebra pasted on to form Proj 4. This tensor product does not satisfy the
condition T2 one might seek in a tensor product of OAs.

2As this article was going to press, T. Hannan showed that in this setting Proj 5 is an OA with 6 blocks of 5
atoms each where any two blocks intersect in an atom. This OA is not an OMP.
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As a final comment, note that the self-adjoint idempotents do not split in this category.
Indeed,

P =
⎛
⎝1 1 1

1 1 1
1 1 1

⎞
⎠

is a self-adjoint idempotent, and therefore is a weak projection with partner I − P . But P is
not a projection as I is the only 3 × 3 unitary and P is not a standard projection matrix.

Remark 9.23 The situation for Projm in the setting of MatK is not settled. It is not deter-
mined whether Projm is always an OML or OMP, or whether it can be a proper OA. It is also
not determined whether the preparations provide a full set of states. These questions may
be of interest in quantum logic as the Projm provide an interesting source of OAs. There is
also a close connection between the unitary group Om (also called the orthogonal group) of
m × m matrices over Z2 and self-dual codes [13]. Perhaps the connection between the OAs
Projm and the groups Om could be of interest in the study of these groups as well.

10 Conclusions

The work of Abramsky and Coecke [2] suggests a way to develop a foundation for quantum
mechanics based in category theory. It would be most desirable to extend their work from
the finite-dimensional setting to the general one by adapting the types of categories one
considers.

There is a basic and very portable method to link aspects of quantum logic to such a
categorical approach. One views the direct product decompositions of an object in the cat-
egory as propositions of the system represented by that object. The key idea being that
refinement of decompositions yields a partial ordering and a resulting orthostructure. While
this approach does not work in an arbitrary category, it does seem to hold under fairly mild
assumptions—it is the idea underlying the occurrence of orthomodularity in dagger biprod-
uct categories, and holds in many other natural settings as well [12].

In developing a categorical foundation for general quantum mechanics, it may be wise
to consider this link to quantum logic, and view conditions on the category in this context
as well. For instance, the condition of self-adjoint idempotents strongly splitting implies
the projections form an OMP rather than an OA. Another area of interest is having natural
categorical conditions that ensure a good supply of states on these orthostructures of decom-
positions.

There may be something to be learned from the experience with quantum logic. Quantum
logic began with the seminal paper of Birkhoff and von Neumann [4] who proposed using an
abstract modular ortholattice (MOL) to serve as the propositions of a quantum mechanical
system. To von Neumann, the emphasis on modularity was key as it provided a link to
projective geometry. But the assumption of modularity was appropriate for the propositions
of a quantum system only in the finite-dimensional setting. If one restricts attention to this
area, quantum logic does very well indeed as there is a tight link between finite dimensional
modular ortholattices and projective geometries.

To cope with the general case, focus in quantum logic shifted to more general orthostruc-
tures such as OMLs and OMPs. While there are connections between MOLs and OMLs, ex-
perience has taught us that these are truly different creatures. Perhaps this reflects basic
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differences between phenomenon in finite-dimensional quantum mechanics and the those in
the general case.

One might expect the job of extending the categorical foundation to general quantum
mechanics to be a substantial one. But there are reasons for optimism. In particular, it is
encouraging that this approach allows different aspects such as isolated systems, compound
systems, and processes, to be treated at the same time.
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