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Summary. Ordered algebraic structures are encountered in many areas of math-
ematics. One frequently wishes to embed a given ordered algebraic structure into
a complete ordered algebraic structure in a manner that preserves some aspects of
the algebraic and order theoretic properties of the original. It is the purpose here to
survey some recent results in this area.

1 Introduction

An ordered algebraic structure 4 consists of an algebra, in the sense com-
monly used in universal algebra [9], together with a partial ordering on the
underlying set of the algebra. We require that the operations of the algebra
are compatible with the partial ordering in that they preserve or reverse order
in each coordinate. The partial orderings we consider here will almost always
be lattice orderings.

Ordered algebraic structures occur in a wide variety of areas. Examples
include partially ordered vector spaces, lattice ordered groups, Boolean alge-
bras, Heyting algebras, modal algebras, cylindric algebras, relation algebras,
orthomodular posets, and so forth. In applications, the existence of certain
infinite joins and meets often play an important role. In analytic applications,
certain infinite joins and meets are often related to limit processes; in logical
applications, certain infinite joins and meets are often related to existential
and universal quantification; and in quantum logic, countable orthogonal joins
correspond to experiments built from countable families of mutually exclusive
experiments. It is a common task to try to embed a given ordered algebraic
structure into one where certain families of joins and meets exist.

Perhaps the best example is the earliest one. In 1858 (published in 1872
[12]) Dedekind used his methods of cuts to construct the real numbers R from
the rationals Q. He defined a real number to be a certain type of ordered pair



2 John Harding

(A, B) of subsets of the rationals called a cut. Each rational ¢ yields such a
cut, and this provides an embedding ¢ : Q — R. Dedekind further defines an
ordering < and operations +, —, - on R. He shows that with these operations
(R, +,—-, <) is an ordered field that is conditionally complete, meaning that
every non-empty subset of R that has an upper bound has a least upper
bound and every non-empty subset that has a lower bound has a greatest
lower bound. Having embedded the rationals into a conditionally complete
ordered field, one might ask whether the rationals can even be embedded into
a complete ordered field. This is trivially impossible as an ordered field can
never have a largest or least element.

The embedding ¢ : Q@ — R produced above is more than just an order
embedding that preserves algebraic structure. The map ¢ preserves all existing
joins and meets in Q, a property we call a regular embedding. Further, each
element of R is both a join and meet of elements of the image of ¢, properties
called join and meet density. In many instances it may be desirable to find
a completion that not only preserves some existing algebraic properties, but
also preserves some existing joins and meets. Further, having some sort of
density condition, to ensure the resulting completion is somewhat tightly tied
to the original, is often desirable.

For a given type of algebraic structure, one can ask a variety of questions
regarding the existence of an embedding into a complete ordered structure
preserving certain aspects of the algebraic and order theoretic structure. There
is a large, mostly scattered, literature on such questions for specific classes
of structures. It is not our intent to review this literature in more than an
incidental way. Rather, we concentrate on results, mostly in the past 20 years,
that seem to form the beginnings of a general theory of such completions.

2 Preliminaries

In this section we review some basic definitions.

Definition 1. For a poset P, an n-ary operation f on P is called monotone if
it preserves or reverses order in each coordinate. An ordered algebraic struc-
ture A = (A, (fi)1, <) consists of an algebra (A, (f;)r), together with a partial
ordering < on A, such that for each i € I, the operation f; is monotone.

Note, this definition allows for Heyting implication — that is order re-
versing in the first coordinate, and order preserving in the second.

Mostly we will consider here ordered algebraic structures where the un-
derlying ordering is a lattice ordering. Such structures are also known under
the name of monotone lattice expansions [14, 15].

Definition 2. An embedding of an ordered algebraic structures A into B is
a map ¢ : A — B that is both a homomorphism and an order embedding. A
completion of A is an embedding ¢ : A — B where the underlying ordering of
B is a complete lattice.
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For an ordered algebraic structure whose underlying ordering is a lattice,
one might reasonably argue that an embedding should be required to be a lat-
tice embedding. This is easily accomplished by keeping the current definition
and adding the lattice operations as part of the basic algebraic structure.

Definition 3. An embedding ¢ : A — B is called join dense if for each b € B,
we have b = \/{p(a) : a € A and p(a) < b}. We say ¢ is join regular if
for each S C A that has a join in A, the image ¢[S] has a join in B, and
o(\/ S) =V ¢[S]. Meet dense and meet reqular are defined similarly. Finally,
call @ regular if it is both join reqular and meet regular.

The following is well known, and easy to prove.

Proposition 1. If ¢ is join dense, then it is meet regular, and if ¢ is meet
dense, then it is join regular.

We next describe various types of ideals an filters that play an important
role. We recall that for a subset S of a poset P, that U(S) ={pe P:s<p
for all s € S} is the set of upper bounds of S, and L(S) ={p € P:p < s for
all s € S} is the set of lower bounds of S.

Definition 4. For P a poset and I C P we say

1. I is an order ideal ifbe I anda <b=a € Il.
2. I is an ideal if I is an order ideal that is closed under existing finite joins.
3. I is a normal ideal if I = LU(I).

Let ToP, IP and TP be the sets of order ideals, ideals, and normal ideals
of P, considered as posets under the partial ordering of set inclusion.

Similarly an order filter is a subset F' C P where a € F' and a < b implies
b € F, a filter is an order filter closed under existing finite meets, and a
normal filter is a set F' with F' = UL(F). We let FoP, FP and FyP be the
sets of order filters, filters, and normal filters partially ordered by reverse set
inclusion.

Proposition 2. S is a normal ideal iff it is the intersection of principal ideals,
and S is a normal filter iff it is the intersection of principal filters. Normal
ideals are closed under all existing joins, and normal filters are closed under
all existing meets.

While normal ideals are closed under existing joins, in general, there are
ideals of a lattice that are closed under existing joins but are not normal.
However, for Heyting algebras an ideal is normal iff it is closed under existing
joins, but the corresponding result does not hold for normal filters in a Heyting
algebra [5].

Definition 5. Fora € Pleta|={pe P:p<a} andal={p € P:a < p}.
We call these the principal ideal and principal filter generated by a.
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3 Completion Methods

In this section we collect a number of common completion methods, as well
as a general template into which these methods fit. We first discuss matters
for posets and lattices, considering additional algebraic operations later.

Proposition 3. For a poset P, the order ideals o P are a complete lattice
and the map ¢ : P — IoP defined by p(a) = a | is a completion of P
satisfying

1. ¢ is join dense.
2. Fora € P,S C P, if p(a) < \/ ¢[S] then a < s for some s € S.

Further, if ¢ : P — C is another completion satisfying these two properties,
there is a unique isomorphism p: Zo P — C with po ¢ = 1.

The order ideal completion preserves all existing meets as it is a join
dense completion, but destroys all existing joins except those of subsets with
a maximum element. Also of interest is that Zp P is a completely distributive
lattice.

Proposition 4. For a poset P, the ideals TP are a complete lattice and the
map ¢ : P — IP defined by ¢(a) = al is a completion of P satisfying

1. ¢ is join dense.
2. Fora € P,S C P, if p(a) <V ¢[S] then v(a) <\ ¢S] for some finite
S C8.

Further, if ¢ : P — C is another completion satisfying these two properties,
there is a unique isomorphism p: ZoP — C with po @ = 1.

The ideal completion preserves all existing meets, and all existing finite
joins, however it destroys all existing joins that are not essentially finite. In
the next section when we consider preservation of identities, we see some of
the main advantages of the ideal completion.

Proposition 5. For a poset P, the normal ideals Ty P are a complete lattice
and the map ¢ : P — I P defined by ¢(a) = a| is a completion of P satisfying

1. ¢ is join dense.
2. ¢ is meet dense.

Further, if ¢ : P — C is another completion satisfying these two properties,
there is a unique isomorphism p: ZoP — C with o ¢ = 1.

The normal ideal completion is often called the MacNeille completion,
or the completion by cuts. It was introduced by MacNeille [28] in the poset
setting as an extension of the method used by Dedekind to construct the reals
from the rationals. It preserves all existing joins and meets, so is a regular
completion. The above characterization is due to Banaschewski and Schmidt
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[2, 31]. It provides a minimal completion of P in that for any completion
f : P — C there is an order embedding p : ZyP — C with po ¢ = f, and
this can be used to show that MacNeille completions provide strictly injective
essential extensions in the category of posets [3].

One similarly obtains order filter, filter, and filter completions of a poset
P using the embedding ¥ (a) = a 1. They have similar properties to the above,
except that the roles of joins and meets are interchanged. As the roles of join
and meet are symmetric for the normal ideal completion, Zy P and Fy P are
isomorphic, and the maps U, L provide mutually inverse isomorphisms.

One can create additional types of completions by taking other families of
order ideals or order filters that are closed under intersections. For instance,
the family of all order ideals closed under existing countable joins provides a
join dense completion that preserves all existing meets, and existing countable
joins. We soon generalize this observation, but first we consider one more
completion.

Proposition 6. For a bounded lattice L, there is a completion ¢ : L — C
satisfying

1. Each ¢ € C is both a join of meets and a meet of joins of elements from
the image of L.

2. For S,T C L, AN¢[S] < Vo[T] iff ANS" < VT for some finite S' C
S, T'CT.

Further, if ' : L — C' is another completion satisfying these two properties,
there is a unique isomorphism p: C — C' with po o = ¢'.

Proof. We provide a sketch, details are found in [14]. Let Z and F be the sets
of ideals and filters of L and define a binary relation R from F to Z by setting
F RIiff FNI # (). Then the polars of R [8] give a Galois connection between
the power set of F and the power set of Z. The Galois closed elements of the
power set of F form a complete lattice C, and the map ¢ : L — C defined
by p(a) = {F € F : a € F} is the required embedding. This gives existence,
uniqueness is not difficult. I

This completion is called the canonical completion. The embedding ¢ pre-
serves all finite joins and meets, so is a lattice embedding, but destroys all
existing essentially infinite joins and meets. Canonical completions have their
origins in Stone duality. For a Boolean algebra B the canonical completion
is the natural embedding of B into the power set of its Stone space, for a
distributive lattice it is given by the upsets of the Priestley space, and for
general lattices it is given by the stable subsets of the Urquhart space [32].
An abstract characterization similar to that above was given in the Boolean
case by Jénsson and Tarski [24], and in the distributive case by Gehrke and
Jénsson [16]. The above abstract characterization in the lattice setting was
given by Gehrke and Harding [14].
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3.1 A General Template for Completions

The technique used in constructing the canonical completion can be adapted
to create a range of completions. Let P be a poset, Z be some set of order ideals
of P containing all principal ideals, and F some set of order filters containing
all principal filters. Define a relation R from F to Z by FRI iff FN I # (.
Then the polars of R give a Galois connection, and the Galois closed subsets
of F form a complete lattice G(F,Z). The map a : P — G(F,Z) defined by
ala) ={F € F :a € F} is an embedding,.

For sets Z and F of order ideals and order filters, the completion v : P —
G(F,T) has the property that each element of G(F,Z) is both a join of meets
and a meet of joins of elements of the image of P. Further, the embedding «
preserves all existing joins in P under which each member of 7 is closed, and
all existing meets in P under which each member of F is closed. It destroys
all other joins and meets.

A number of common completions arise this way. The order ideal comple-
tion arises by choosing Z to be all order ideals of P and F to be all principal
filters of P; the ideal completion by choosing Z to be all ideals, F to be all
principal filters; the MacNeille completion by choosing Z to be all normal
ideals, F to be all principal filters, or alternately, by choosing Z to be all
principal ideals and F all principal filters; and the canonical completion by
choosing 7 to be all ideals, and F to be all filters. Clearly others are possible
as well.

3.2 Extending Additional Operations

Suppose P is a poset, a : P — C' is a completion of P, and f is a monotone
n-ary operation on P. We recall monotone means that f preserves or reverses
order in each coordinate. For convenience we write @ for an n-tuple of elements
(a1, ..,ay) of P, ¢ for an n-tuple of elements (c1,...,c,) of C, and «a(a) for

(aar),...,alan)).

Definition 6. Let <y be the ordering on C™ defined by ¢ < d if ¢; < d; for
each i with f order preserving in the it" coordinate, and d; < ¢; for all other
i.

We now describe two ways to lift the operation f on P to an operation on

C.

Definition 7. Let f~ and f be the n-ary operations on C defined by
7@ =\H{a(f@) : a(@) <; e}
7@ = Na(f@) : 2 <; a(@)}.

We call f~ and f+ the lower an upper extensions of f.
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Proposition 7. Both f~ and f+ are monotone maps and with repect to either
extension, o is a homomorphism.

For a join dense completion each ¢ € C'is given by ¢ = \/{a(a) : a(a) < c}.
For f unary and order preserving, f~(c) = \/{a(a) : a(a) < c}. Clearly
this is a natural choice of extension. Similarly, for a meet dense completion,
fT is a natural choice. So for MacNeille completions, both are reasonable
choices. In particular instances one may be preferable to the other. For Heyting
algebras, extending the Heyting implication — using the upper extension
yields a Heyting algebra, while the lower extension does not.

Canonical completions have neither join nor meet density, however, every
element of is a join of meets and a meet of joins of elements of the image.
We use this to define extensions of monotone maps suited to this type of
completion. Let K be all elements that are meets of elements of the image
and O be all elements that are joins of elements of the image. Then ¢ =
V{N{a(a): k <a}:k <cand k € K} for each ¢ in the canonical completion,
with a similar expression involving a meet of joins and all ¢ < o with o € O.

Definition 8. For f monotone and unary define f7 and f™ by

f7(0) = \{\la(f(@) :k<a}:k<candk e K}.
fT(e) = /\{\/{a(f(a)) :a<o}:c<oandoc€ O}

We call f7 and f™ the lower and upper canonical extensions of f.

This definition extends in a natural way to monotone n-ary operations, but
one must use a mixture of open and closed elements depending on whether
the coordinate of f preserves of reverses order. In this generality we have the
following.

Proposition 8. Both f° and f™ are monotone maps and with respect to ei-
ther extension, o is a homomorphism.

For a completion o : P — C and a family of monotone operations (f;)s
on P,amap 8 : I — {—,+,0,7} can be used to indicate which extension
method to apply to each operation f;.

Definition 9. For an ordered structure (A, (fi);1,<) and map f : I —
{—,+,0,7}, define the B3-ideal completion, 3-MacNeille completion, and (3-
canonical completion to be the corresponding completion applied to the under-

lying ordered structure with operations extended in the indicated way.

This by no means exhausts the range of possible completions, but it does
include many of those commonly encountered. Generally one tends to use —
extensions for ideal completions, 4+ extensions for filter completions, —, + for
MacNeille completions, and o, 7 for canonical completions to take advantage
of various density properties.
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4 Preservation of Identities

We consider the question of when an identity holding in an ordered structure
A holds in a certain type of completion of A. In the case of lattice ordered
structures, a natural question becomes when a variety of lattice ordered struc-
tures is closed under a certain type of completion. There has been considerable
progress in this area in the past twenty five years, but one of the more useful
results is still one of the oldest.

Definition 10. If A is a lattice with a family of operations that are order
preserving in each coordinate, then every identity valid in A is valid in the ideal
lattice completion of A where the operations are extended by the — extension.

Proof. As in [10] one shows that for a term t(z1,...,x,) and ideals I;, ..., I,
of A, that t(I1,...,I,) ={be€ A:b<t(ay,...,a,) for someay € I,...,a, €
I,}. 1

While ideal completions work very well with order preserving operations,
they work very poorly when an operation has a coordinate where it is order
reversing. For the basic case of Boolean algebras, the ideal lattice is hopeless
as the ideal completion of a Boolean algebra is Boolean only if it is finite.

The preferred method to complete a Boolean algebra with additional op-
erations is the canonical completion, usually using the o extension of maps.
Here there is an extensive literature, beginning with the work of Jénsson and
Tarski [24, 25] in the 1950’s, and continuing with the use of Kripke semantics
in modal logic (see [7] for a complete account). Primary concern is Boolean al-
gebras with additional operations that preserve finite joins in each coordinate.
Such operations are called operators.

Theorem 1. (Jénsson-Tarski) The canonical completion of a Boolean algebra
with operators preserves all identities that do not use the Boolean negation.

In the 1970’s, Sahlqvist [30] generalized this result to apply to equations
in which negation occurs, provided they are of a certain form. Usually, these
equations are called Sahlqvist equations. While we don’t describe the exact
form here, we do remark that Sahlqvist terms are the ones that correspond
to first order properties of the associated Kripke frame.

Theorem 2. (Sahlquist) The canonical completion of a Boolean algebra with
operators preserves all Sahlquist equations.

Sahlqvist’s result was set and proved via Kripke frames, which tied it to
the Boolean algebra with operator setting. Jénsson [26] gave an algebraic
proof that seems more portable. Gehrke, Nagahashi and Venema [17] used
Jénsson’s method to extend Sahlqvist’s theorem to distributive modal logics,
but it remains an open problem to see what portions of this result can be
extended to canonical completions in more general settings. We remark that
Jénsson and Tarski’s original result extends nicely to this setting as described
below.
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Theorem 3. (Gehrke-Harding) The canonical completion of a bounded lattice
with additional monotone operations preserves all identities involving only
operators.

Note that join is an operator on any lattice, but meet being an operator
is equivalent to distributivity. Of course, canonical completions of such lat-
tices with operations also preserve some identities involving order inverting
operations, such as those for orthocomplementations, and this provides an
advantage for them over ideal completions in such settings. To illustrate the
utility of canonical completions in the general setting we have the following.

Theorem 4. (Gehrke-Harding) Let K be a class of bounded lattices with addi-
tional monotone operations. If IC is closed under ultraproducts and [3-canonical
completions, where 3 uses only the extensions o, , then the variety generated
by K is closed under 3-canonical completions.

In particular, the variety generated by a single finite lattice with monotone
operations is closed under (-canonical completions. The proof of this result
requires showing canonical completions work well with homomorphic images,
subalgebras and Boolean products [14].

Turning to MacNeille completions, there are a good number of results from
different areas stating that a particular variety of interest is closed under Mac-
Neille completions. For instance, the varieties of lattices, Boolean algebras,
Heyting algebras, ortholattices, closure algebras, and post algebras are closed
under MacNeille completions, although one must be careful about choosing
the +, — extension of maps in certain cases.

The first general study of preservation of identities under MacNeille com-
pletions was conducted by Monk [29], who showed an analogous theorem to 1
holds for MacNeille completions of Boolean algebras with operators provided
the operators preserve all existing joins in each coordinate. Givant and Ven-
ema [18] used Jénsson’s technique to extend this result and obtain a type of
Sahlqvist theorem for preservation of identities for MacNeille completions of
Boolean algebras with operators. The key point in their work is the notion of
a conjugated map, which plays the role for order preserving operations simi-
lar to that of residuation for order inverting ones. Among their results is the
following which refers to the — extensions of maps.

Theorem 5. (Givant-Venema) The MacNeille completion of a Boolean alge-
bra with a family of additional conjugated operators preserves Sahlquist iden-
tities.

I am not aware of a version of 4 for MacNeille completions, but in the
setting of Boolean algebras with operators, a type of converse holds [15]. The
following uses the idea from Kripke semantics that a set with a family of
relations produces a Boolean algebra with operators consisting of the power
set of the set and the operators defined using relational image.
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Theorem 6. (Gehrke-Harding-Venema) If a variety of Boolean algebras with
operators is closed under MacNeille completions using the — extensions of
maps, then the variety is generated by an elementary class of relational struc-
tures.

There is also an interesting connection between Boolean products and
MacNeille completions. In [11] it was shown that if a lattice ordered alge-
braic structure has a well behaved Boolean product representation, then its
MacNeille completion lies in the variety generated by the original. This result
was used to show any variety of orthomodular lattices that is generated by
its finite height members is closed under MacNeille completions. It can also
be used to show that Post algebras are closed under MacNeille completions.
We note that these results for orthomodular lattices have implications also
for Boolean algebras with operators as every variety of ortholattices can be
interpreted in a certain variety of modal algebras [21].

5 Comparing Completions

Here there is unfortunately little known. The main result is found in [15].

Theorem 7. (Gehrke-Harding-Venema) For a bounded lattice L with addi-
tional monotone operations, the canonical completion of L is isomorphic to a
sublattice of the MacNeille completion of an ultrapower of L. Here any miz-
ture of o and ™ extensions of maps can be used for the canonical completion
provided the MacNeille completion uses the corresponding — and + extensions
of these maps.

Proof. The key point in the proof [15] is that every ideal of a sufficiently
saturated ultrapower of L is a normal ideal. I

This is vaguely reminiscent of a result of Baker and Hales [1] showing that
the ideal lattice of a lattice L is isomorphic to a subalgebra of an ultrapower of
L. Perhaps other such relationships can be found among various completions.

6 Exploring the Boundaries

In this section, we look at a number of results that point to what may, and
what may not, be possible. To begin, it is not the case that every ordered
algebraic structure can be embedded into one that is complete and satisfies
the same identities as the original. The rationals Q provide an example of
a structure without such a completion as no lattice ordered group can have
a largest or least element. For a simple example where even a conditional
completion is impossible, consider the variety V of diagonalizable algebras
[6]. These modal algebras have an order preserving unary operation f and for
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each member in V' we have < f(x) implies = 0. One then finds some A € V
with a family a; < ag < --- where a,, < f(an+1). Then in any completion of
A for z = \/ a,, we have = < f(x). Kowalski and Litak [27] provide a number
of varieties sourced in logic that admit no completion.

Modular ortholattices provide another example of a variety admitting no
completion, but the only known proof of this relies on Kaplansky’s result that
every complete modular ortholattice is a continuous geometry, and von Neu-
mann’s result that a continuous geometry has a dimension function, two of the
deepest results in lattice theory. In contrast to this, it is known that every com-
plemented modular lattice can be embedded into a complete complemented
modular lattice, via a method known as the Frink embedding [10] which is a
modification of the ideal lattice of the filter lattice. A related question, that
remains open, is whether every orthomodular lattice admits a completion.

Moving to the topic of how specific completion methods behave, we first
consider the canonical completion. Here it had long been conjectured that
every variety of Boolean algebras with operators that is closed under canonical
completions is generated by an elementary class of frames. Hodkinson and
Venema [19] showed this is not the case, but their counterexample is not
finitely based. The question remains open in the finitely based setting. On
a related note, the matter of determining whether a finitely based variety of
Boolean algebras with operators is closed under canonical completions is an
undecidable problem [33]. A simpler problem, but also open, is to determine
which varieties of lattices are closed under canonical completions. Here we
know every finitely generated variety of lattices is closed, but the variety of
modular lattices is not closed under canonical completions.

There are a number of results showing that subvarieties of familiar varieties
are not closed under MacNeille completions. The only varieties of lattices
closed under MacNeille completions are the trivial variety and the variety of
all lattices [20]; for Heyting algebras only the trivial variety, the variety of
Boolean algebras, and the variety of all Heyting algebras are closed [5]; and
[6] describes the situation for some varieties of closure algebras and derivative
algebras. Belardinelli, Jipsen, and Ono have shown [4] that in a certain setting,
cut elimination for a logic implies the closure of a corresponding variety under
MacNeille completions. So the above result for Heyting algebras explains why
so few superintuitionistic logics have cut elimination.

It can be a non-trivial task to determine when the variety generated by a
given finite ordered structure A is closed under g-MacNeille completions for
some given method [ of extending the operations. Indeed, this is not trivial
even for A being the two-element lattice, or the three-element Heyting algebra.
It would be desirable to have a decision process for this problem, if indeed it
is even decidable.

One might also ask whether a variety is closed under MacNeille comple-
tions in the sense that for each A € V, the operations on A can be extended
in some manner to the MacNeille completion of A to produce an algebra in
V. Here there are further complications. An example in [6] gives a variety V
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generated by a four-element modal algebra that is not closed under MacNeille
completions using either the —, + extensions of maps, but whose closure under
MacNeille completions in this more general sense is equivalent to some weak
form of the axiom of choice.

Rather than focusing on MacNeille completions, one may ask more gen-
erally whether a variety admits some type of regular completion. In many
applications it is the regularity that is of primary interest anyway. In some
instances, such as for orthomodular lattices, a variety admitting a regular
completion is equivalent to closure under MacNeille completions as any regu-
lar completion factors through the MacNeille completion [21]. However, this
is not generally the case. The variety generated by the three-element Heyting
algebra is not closed under MacNeille completions, but does admit a regular
completion [22]. This is the only example of this phenomenon that I know.
It would be natural to see if there are other varieties of lattices or Heyting
algebras that admit regular completions.

7 Conclusions and Discussions

We described several common completions of ordered sets, including the ideal
completion, the MacNeille completion, and the canonical completion. We also
discussed a template to produce completions, the Z, F-method, that includes
these completions as special cases. We discussed a number of methods to ex-
tend operations from an ordered algebraic structure to a completion, including
the —, + and o, 7w extensions, obtaining the notion of 8-ideal, 8-MacNeille, and
[-canonical completions.

A good deal of information was given about preservation of identities by
various completion methods. The MacNeille and canonical completions were
then compared, and it was shown that any variety of bounded lattice ordered
algebraic structures that is closed under MacNeille completions is also closed
under canonical completions.

A number of limiting results were given. These included a discussion of
varieties of ordered algebraic structures that admit no completion whatever,
as well as results relating to closure under particular completion methods. We
also pointed out two examples that show our current understanding of matters
is limited. The first showed that a variety can be closed under MacNeille com-
pletions with some unusual method of extending operations, but not closed
under any standard method of extending the operations. The second showed
a variety can admit a regular completion but not be closed under any type of
MacNeille completion.

The topic of completing ordered structures is a broad one with a long his-
tory. The results mentioned here focus on one area of this topic, preservation
of identities, and deal only with a fragment of the array of completion meth-
ods available. Still, there is reason to believe these results form a basis around
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which a unified theory can be built, and that this theory addresses questions
of concern in many areas of mathematics.

We have a fairly general template for completions, the Z, F-method, that
includes many of the completions commonly encountered. This method also
points a way to tailor completions to specific need. We have also various
methods of extending operations to such completions, and Jénsson’s approach
to Sahlqvist’s theorem may give a portable tool to address preservation of
certain types of identities by various types of completions.

We have also seen several techniques occurring repeatedly in our work.
These include the use of ultraproducts, which occurs when considering the
preservation of identities by canonical extensions, and also in the proof that
closure of a variety under MacNeille completions implies closure under canon-
ical extensions. Ultraproducts are also related to the formation of the ideal
lattice. Boolean products are another recurring theme. They occur in connec-
tion with preservation of identities by canonical extensions, when considering
preservation of identities by MacNeille completions, and are also key in con-
structing a variety that admits a regular completion but is not closed under
MacNeille completions.

The use of relational structures or Kripke frames has also been closely
tied to our considerations of completions of Boolean algebras with operators,
both in the case of canonical completions and MacNeille completions. It would
desirable to extend this to the more general setting of bounded lattices with
additional operations. There are more general notions of frames in this setting,
see for example Gehrke [13]. Also, Harding [23] has a notion of frames involving
a set X with additional binary relation P and family of relations R; satisfying
certain conditions, where the relations R; are used to form operations on the
Galois closed subsets of X under the polarity induced by P. No matter which
method one uses to create frames, it would seem worthwhile to see the extent
to which results can be lifted from the Boolean setting to completions of more
general structures.

In sum, it seems an exciting time to be working in this area of completions.
A sufficient groundwork has been laid to map out a direction of research, and
a number of the tools have been identified. To be sure, there remains much
work to be done, with likely more than a few surprises, but one hopes to see
considerable progress in the near future.
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