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Abstract Let β(N) denote the Stone–Čech compactification of the set N of natural
numbers (with the discrete topology), and let N

∗ denote the remainder β(N)− N. We
show that, interpreting modal diamond as the closure in a topological space, the modal
logic of N

∗ is S4 and that the modal logic of β(N) is S4.1.2.
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1 Introduction

It was shown by McKinsey and Tarski [12,13] that if we interpret modal diamond
as the closure in a topological space, then the modal logic of topological spaces is
Lewis’ well-known modal system S4. Their classic 1944 result states that S4 is in fact
the modal logic of any dense-in-itself metrizable space. In particular, S4 is the modal
logic of the Cantor space CC , the real line R, and the rational line Q. A modern proof of
completeness of S4 with respect to CC is given in [1,14], that with respect to R in [1,4],
and that with respect to Q in [3]. On the other hand, completeness issues with respect
to important non-metrizable spaces have not been raised so far in the literature. In this
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232 G. Bezhanishvili, J. Harding

note we concentrate on an important non-metrizable space β(N)—the Stone–Čech
compactification of the set N of natural numbers (with the discrete topology).

Our main result states that under the set-theoretic assumption that each infinite
maximal almost disjoint family of subsets of N has cardinality 2ω, the modal logic
of the remainder N

∗ = β(N) − N is S4. From this, it follows that under the same
assumption, the modal logic of β(N) is S4.1.2, which is obtained by adding to S4
the axiom �♦p ↔ ♦�p. The set theoretic assumption that each infinite maximal
almost disjoint family of subsets of N has cardinality 2ω is not provable in ZFC (the
Zermelo–Fraenkel Set Theory with the Axiom of Choice). However, this assumption
is known to be a consequence of Martin’s Axiom [11, p. 57], and it is a simple conse-
quence of the Continuum Hypothesis. It is an open problem whether our main result
holds true within ZFC.

The paper is organized as follows. In Sect. 2 we recall basic facts about relational
semantics of S4, including completeness of S4 with respect to finite quasi-trees. In
Sect. 3 we recall basics about the Boolean algebra ℘(N)/Fin of the powerset of N

modulo the ideal of finite subsets of N. Section 4 is the heart of the paper in which
we show that there exists an interior map from the Stone space of ℘(N)/Fin onto
each finite quasi-tree. Since N

∗ is homeomorphic to the Stone space of ℘(N)/Fin, as
a corollary we obtain that S4 is the modal logic of N

∗, thus adding to completeness
results of McKinsey and Tarski and others. In Sect. 5 we show how to adjust the proof
of Sect. 4 to obtain that S4.1.2 is the modal logic of β(N). We conclude the paper by
mentioning several consequences of our results.

2 Preliminaries

We recall that S4 is the least set of formulas containing the Boolean tautologies, the
axioms:

�(p → q) → (�p → �q)
�p → p
��p → �p

and closed under Modus Ponens (ϕ, ϕ → ψ/ψ) and Necessitation (ϕ/�ϕ). Rela-
tional frames of S4 are quasi-ordered sets 〈X,≤〉; that is, X is a nonempty set and
≤ is reflexive and transitive. A quasi-ordered set 〈X,≤〉 is called rooted if there
exists r ∈ X—called a root of X—such that r ≤ x for each x ∈ X . For 〈X,≤〉
a quasi-ordered set, x ∈ X , and A ⊆ X , let ↓x = {y ∈ X : y ≤ x} and let
↓A = {x ∈ X : ∃a ∈ A with x ≤ a}. We call A ⊆ X a chain if x ≤ y or
y ≤ x for all x, y ∈ A. A quasi-ordered set 〈X,≤〉 is called a tree if 〈X,≤〉 is
a rooted partially ordered set and ↓x is a chain for each x ∈ X . For x ∈ X , let
C[x] = {y ∈ X : x ≤ y and y ≤ x}. We call C ⊆ X a cluster if C = C[x] for some
x ∈ X . Define an equivalence relation ∼ on X by x ∼ y if C[x] = C[y]. Let X/∼
denote the quotient of X under ∼—called the skeleton of X . We call X a quasi-tree
if X/∼ is a tree. A well-known result in modal logic states that S4 is complete with
respect to finite quasi-trees (see, e.g., [4, Cor. 6]).

For 〈X,≤〉 a quasi-ordered set, a subset U of X is called an upset of X if x ∈ U
and x ≤ y imply y ∈ U . It is well-known that every quasi-ordered set 〈X,≤〉 can be
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The modal logic of β(N) 233

viewed as a topological space by letting the upsets of X be open subsets of X . In fact,
quasi-ordered sets are very special topological spaces—called Alexandroff spaces—in
which the intersection of any family of opens is again open. Thus, relational semantics
for S4 can be viewed as a special case of topological semantics for S4.

For two topological spaces X and Y , we recall that a map f : X → Y is continuous
if for each open V of Y , we have f −1(V ) is open in X ; that f is open if U open in
X implies f (U ) is open in Y ; and that f is interior if it is both continuous and open.
It is well-known (see, e.g., [8, Thm. 2.1.8]; [2, Prop. 2.9]) that onto interior maps
preserve validity of modal formulas. This fact is very useful in proving topological
completeness results. Indeed, since S4 is complete with respect to finite quasi-trees,
in order to obtain the McKinsey–Tarski result that S4 is complete with respect to any
dense-in-itself metrizable space X , it is sufficient to construct an interior map from X
onto every finite quasi-tree. Similarly, in order to prove completeness of S4 with respect
to the remainder N

∗ of the Stone–Čech compactification β(N) of N, it is sufficient to
construct an interior map from N

∗ onto every finite quasi-tree. Then, by completeness
of S4 with respect to finite quasi-trees, if a formula ϕ is not provable in S4, there exists
a finite quasi-tree 〈X,≤〉 refuting ϕ. Viewing 〈X,≤〉 as a topological space, there is
an interior onto map f : N

∗ → X . And since interior onto maps preserve validity of
formulas and ϕ is refuted on X , it can also be refuted on N

∗. This is exactly what our
strategy is going to be: Assuming that each infinite maximal almost disjoint family
of subsets of N has cardinality 2ω, we will build an interior map from N

∗ onto every
finite quasi-tree X ; the completeness of S4 with respect to N

∗ will follow immediately.
We then show how to use this result to obtain completeness of S4.1.2 with respect to
β(N).

3 N
∗ and ℘(N)/Fin

It is well-known (see, e.g., [7, pp. 230–232]; [10, p. 95]) that β(N) can be thought of
as the Stone space of the Boolean algebra ℘(N) of subsets of N. Since N

∗ is a closed
subset of β(N), by the Stone duality, it is the Stone space of a quotient algebra of℘(N).
In fact, N

∗ is the Stone space of the Boolean algebra ℘(N)/Fin, where Fin is the ideal
of finite subsets of N (see [10, p. 95]). In this section we consider basic properties of
℘(N)/Fin, which will be needed to prove completeness of S4 with respect to N

∗. For
more detail see [10, pp. 78–82].

Proposition 3.1 ℘(N)/Fin is homogeneous, which means that for each nonzero b ∈
℘(N)/Fin, the interval [0, b] is isomorphic as a Boolean algebra to ℘(N)/Fin.

Proof As b �= 0 we have b = [A] for some infinite subset A ⊆ N. Then there is
a bijection ϕ : A → N. The map sending [S] to [ϕ−1(S)], for each S ⊆ N, is the
required isomorphism from ℘(N)/Fin to [0, b]. 
�

We recall that a set P of nonzero elements of a Boolean algebra B is orthogonal if
any two distinct elements of P meet to zero, that P is a partition of b ∈ B if P is an
orthogonal set whose join is b, and that P is a partition of unity if it is a partition of
the top element 1 of B. It is well known that Zorn’s lemma implies every orthogonal
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set can be extended to a maximal orthogonal set, and that maximal orthogonal sets are
exactly the partitions of unity.

A Boolean algebra B is said to satisfy the countable separation property
[10, p. 79] if for any countable subsets D, E of B with d ∧ e = 0 for each d ∈ D and
e ∈ E , there is an element b ∈ B with d ≤ b for each d ∈ D and e ≤ −b for each
e ∈ E .

Proposition 3.2 If a Boolean algebra B satisfies the countable separation property
and P is an infinite orthogonal set of B, then the ideal I generated by P is not a
maximal ideal.

Proof As P is infinite we can find two disjoint countable subsets D, E of P . As B
satisfies the countable separation property, there is some b ∈ B with d ≤ b for each
d ∈ D and e ≤ −b for each e ∈ E . As there are infinitely many members of the
orthogonal set P lying beneath b, it cannot be the case that b lies beneath the join of
finitely many members of P . So b does not belong to I . Similarly, −b �∈ I . Thus I is
not maximal. 
�

Our primary concern will be with orthogonal sets that are a partition of some b �= 0
in ℘(N)/Fin. Our first facts below are obtained using only the axioms of ZFC. They
are proved in the case when b = 1 in [10, p. 78], and the generalization to any b �= 0
is a direct consequence of the homogeneity of ℘(N)/Fin.

Proposition 3.3 If b is a nonzero element of ℘(N)/Fin, then there is a partition of b
of cardinality 2ω and each infinite partition of b is uncountable.

As ℘(N)/Fin itself has cardinality 2ω, the above result says that if κ is the cardi-
nality of an infinite partition of b, then ω1 ≤ κ ≤ 2ω, and that this upper bound 2ω

is realized by at least one partition of b. It is, however, consistent with ZFC that a
partition of b can have cardinality strictly less than 2ω. In our argument we require
that each infinite partition of b has cardinality 2ω. This is equivalent to the well-
studied assumption in infinitary combinatorics that each infinite maximal almost dis-
joint family of subsets of N has cardinality 2ω. We refer to this set-theoretic assumption
as (a = 2ω) as it is common to denote the least cardinality of an infinite maximal almost
disjoint family of subsets of N by a. It is well-known that (a = 2ω) follows from the
Continuum Hypothesis (CH) or Martin’s Axiom (MA), which is weaker than (CH).
However, (a = 2ω) is not provable in ZFC. That (a = 2ω) arises is not surprising. It is
standard to consider the behavior of N

∗ under further set theoretic assumptions [17].

4 The modal logic of N
∗

In this section we prove our main result that, under (a = 2ω), for each finite quasi-tree
Q, there exists an interior map from N

∗ onto Q. As a corollary, we obtain that S4 is
the modal logic of N

∗.
For an integer m, let {1, . . . ,m}∗ be all finite sequences σ of 1, . . . ,m. We call the

number of terms in the sequence σ its length. The unique sequence with no terms is
called the empty sequence and denoted �.
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The modal logic of β(N) 235

Let T be a finite tree. We call T regular if the branching size of each node is the
same. Given integers m, n ≥ 1 let Tm,n denote the regular tree of branching size m
and depth n + 1. We can think of the nodes of this tree as all σ where σ belongs to
{1, . . . ,m}∗ and has length at most n. The root is the node �, and the m children of
the node σ are the nodes σ1, . . . , σm.

Let Q be a quasi-tree. We call Q regular if Q/∼ is a regular tree. Given integers
m, n, k ≥ 1, let Qm,n,k be the regular quasi-tree of branching size m, depth n + 1, and
cluster size k obtained by replacing each node σ of the tree Tm,n by a cluster of size
k. A key fact, established in [4, Lem. 5], is that for each finite quasi-tree Q, there are
m, n, k such that Q is an interior image of Qm,n,k . So to show each finite quasi-tree
is an interior image of N

∗, it is enough to show each Qm,n,k is such an interior image.
It is our goal to show that given integers m, n, k ≥ 1, there exists an interior onto

map f : N
∗ → Qm,n,k . The proof consists of several stages. To begin, take an arbi-

trary, but fixed, branching size m ≥ 1. We first build an infinite sequence of partitions
of unity of℘(N)/Fin having a number of specific technical properties. This sequence is
used to build a tree of ideals of℘(N)/Fin with branching size m and infinite depth. This
tree of ideals is used to construct an interior map f from the Stone space of ℘(N)/Fin
onto any tree Tm,n . Finally we show this map can be modified to provide the required
interior map from the Stone space of ℘(N)/Fin onto any quasi-tree Qm,n,k . We begin
with a definition to describe the technical properties required of our partitions of unity.

Definition 4.1 Suppose b ∈ ℘(N)/Fin and P is a partition of b. For each c ∈ ℘(N)/Fin
set

SupportP (c) = {p ∈ P : c ∧ p �= 0}.
Infinite(P) = {c : c ≤ b and SupportP (c) is infinite}.

Note that if P is a partition of b, then the ideal generated by P consists exactly of
those elements of the interval [0, b] whose support in P is finite, and the remaining
elements of [0, b] are in Infinite(P). The following is the key technical result where
we require (a = 2ω) to control the size of partitions of an element b.

Lemma 4.2 Assume (a = 2ω). For P an infinite partition of b ∈ ℘(N)/Fin and a
natural number m, there are sets P1, . . . , Pm and maps f1, . . . , fm with

(1) P1 ∪ · · · ∪ Pm = P and Pi ∩ Pj = ∅ for each i �= j .
(2) fi : Infinite(P) → Pi is a 1-1 map for each i ≤ m.
(3) fi (c) ∈ SupportP (c) for each c ∈ Infinite(P) and each i ≤ m.

We call P1, . . . , Pm and f1, . . . , fm a supportive family for P.

Proof It is sufficient to find maps fi : Infinite(P) → P for i ≤ m such that each
fi is 1-1, the images of the fi are pairwise disjoint, and fi (c) ∈ SupportP (c) for
each c ∈ Infinite(P) and i ≤ m. The required sets P1, . . . , Pm are then produced by
extending the disjoint images of these functions to a pairwise disjoint covering of P .

Suppose Infinite(P) has cardinality κ and cλ (λ ∈ κ) enumerates this set. We define
f1(cβ), . . . , fm(cβ) by transfinite recursion on β < κ assuming f1(cλ), . . . , fm(cλ)
are defined for all λ < β.
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236 G. Bezhanishvili, J. Harding

Let β < κ . As cβ ∈ Infinite(P), using infinite distributivity, {cβ ∧ p : p ∈
SupportP (cβ)} is an infinite partition of cβ . By the assumption (a = 2ω), this parti-
tion has cardinality 2ω, hence SupportP (cβ) has cardinality 2ω. But β < κ ≤ 2ω, so
{ fi (cλ) : i ≤ m, λ < β} has cardinality strictly less than 2ω. So there are elements
pβ1, . . . , pβm belonging to SupportP (cβ) and not in { fi (cλ) : i ≤ m, λ < β}. Set
fi (cβ) = pβi . 
�
Lemma 4.3 There is an infinite sequence of partitions of unity P0, P1, . . . such that
P0 = {1} and for each b ∈ Pn

(1) Pb = ↓b ∩ Pn+1 is an infinite partition of b.
(2) There are Pb

1 , . . . , Pb
m and f b

1 , . . . , f b
m supportive for Pb.

(3) c ∧ f b
j (c) has infinite support in Pn+2 for each j ≤ m and c ∈ Infinite(Pb).

Proof We define this sequence of partitions of unity, and the associated supportive
families, by recursion. Let P0 = {1} and let P1 be any infinite partition of unity. Then
Lemma 4.2 supplies supportive P1

1 , . . . , P1
m and f 1

1 , . . . , f 1
m .

Suppose we have defined partitions of unity P0, . . . , Pn and for each b belonging to
some Pi with i ≤ n − 1 we have Pb = ↓b ∩ Pi+1 is an infinite partition of b. Suppose
also that if b belongs to Pi for some i ≤ n − 1, we have supportive Pb

1 , . . . , Pb
m and

f b
1 , . . . , f b

m for Pb and if i ≤ n − 2, condition 3 holds for these maps.
We will define a partition of unity Pn+1. This must be done so that for each b ∈ Pn ,

we have Pb = ↓b ∩ Pn+1 is an infinite partition of b. When defining Pn+1 we must
also make sure for each d ∈ Pn−1 and each c ≤ d of infinite support in Pd , that
c ∧ f d

j (c) has infinite support in Pn+1 for each j ≤ m. Finally, for each b ∈ Pn we

must create a supportive family Pb
1 , . . . , Pb

m and f b
1 , . . . , f b

m for Pb.
Suppose b ∈ Pn . We claim there is at most one d ∈ Pn−1, one c ≤ d of infinite

support in Pd , and one j ≤ m with b = f d
j (c). Indeed, for such d, c, j as b = f d

j (c)

we must have b ∈ Pd . Since the elements of Pn−1 are pairwise disjoint, this d must
be the unique element of Pn−1 lying above b. As the images of the f d

1 , . . . , f d
m are

pairwise disjoint, there can be at most one j ≤ m with b in the image of f d
j . Then

because f d
j is 1-1, there is at most one c with b = f d

j (c).

Suppose b ∈ Pn and there are d, c, j as above with b = f d
j (c). Then as f d

j (c)

belongs to the support of c in Pd , we have b ∧ c �= 0. By Proposition 3.3 there is
an infinite partition of b ∧ c. Extend this to a maximal orthogonal set in the interval
[0, b], hence to a partition Pb of b. Note that the support of b ∧ c in Pb is infinite. If
b ∈ Pn and there are no such d, c, j , let Pb be any infinite partition of b.

Let Pn+1 = ⋃{Pb : b ∈ Pn}. Each Pb is an orthogonal set, and elements from
different sets Pb are also orthogonal, so Pn+1 is orthogonal. As the join of Pb is b, it
follows that the join of Pn+1 equals that of Pn , hence is 1. So Pn+1 is a partition of
unity. Also, for each b ∈ Pn we have by construction that ↓b ∩ Pn+1 equals Pb, hence
is an infinite partition of b. Suppose d ∈ Pn−1, c ≤ d has infinite support in Pd , and
j ≤ m. Then for b = f d

j (c), we have constructed Pb so that b ∧ c has infinite support

in Pb, hence this element has infinite support in Pn+1. For each b ∈ Pn , it remains
only to construct a supportive family Pb

1 , . . . , Pb
m and f b

1 , . . . , f b
m for Pb. But this

follows directly from Lemma 4.2. 
�
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The modal logic of β(N) 237

We use this setup to build a tree of ideals of ℘(N)/Fin.

Definition 4.4 For each σ ∈ {1, . . . ,m}∗ define Sσ by setting

S� = {1},
Sσ j = ⋃{Pb

j : b ∈ Sσ }.

Here, σ j is the string formed by concatenating j to the end of the string σ . Having
defined Sσ for each σ we let Iσ be the ideal of ℘(N)/Fin generated by Sσ .

Lemma 4.5 For the ideals Iσ constructed above

(1) Iσ ⊆ Iρ if σ extends ρ.
(2) Iσ ∩ Iρ = {0} unless one of σ, ρ extends the other.
(3) 1 ∈ I� − ∨m

j=1 I j .
(4) a ∈ Iσ−∨m

j=1 Iσ j ⇒ for each i ≤ m there exists d ≤ a with d ∈ Iσ i−∨m
j=1 Iσ i j .

Proof For the first condition, it is enough to show Iσ j ⊆ Iσ for any σ and any j ≤ m.
But if b ∈ Sσ , then Pb

j is contained in ↓b. So each generator of Iσ j lies beneath
a generator of Iσ , hence Iσ j ⊆ Iσ . For the second condition, it is enough to show
Iσ i ∩ Iσ j = {0} for any σ and any i �= j ≤ m. Suppose b, c ∈ Sσ , and p ∈ Pb

i ,
q ∈ Pc

j . If b �= c then as p ≤ b, q ≤ c and b, c are orthogonal, p, q are orthogonal. If

b = c then Pb
i and Pb

j are distinct, hence disjoint subsets of Pb, so p, q are orthogo-
nal. Thus every element in the generating set of Iσ i is orthogonal to every element in
the generating set of Iσ j , and it follows that Iσ i ∩ Iσ j = {0}. For the third condition,
1 belongs to the generating set S� of I� and as the generating set P1 of

∨m
j=1 I j is an

infinite partition of unity, 1 does not belong to this join.
For the final condition, suppose σ has length n. As a ∈ Iσ we have a ≤ b1 ∨· · ·∨bk

for some b1, . . . , bk ∈ Sσ . Hence a = (a ∧ b1) ∨ · · · ∨ (a ∧ bk). Since a does not
belong to

∨m
j=1 Iσ j , there is some b ∈ Sσ with a ∧ b not belonging to

∨m
j=1 Iσ j .

As b ∈ Sσ and Pb = ⋃m
j=1 Pb

j we have Pb ⊆ ⋃m
j=1 Sσ j hence Pb is contained in

∨m
j=1 Iσ j . As a ∧ b does not belong to

∨m
j=1 Iσ j and clearly lies under b, the support

of a ∧ b in Pb must be infinite. Let c = a ∧ b. Condition 3 of Lemma 4.3 gives that
d = c ∧ f b

i (c) has infinite support in Pn+2. As f b
i (c) belongs to the image of f b

i , it
belongs to Pb

i , and as b ∈ Sσ , we have f b
i (c) belongs to Sσ i , and hence also to the

ideal Iσ i it generates. As d ≤ f b
i (c) we have d ∈ Iσ i . Since the support of d in Pn+2

is infinite and
∨m

j=1 Iσ i j is generated by a subset of Pn+2, it follows that d does not
belong to this join. 
�

Let X be the Stone space of ultrafilters of the Boolean algebra ℘(N)/Fin. We recall
that {φ(a) : a ∈ ℘(N)/Fin} forms a basis of clopen (simultaneously closed and open)
subsets for the topology on X , where φ(a) = {x ∈ X : a ∈ x}. For an ideal I of
℘(N)/Fin, let UI = ⋃{φ(a) : a ∈ I } denote the open subset of X associated with I
by the Stone duality.
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238 G. Bezhanishvili, J. Harding

Definition 4.6 For x ∈ X and n ≥ 1 define

(1) �(x) = {σ : x ∈ UIσ }.
(2) �n(x) = {σ : x ∈ UIσ and σ has length at most n}.
Lemma 4.7 For x ∈ X and n ≥ 1

(1) � ∈ �(x).
(2) If σ, ρ ∈ �(x) then one of σ, ρ is an extension of the other.
(3) �n(x) has a unique element of maximal length.

We let σn(x) be the unique element of maximal length in �n(x).

Proof The first statement follows as 1 ∈ S�, so I� is all of ℘(N)/Fin. For the second,
if neither σ, ρ extends the other, then by Lemma 4.5 we have Iσ ∩ Iρ = {0}, and this
gives UIσ ∩ UIρ = ∅. For the third, �n(x) trivially must have elements of maximal
length. That there is only one element of maximal length follows from the second
condition. 
�
Proposition 4.8 For n ≥ 1, the map f : X → Tm,n defined by f (x) = σn(x) is
interior and onto.

Proof This map is well defined. To see it is continuous, since principal upsets of Tm,n

form a basis for the topology on Tm,n , it is enough to show the inverse image of a
principal upset is open. For any σ of length at most n, the principal upset ↑σ in the
tree Tm,n consists of all ρ where ρ is an extension of σ with length at most n. Thus
f −1(↑σ) is all x ∈ X with σn(x) an extension of σ . This is exactly those x belonging
to UIσ . Thus f −1(↑σ) = UIσ so f is continuous.

To see f is open, it is enough to show that for each a ∈ ℘(N)/Fin, the image of
the basic open set φ(a) under f is an upset of Tm,n . To establish this, it is enough to
show that if σ has length at most n − 1 and σ ∈ f [φ(a)], then for each i ≤ m we
have σ i ∈ f [φ(a)]. As σ ∈ f [φ(a)], there is x ∈ φ(a) with f (x) = σ . This means
σn(x) = σ , so x ∈ UIσ − ⋃m

j=1 UIσ j . As UIσ is open, there is a basic open φ(e) with
x ∈ φ(e) and φ(e) ⊆ UIσ . This implies e ∈ Iσ . As x ∈ φ(e) and x �∈ ⋃m

j=1 UIσ j ,
we also have e �∈ ∨m

j=1 Iσ j . Then by condition 4 of Lemma 4.5 there is d ≤ e with
d ∈ Iσ i − ∨m

j=1 Iσ i j . Then φ(d) ⊆ UIσ i and φ(d) �⊆ ⋃m
j=1 UIσ i j . Let y ∈ φ(d) with

y �∈ ⋃m
j=1 UIσ i j . Then y ∈ φ(a) and f (y) = σ i .

It is left to be shown that f is onto. Since f is open and the whole of Tm,n is the
only open set containing the root �, it is sufficient to show there is some x ∈ X with
f (x) = �. But condition 3 of Lemma 4.5 says

⋃m
j=1 UI j is not equal to all of X , and

this provides the result. 
�
Lemma 4.9 For any σ , UIσ − ⋃m

j=1 UIσ j has no isolated points in the subspace
topology.

Proof Suppose the set Y = UIσ −⋃m
j=1 UIσ j has an isolated point x . This means there

is some open subset of X that intersects Y only in the point x . As x belongs to the open
set UIσ we may choose this open set to be a basic open set contained in UIσ , hence of
the form φ(a) for some a ∈ Iσ . As a ∈ Iσ we have {e ∈ Sσ : a ∧ e �= 0} is finite,
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and a = ∨{a ∧ e : e ∈ Sσ }. As we have expressed a as a finite join, this translates
into expressing φ(a) as a finite union. As x ∈ φ(a), this means x belongs to one of
the sets in this union. So there is some b ∈ Sσ with x ∈ φ(a ∧ b). As x �∈ ⋃m

j=1 UIσ j

we have a ∧ b �∈ ∨m
j=1 Iσ j . Since

∨m
j=1 Iσ j contains Pb, a ∧ b has infinite support in

Pb.
Let c = a ∧ b and Q = {c ∧ h : h ∈ SupportPb (c)}. As Pb is a partition of b

we have Q is a partition of c, and as c has infinite support in Pb, by definition Q is
infinite. As the interval [0, c] is isomorphic to ℘(N)/Fin, by Proposition 3.2, the ideal
generated by Q is not a maximal ideal of this interval. So there are distinct ultrafilters
y, z of this interval with both y, z disjoint from Q. Extend y, z to ultrafilters y′, z′ of
℘(N)/Fin. As y′ ∩ ↓c = y and z′ ∩ ↓c = z we have y′, z′ are distinct. As c ∈ y′, z′
we have y′, z′ ∈ φ(c), hence y′, z′ ∈ φ(a). We claim y′, z′ �∈ ⋃m

j=1 UIσ j . We show
this only for y′, that it is true also of z′ follows by symmetry.

If y′ ∈ ⋃m
j=1 UIσ j , then there is some element of

∨m
j=1 Iσ j belonging to y′. As

∨m
j=1 Iσ j is generated by S = ⋃{Pd : d ∈ Sσ } some finite join of elements of this

generating set belongs to y′, and since y′ is a maximal, hence prime, filter we have that
some member h of this generating set S belongs to y′. As c, h ∈ y′ we have c∧h ∈ y′,
hence c ∧ h ∈ y′ ∩ ↓c = y. In particular c ∧ h �= 0. Because h ∈ S we have h ∈ Pd

for some d ∈ Sσ , and as 0 �= c ∧ h ≤ b ∧ h it must be that h ∈ Pb since the elements
of Sσ are orthogonal. Then as c ∧ h �= 0 we have h belongs to SupportPb (c). Thus
c ∧ h belongs to both y and Q, contradicting that y and Q are disjoint. This shows
y′ �∈ ⋃m

j=1 UIσ j .
We have produced two distinct points y′, z′ of the Stone space belonging to the open

set φ(a) and not belonging to
⋃m

j=1 UIσ j . This shows that x cannot be an isolated point
of UIσ − ⋃m

j=1 UIσ j . 
�
We are now able to prove our desired result.

Main Lemma For each m, n, k ≥ 1 there is an interior map from X onto Qm,n,k .

Proof Consider the map f : X → Tm,n given by Proposition 4.8. For σ of length
at most n − 1, by Lemma 4.9, the set UIσ − ⋃m

j=1 UIσ j has no isolated points in
the subspace topology, and if σ has length n we have UIσ is open so trivially has no
isolated points as X has none. So for each σ ∈ Tm,n we have f −1(σ ) has no isolated
points, and as each f −1(σ ) is locally compact and Hausdorff, it is k-resolvable (see,
e.g., [9, p. 332]). This means we can split f −1(σ ) into k disjoint pieces Cσ

1 , . . . ,Cσ
k

so that every open subset of X that intersects f −1(σ ) non-trivially intersects each of
these sets non-trivially. Define g : X → Qm,n,k by mapping all elements in Cσ

i to the
i th element qσi of the cluster associated with σ . Clearly g is onto. For an open U ⊆ X ,
if U intersects f −1(σ ) nontrivially, it intersects each Cσ

i nontrivially. It then follows
by Proposition 4.8 that g(U ) = {qσi : σ ∈ f (U )}, so g(U ) is an upset, hence is open.
Suppose U is an upset of Qm,n,k . If U contains one element of a cluster, it contains
all elements of the cluster. Then for V = {σ ∈ Tm,n : qσi ∈ U for some i ≤ m} we
have g−1(U ) = f −1(V ), so it is open in X . 
�
Corollary 4.10 For each finite quasi-tree Q, there exists an interior map from X
onto Q.
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Proof It follows from [4, Lem. 5] that for each finite quasi-tree Q there exist m, n, k ≥
1 such that Q is an interior image of Qm,n,k . Then the composition X → Qm,n,k → Q
is interior and onto. 
�

Now we are ready to establish our first main result.

Theorem 4.11 S4 is the modal logic of N
∗.

Proof Since N
∗ is a topological space, every theorem of S4 is satisfied in N

∗. If ϕ is
not provable in S4, there exists a finite quasi-tree Q such that ϕ is refuted on Q. By
[10, p. 95], N

∗ is homeomorphic to X . Thus, by Corollary 4.10, there exists an interior
map from N

∗ onto Q. Finally, since validity of formulas is preserved by onto interior
maps and ϕ is refuted on Q, it is also refuted on N

∗. Therefore, S4 is complete with
respect to N

∗. 
�

5 The modal logic of β(N)

Let S4.1.2 denote the normal extension of S4 by the axiom �♦p ↔ ♦�p. In this
section we show that S4.1.2 is the modal logic of β(N).

Let 〈X,≤〉 be a quasi-ordered set. We call x ∈ X a maximal point if x ≤ y
implies x = y for each y ∈ X . Let maxX denote the set of maximal points of X . It
is well-known (see, e.g., [6, pp. 80, 82]) that �♦p → ♦�p is valid in 〈X,≤〉 iff for
each x ∈ X there exists y ∈ maxX with x ≤ y, and that ♦�p → �♦p is valid in
〈X,≤〉 iff for each x, y, z ∈ X with x ≤ y and x ≤ z there exists w ∈ X such that
y ≤ w and z ≤ w. Therefore, if X is finite and rooted, then �♦p ↔ ♦�p is valid
in X iff X has a top element. Moreover, it is well-known (see, e.g., [6, p. 144]) that
S4.1.2 is complete with respect to finite rooted quasi-ordered sets with a top element.

For a finite rooted quasi-ordered set 〈X,≤〉 let X� denote the quasi-ordered set
obtained by adjoining � to X as the top element.

Lemma 5.1 Let 〈X,≤〉 be a finite rooted quasi-ordered set. If there is an interior map
from N

∗ onto X, then there is an interior map from β(N) onto X�.

Proof Let f be an interior map from N
∗ onto X . Define g : β(N) → X� by

g(x) =
{� if x ∈ N,

f (x) otherwise.

Since f is onto, it is clear that g is a well-defined onto map. To see that g is contin-
uous, let U be an upset of X�, and let V = U − {�}. Clearly V is an upset of X .
Moreover, g−1(U ) = N ∪ f −1(V ), which is open in β(N) since f −1(V ) is open in
the subspace topology on N

∗. Finally, to see that g is open, let U be a basic open in
β(N). Then g(U ) = f (U ) ∪ {�}, which is an upset in X� because f (U ) is an upset
in X . Therefore, g is interior and onto. 
�

Now we are ready to establish our second main result.
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Theorem 5.2 S4.1.2 is the modal logic of β(N).

Proof It follows from [5, Prop. 2.1] that �♦p → ♦�p is valid in a topological space
X iff the set of dense subsets of X is a filter. In particular, if the set Iso(X) of isolated
points of X is dense in X , then �♦p → ♦�p is valid in X . Also it follows from [8,
Thm. 1.3.3] that ♦�p → �♦p is valid in a topological space X iff X is extremally
disconnected. Since Iso(β(N)) = N is dense in β(N) and β(N) is extremally discon-
nected, β(N) validates every theorem of S4.1.2. Suppose ϕ is not provable in S4.1.2.
Then there exists a finite rooted quasi-ordered set with a top element refuting ϕ. We
can assume that it has the form Q� for some finite quasi-tree Q. By Corollary 4.10,
there exists an interior onto map f : N

∗ → Q. By Lemma 5.1, there exists an interior
onto map g : β(N) → Q�. Therefore, ϕ is refuted on β(N). Thus, S4.1.2 is complete
with respect to β(N). 
�

6 Conclusions

In this paper we showed that under the assumption of (a = 2ω), the modal logic of N
∗

is S4, and that of β(N) is S4.1.2. It remains an open question whether the same is true
in ZFC. We recently became aware of a paper by P. Simon [16] that may be of use in
this matter.

In proving our main results, we constructed an interior map from N
∗ onto every

finite quasi-tree, and then used completeness of S4 with respect to finite quasi-trees
and preservation of validity of modal formulas under interior images to obtain the
desired completeness. It is well-known (see, e.g., [15, pp. 64–65]) that S4 is com-
plete with respect to the infinite binary tree T , and that S4.1.2 is complete with
respect to T adjoined with a top element. One might think that an alternative (even
easier) way of proving completeness of S4 with respect to N

∗, and that of S4.1.2
with respect to β(N) would be by constructing an interior map from N

∗ onto T .
We show now that such a map does not exist. Let F denote the relational frame
〈N,≤〉, where ≤ is the standard ordering of N. By identifying the immediate suc-
cessor nodes of each node of T , we obtain that F is an interior image of T in the
Alexandroff topologies associated with F and T , respectively. We show that F is
not an interior image of N

∗, which, by the above, implies that T is not an inte-
rior image of N

∗. Suppose f is an interior map from N
∗ onto F. Since {↑n : n ∈

N} is a strictly decreasing family of open subsets of the Alexandroff topology on
F with empty intersection, by continuity of f , { f −1(↑n) : n ∈ N} is a strictly
decreasing family of open subsets of N

∗ with empty intersection. As clopens of
N

∗ form a basis and f is open, we then can produce a strictly decreasing fam-
ily {An : n ∈ N} of clopens of N

∗ with f (An) = ↑n. Therefore, f (
⋂

An) ⊆⋂
f (An) = ⋂ ↑n = ∅, which is a contradiction since

⋂
An is nonempty by

compactness of N
∗.

Since S4 is a modal companion of the propositional intuitionistic logic Int and
S4.1.2 is a modal companion of the logic KC = Int + (¬p ∨¬¬p) of weak excluded
middle (see, e.g., [6, p. 325]), our main results imply that Int is complete with respect
to N

∗, and that KC is complete with respect to β(N). Algebraically, this means that
the variety of all Heyting algebras is generated by the Heyting algebra of open subsets
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of N
∗, and that the variety of Heyting algebras satisfying the Stone identity ¬x ∨

¬¬x = 1 is generated by the Heyting algebra of open subsets of the Stone–Čech
compactification of N.
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