The modal logic of $\beta(\mathbb{N})$

Guram Bezhanishvili · John Harding

Received: 14 November 2007 / Revised: 10 September 2008 / Published online: 26 March 2009 © Springer-Verlag 2009

Abstract Let $\beta(\mathbb{N})$ denote the Stone–Čech compactification of the set \mathbb{N} of natural numbers (with the discrete topology), and let \mathbb{N}^* denote the remainder $\beta(\mathbb{N}) - \mathbb{N}$. We show that, interpreting modal diamond as the closure in a topological space, the modal logic of \mathbb{N}^* is **S4** and that the modal logic of $\beta(\mathbb{N})$ is **S4.1.2**.

Keywords Modal logic · Topology · Stone–Čech compactification

Mathematics Subject Classification (2000) 03B45 · 03G05 · 54D35

1 Introduction

It was shown by McKinsey and Tarski [12,13] that if we interpret modal diamond as the closure in a topological space, then the modal logic of topological spaces is Lewis' well-known modal system S4. Their classic 1944 result states that S4 is in fact the modal logic of any dense-in-itself metrizable space. In particular, S4 is the modal logic of the Cantor space \mathbb{C} , the real line \mathbb{R} , and the rational line \mathbb{Q} . A modern proof of completeness of S4 with respect to \mathbb{C} is given in [1,14], that with respect to \mathbb{R} in [1,4], and that with respect to \mathbb{Q} in [3]. On the other hand, completeness issues with respect to important non-metrizable spaces have not been raised so far in the literature. In this

To the memory of Lazo Zambakhidze (1942-2008).

G. Bezhanishvili (🖂) · J. Harding

Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM, 88003-8001, USA e-mail: gbezhani@nmsu.edu

J. Harding e-mail: jharding@nmsu.edu

note we concentrate on an important non-metrizable space $\beta(\mathbb{N})$ —the Stone–Čech compactification of the set \mathbb{N} of natural numbers (with the discrete topology).

Our main result states that under the set-theoretic assumption that each infinite maximal almost disjoint family of subsets of \mathbb{N} has cardinality 2^{ω} , the modal logic of the remainder $\mathbb{N}^* = \beta(\mathbb{N}) - \mathbb{N}$ is **S4**. From this, it follows that under the same assumption, the modal logic of $\beta(\mathbb{N})$ is **S4.1.2**, which is obtained by adding to **S4** the axiom $\Box \Diamond p \leftrightarrow \Diamond \Box p$. The set theoretic assumption that each infinite maximal almost disjoint family of subsets of \mathbb{N} has cardinality 2^{ω} is not provable in ZFC (the Zermelo–Fraenkel Set Theory with the Axiom of Choice). However, this assumption is known to be a consequence of Martin's Axiom [11, p. 57], and it is a simple consequence of the Continuum Hypothesis. It is an open problem whether our main result holds true within ZFC.

The paper is organized as follows. In Sect. 2 we recall basic facts about relational semantics of S4, including completeness of S4 with respect to finite quasi-trees. In Sect. 3 we recall basics about the Boolean algebra $\wp(\mathbb{N})/_{Fin}$ of the powerset of \mathbb{N} modulo the ideal of finite subsets of \mathbb{N} . Section 4 is the heart of the paper in which we show that there exists an interior map from the Stone space of $\wp(\mathbb{N})/_{Fin}$ onto each finite quasi-tree. Since \mathbb{N}^* is homeomorphic to the Stone space of $\wp(\mathbb{N})/_{Fin}$, as a corollary we obtain that S4 is the modal logic of \mathbb{N}^* , thus adding to completeness results of McKinsey and Tarski and others. In Sect. 5 we show how to adjust the proof of Sect. 4 to obtain that S4.1.2 is the modal logic of $\beta(\mathbb{N})$. We conclude the paper by mentioning several consequences of our results.

2 Preliminaries

We recall that **S4** is the least set of formulas containing the Boolean tautologies, the axioms:

$$\Box(p \to q) \to (\Box p \to \Box q)$$
$$\Box p \to p$$
$$\Box \Box p \to \Box p$$

and closed under Modus Ponens $(\varphi, \varphi \to \psi/\psi)$ and Necessitation $(\varphi/\Box\varphi)$. Relational frames of **S4** are quasi-ordered sets $\langle X, \leq \rangle$; that is, *X* is a nonempty set and \leq is reflexive and transitive. A quasi-ordered set $\langle X, \leq \rangle$ is called *rooted* if there exists $r \in X$ —called a *root* of *X*—such that $r \leq x$ for each $x \in X$. For $\langle X, \leq \rangle$ a quasi-ordered set, $x \in X$, and $A \subseteq X$, let $\downarrow x = \{y \in X : y \leq x\}$ and let $\downarrow A = \{x \in X : \exists a \in A \text{ with } x \leq a\}$. We call $A \subseteq X$ a *chain* if $x \leq y$ or $y \leq x$ for all $x, y \in A$. A quasi-ordered set $\langle X, \leq \rangle$ is called a *tree* if $\langle X, \leq \rangle$ is a rooted partially ordered set and $\downarrow x$ is a chain for each $x \in X$. For $x \in X$, let $C[x] = \{y \in X : x \leq y \text{ and } y \leq x\}$. We call $C \subseteq X$ a *cluster* if C = C[x] for some $x \in X$. Define an equivalence relation \sim on X by $x \sim y$ if C[x] = C[y]. Let X/\sim denote the quotient of X under \sim —called the *skeleton* of X. We call X a quasi-tree if X/\sim is a tree. A well-known result in modal logic states that **S4** is complete with respect to finite quasi-trees (see, e.g., [4, Cor. 6]).

For $\langle X, \leq \rangle$ a quasi-ordered set, a subset U of X is called an *upset* of X if $x \in U$ and $x \leq y$ imply $y \in U$. It is well-known that every quasi-ordered set $\langle X, \leq \rangle$ can be viewed as a topological space by letting the upsets of X be open subsets of X. In fact, quasi-ordered sets are very special topological spaces—called *Alexandroff spaces*—in which the intersection of any family of opens is again open. Thus, relational semantics for **S4** can be viewed as a special case of topological semantics for **S4**.

For two topological spaces X and Y, we recall that a map $f: X \to Y$ is *continuous* if for each open V of Y, we have $f^{-1}(V)$ is open in X; that f is open if U open in X implies f(U) is open in Y; and that f is *interior* if it is both continuous and open. It is well-known (see, e.g., [8, Thm. 2.1.8]; [2, Prop. 2.9]) that onto interior maps preserve validity of modal formulas. This fact is very useful in proving topological completeness results. Indeed, since S4 is complete with respect to finite quasi-trees, in order to obtain the McKinsey–Tarski result that **S4** is complete with respect to any dense-in-itself metrizable space X, it is sufficient to construct an interior map from Xonto every finite quasi-tree. Similarly, in order to prove completeness of S4 with respect to the remainder \mathbb{N}^* of the Stone–Čech compactification $\beta(\mathbb{N})$ of \mathbb{N} , it is sufficient to construct an interior map from \mathbb{N}^* onto every finite quasi-tree. Then, by completeness of S4 with respect to finite quasi-trees, if a formula φ is not provable in S4, there exists a finite quasi-tree $\langle X, \leq \rangle$ refuting φ . Viewing $\langle X, \leq \rangle$ as a topological space, there is an interior onto map $f : \mathbb{N}^* \to X$. And since interior onto maps preserve validity of formulas and φ is refuted on X, it can also be refuted on \mathbb{N}^* . This is exactly what our strategy is going to be: Assuming that each infinite maximal almost disjoint family of subsets of \mathbb{N} has cardinality 2^{ω} , we will build an interior map from \mathbb{N}^* onto every finite quasi-tree X; the completeness of **S4** with respect to \mathbb{N}^* will follow immediately. We then show how to use this result to obtain completeness of **S4.1.2** with respect to $\beta(\mathbb{N}).$

3 \mathbb{N}^* and $\wp(\mathbb{N})/_{\text{Fin}}$

It is well-known (see, e.g., [7, pp. 230–232]; [10, p. 95]) that $\beta(\mathbb{N})$ can be thought of as the Stone space of the Boolean algebra $\wp(\mathbb{N})$ of subsets of \mathbb{N} . Since \mathbb{N}^* is a closed subset of $\beta(\mathbb{N})$, by the Stone duality, it is the Stone space of a quotient algebra of $\wp(\mathbb{N})$. In fact, \mathbb{N}^* is the Stone space of the Boolean algebra $\wp(\mathbb{N})/F_{in}$, where Fin is the ideal of finite subsets of \mathbb{N} (see [10, p. 95]). In this section we consider basic properties of $\wp(\mathbb{N})/F_{in}$, which will be needed to prove completeness of **S4** with respect to \mathbb{N}^* . For more detail see [10, pp. 78–82].

Proposition 3.1 $\wp(\mathbb{N})/_{\text{Fin}}$ is homogeneous, which means that for each nonzero $b \in \wp(\mathbb{N})/_{\text{Fin}}$, the interval [0, b] is isomorphic as a Boolean algebra to $\wp(\mathbb{N})/_{\text{Fin}}$.

Proof As $b \neq 0$ we have b = [A] for some infinite subset $A \subseteq \mathbb{N}$. Then there is a bijection $\varphi : A \to \mathbb{N}$. The map sending [S] to $[\varphi^{-1}(S)]$, for each $S \subseteq \mathbb{N}$, is the required isomorphism from $\wp(\mathbb{N})/_{\text{Fin}}$ to [0, b].

We recall that a set *P* of nonzero elements of a Boolean algebra *B* is *orthogonal* if any two distinct elements of *P* meet to zero, that *P* is a *partition* of $b \in B$ if *P* is an orthogonal set whose join is *b*, and that *P* is a *partition of unity* if it is a partition of the top element 1 of *B*. It is well known that Zorn's lemma implies every orthogonal set can be extended to a maximal orthogonal set, and that maximal orthogonal sets are exactly the partitions of unity.

A Boolean algebra *B* is said to satisfy the *countable separation property* [10, p. 79] if for any countable subsets *D*, *E* of *B* with $d \land e = 0$ for each $d \in D$ and $e \in E$, there is an element $b \in B$ with $d \leq b$ for each $d \in D$ and $e \leq -b$ for each $e \in E$.

Proposition 3.2 If a Boolean algebra B satisfies the countable separation property and P is an infinite orthogonal set of B, then the ideal I generated by P is not a maximal ideal.

Proof As *P* is infinite we can find two disjoint countable subsets *D*, *E* of *P*. As *B* satisfies the countable separation property, there is some $b \in B$ with $d \leq b$ for each $d \in D$ and $e \leq -b$ for each $e \in E$. As there are infinitely many members of the orthogonal set *P* lying beneath *b*, it cannot be the case that *b* lies beneath the join of finitely many members of *P*. So *b* does not belong to *I*. Similarly, $-b \notin I$. Thus *I* is not maximal.

Our primary concern will be with orthogonal sets that are a partition of some $b \neq 0$ in $\wp(\mathbb{N})/_{\text{Fin}}$. Our first facts below are obtained using only the axioms of ZFC. They are proved in the case when b = 1 in [10, p. 78], and the generalization to any $b \neq 0$ is a direct consequence of the homogeneity of $\wp(\mathbb{N})/_{\text{Fin}}$.

Proposition 3.3 If b is a nonzero element of $\wp(\mathbb{N})/_{\text{Fin}}$, then there is a partition of b of cardinality 2^{ω} and each infinite partition of b is uncountable.

As $\wp(\mathbb{N})/_{\text{Fin}}$ itself has cardinality 2^{ω} , the above result says that if κ is the cardinality of an infinite partition of *b*, then $\omega_1 \leq \kappa \leq 2^{\omega}$, and that this upper bound 2^{ω} is realized by at least one partition of *b*. It is, however, consistent with ZFC that a partition of *b* can have cardinality strictly less than 2^{ω} . In our argument we require that each infinite partition of *b* has cardinality 2^{ω} . This is equivalent to the well-studied assumption in infinitary combinatorics that each infinite maximal almost disjoint family of subsets of \mathbb{N} has cardinality 2^{ω} . We refer to this set-theoretic assumption as $(\mathfrak{a} = 2^{\omega})$ as it is common to denote the least cardinality of an infinite maximal almost disjoint family of subsets of \mathbb{N} by \mathfrak{a} . It is well-known that $(\mathfrak{a} = 2^{\omega})$ follows from the Continuum Hypothesis (CH) or Martin's Axiom (MA), which is weaker than (CH). However, $(\mathfrak{a} = 2^{\omega})$ is not provable in ZFC. That $(\mathfrak{a} = 2^{\omega})$ arises is not surprising. It is standard to consider the behavior of \mathbb{N}^* under further set theoretic assumptions [17].

4 The modal logic of \mathbb{N}^*

In this section we prove our main result that, under $(\mathfrak{a} = 2^{\omega})$, for each finite quasi-tree Q, there exists an interior map from \mathbb{N}^* onto Q. As a corollary, we obtain that **S4** is the modal logic of \mathbb{N}^* .

For an integer *m*, let $\{1, ..., m\}^*$ be all finite sequences σ of 1, ..., m. We call the number of terms in the sequence σ its *length*. The unique sequence with no terms is called the *empty sequence* and denoted Λ .

Let *T* be a finite tree. We call *T* regular if the branching size of each node is the same. Given integers $m, n \ge 1$ let $T_{m,n}$ denote the regular tree of branching size *m* and depth n + 1. We can think of the nodes of this tree as all σ where σ belongs to $\{1, \ldots, m\}^*$ and has length at most *n*. The root is the node Λ , and the *m* children of the node σ are the nodes $\sigma 1, \ldots, \sigma m$.

Let Q be a quasi-tree. We call Q regular if Q/\sim is a regular tree. Given integers $m, n, k \ge 1$, let $Q_{m,n,k}$ be the regular quasi-tree of branching size m, depth n + 1, and cluster size k obtained by replacing each node σ of the tree $T_{m,n}$ by a cluster of size k. A key fact, established in [4, Lem. 5], is that for each finite quasi-tree Q, there are m, n, k such that Q is an interior image of $Q_{m,n,k}$. So to show each finite quasi-tree is an interior image of \mathbb{N}^* , it is enough to show each $Q_{m,n,k}$ is such an interior image.

It is our goal to show that given integers $m, n, k \ge 1$, there exists an interior onto map $f : \mathbb{N}^* \to Q_{m,n,k}$. The proof consists of several stages. To begin, take an arbitrary, but fixed, branching size $m \ge 1$. We first build an infinite sequence of partitions of unity of $\wp(\mathbb{N})/_{\text{Fin}}$ having a number of specific technical properties. This sequence is used to build a tree of ideals of $\wp(\mathbb{N})/_{\text{Fin}}$ with branching size m and infinite depth. This tree of ideals is used to construct an interior map f from the Stone space of $\wp(\mathbb{N})/_{\text{Fin}}$ onto any tree $T_{m,n}$. Finally we show this map can be modified to provide the required interior map from the Stone space of $\wp(\mathbb{N})/_{\text{Fin}}$ onto any quasi-tree $Q_{m,n,k}$. We begin with a definition to describe the technical properties required of our partitions of unity.

Definition 4.1 Suppose $b \in \wp(\mathbb{N})/_{\text{Fin}}$ and *P* is a partition of *b*. For each $c \in \wp(\mathbb{N})/_{\text{Fin}}$ set

Support_P(c) = {
$$p \in P : c \land p \neq 0$$
}.
Infinite(P) = { $c : c \leq b$ and Support_P(c) is infinite}.

Note that if *P* is a partition of *b*, then the ideal generated by *P* consists exactly of those elements of the interval [0, b] whose support in *P* is finite, and the remaining elements of [0, b] are in Infinite(*P*). The following is the key technical result where we require ($a = 2^{\omega}$) to control the size of partitions of an element *b*.

Lemma 4.2 Assume $(\mathfrak{a} = 2^{\omega})$. For P an infinite partition of $b \in \wp(\mathbb{N})/F_{\text{in}}$ and a natural number m, there are sets P_1, \ldots, P_m and maps f_1, \ldots, f_m with

(1) $P_1 \cup \cdots \cup P_m = P$ and $P_i \cap P_j = \emptyset$ for each $i \neq j$.

(2) f_i : Infinite(P) $\rightarrow P_i$ is a 1-1 map for each $i \leq m$.

(3) $f_i(c) \in \text{Support}_P(c)$ for each $c \in \text{Infinite}(P)$ and each $i \leq m$.

We call P_1, \ldots, P_m and f_1, \ldots, f_m a supportive family for P.

Proof It is sufficient to find maps f_i : Infinite $(P) \rightarrow P$ for $i \leq m$ such that each f_i is 1-1, the images of the f_i are pairwise disjoint, and $f_i(c) \in \text{Support}_P(c)$ for each $c \in \text{Infinite}(P)$ and $i \leq m$. The required sets P_1, \ldots, P_m are then produced by extending the disjoint images of these functions to a pairwise disjoint covering of P.

Suppose Infinite(*P*) has cardinality κ and c_{λ} ($\lambda \in \kappa$) enumerates this set. We define $f_1(c_{\beta}), \ldots, f_m(c_{\beta})$ by transfinite recursion on $\beta < \kappa$ assuming $f_1(c_{\lambda}), \ldots, f_m(c_{\lambda})$ are defined for all $\lambda < \beta$.

236

Let $\beta < \kappa$. As $c_{\beta} \in \text{Infinite}(P)$, using infinite distributivity, $\{c_{\beta} \land p : p \in P\}$ Support $_{P}(c_{\beta})$ is an infinite partition of c_{β} . By the assumption ($\mathfrak{a} = 2^{\omega}$), this partition has cardinality 2^{ω} , hence Support $_{P}(c_{\beta})$ has cardinality 2^{ω} . But $\beta < \kappa \leq 2^{\omega}$, so $\{f_i(c_\lambda): i \leq m, \lambda < \beta\}$ has cardinality strictly less than 2^{ω} . So there are elements $p_{\beta 1}, \ldots, p_{\beta m}$ belonging to Support $_{P}(c_{\beta})$ and not in $\{f_{i}(c_{\lambda}) : i \leq m, \lambda < \beta\}$. Set $f_i(c_\beta) = p_{\beta i}.$

Lemma 4.3 There is an infinite sequence of partitions of unity P_0, P_1, \ldots such that $P_0 = \{1\}$ and for each $b \in P_n$

- (1) $P^b = \downarrow b \cap P_{n+1}$ is an infinite partition of b.
- (2) There are P_1^b, \ldots, P_m^b and f_1^b, \ldots, f_m^b supportive for P^b . (3) $c \wedge f_j^b(c)$ has infinite support in P_{n+2} for each $j \leq m$ and $c \in \text{Infinite}(P^b)$.

Proof We define this sequence of partitions of unity, and the associated supportive families, by recursion. Let $P_0 = \{1\}$ and let P_1 be any infinite partition of unity. Then Lemma 4.2 supplies supportive P_1^1, \ldots, P_m^1 and f_1^1, \ldots, f_m^1 .

Suppose we have defined partitions of unity P_0, \ldots, P_n and for each b belonging to some P_i with $i \le n-1$ we have $P^b = \downarrow b \cap P_{i+1}$ is an infinite partition of b. Suppose also that if b belongs to P_i for some $i \leq n-1$, we have supportive P_1^b, \ldots, P_m^b and f_1^b, \ldots, f_m^b for P^b and if $i \le n-2$, condition 3 holds for these maps.

We will define a partition of unity P_{n+1} . This must be done so that for each $b \in P_n$, we have $P^b = \downarrow b \cap P_{n+1}$ is an infinite partition of b. When defining P_{n+1} we must also make sure for each $d \in P_{n-1}$ and each $c \leq d$ of infinite support in P^d , that $c \wedge f_j^d(c)$ has infinite support in P_{n+1} for each $j \leq m$. Finally, for each $b \in P_n$ we must create a supportive family P_1^b, \ldots, P_m^b and f_1^b, \ldots, f_m^b for P^b .

Suppose $b \in P_n$. We claim there is at most one $d \in P_{n-1}$, one $c \leq d$ of infinite support in P^d , and one $j \le m$ with $b = f_j^d(c)$. Indeed, for such d, c, j as $b = f_j^d(c)$ we must have $b \in P^d$. Since the elements of P_{n-1} are pairwise disjoint, this d must be the unique element of P_{n-1} lying above b. As the images of the f_1^d, \ldots, f_m^d are pairwise disjoint, there can be at most one $j \leq m$ with b in the image of f_j^d . Then because f_i^d is 1-1, there is at most one c with $b = f_i^d(c)$.

Suppose $b \in P_n$ and there are d, c, j as above with $b = f_i^d(c)$. Then as $f_i^d(c)$ belongs to the support of c in P^d , we have $b \wedge c \neq 0$. By Proposition 3.3 there is an infinite partition of $b \wedge c$. Extend this to a maximal orthogonal set in the interval [0, b], hence to a partition P^b of b. Note that the support of $b \wedge c$ in P^b is infinite. If $b \in P_n$ and there are no such d, c, j, let P^b be any infinite partition of b.

Let $P_{n+1} = \bigcup \{P^b : b \in P_n\}$. Each P^b is an orthogonal set, and elements from different sets P^b are also orthogonal, so P_{n+1} is orthogonal. As the join of P^b is b, it follows that the join of P_{n+1} equals that of P_n , hence is 1. So P_{n+1} is a partition of unity. Also, for each $b \in P_n$ we have by construction that $\downarrow b \cap P_{n+1}$ equals P^b , hence is an infinite partition of b. Suppose $d \in P_{n-1}$, $c \leq d$ has infinite support in P^d , and $j \leq m$. Then for $b = f_i^d(c)$, we have constructed P^b so that $b \wedge c$ has infinite support in P^b , hence this element has infinite support in P_{n+1} . For each $b \in P_n$, it remains only to construct a supportive family $P_1^{\bar{b}}, \ldots, P_m^{\bar{b}}$ and $f_1^{\bar{b}}, \ldots, f_m^{\bar{b}}$ for $P^{\bar{b}}$. But this follows directly from Lemma 4.2.

We use this setup to build a tree of ideals of $\wp(\mathbb{N})/_{\text{Fin}}$.

Definition 4.4 For each $\sigma \in \{1, ..., m\}^*$ define S_{σ} by setting

$$S_{\Lambda} = \{1\},$$

$$S_{\sigma j} = \bigcup \{P_j^b : b \in S_{\sigma}\}.$$

Here, σj is the string formed by concatenating j to the end of the string σ . Having defined S_{σ} for each σ we let I_{σ} be the ideal of $\wp(\mathbb{N})/_{\text{Fin}}$ generated by S_{σ} .

Lemma 4.5 For the ideals I_{σ} constructed above

- (1) $I_{\sigma} \subseteq I_{\rho}$ if σ extends ρ .
- (2) $I_{\sigma} \cap I_{\rho} = \{0\}$ unless one of σ , ρ extends the other.
- (3) $1 \in I_{\Lambda} \bigvee_{j=1}^{m} I_j$.

(4)
$$a \in I_{\sigma} - \bigvee_{i=1}^{m} I_{\sigma j} \Rightarrow \text{for each } i \leq m \text{ there exists } d \leq a \text{ with } d \in I_{\sigma i} - \bigvee_{i=1}^{m} I_{\sigma i j}.$$

Proof For the first condition, it is enough to show $I_{\sigma j} \subseteq I_{\sigma}$ for any σ and any $j \leq m$. But if $b \in S_{\sigma}$, then P_j^b is contained in $\downarrow b$. So each generator of $I_{\sigma j}$ lies beneath a generator of I_{σ} , hence $I_{\sigma j} \subseteq I_{\sigma}$. For the second condition, it is enough to show $I_{\sigma i} \cap I_{\sigma j} = \{0\}$ for any σ and any $i \neq j \leq m$. Suppose $b, c \in S_{\sigma}$, and $p \in P_i^b$, $q \in P_j^c$. If $b \neq c$ then as $p \leq b, q \leq c$ and b, c are orthogonal, p, q are orthogonal. If b = c then P_i^b and P_j^b are distinct, hence disjoint subsets of P^b , so p, q are orthogonal. Thus every element in the generating set of $I_{\sigma i}$ is orthogonal to every element in the generating set of $I_{\sigma j}$, and it follows that $I_{\sigma i} \cap I_{\sigma j} = \{0\}$. For the third condition, 1 belongs to the generating set S_{Λ} of I_{Λ} and as the generating set P_1 of $\bigvee_{j=1}^m I_j$ is an infinite partition of unity, 1 does not belong to this join.

For the final condition, suppose σ has length n. As $a \in I_{\sigma}$ we have $a \leq b_1 \vee \cdots \vee b_k$ for some $b_1, \ldots, b_k \in S_{\sigma}$. Hence $a = (a \wedge b_1) \vee \cdots \vee (a \wedge b_k)$. Since a does not belong to $\bigvee_{j=1}^m I_{\sigma j}$, there is some $b \in S_{\sigma}$ with $a \wedge b$ not belonging to $\bigvee_{j=1}^m I_{\sigma j}$. As $b \in S_{\sigma}$ and $P^b = \bigcup_{j=1}^m P_j^b$ we have $P^b \subseteq \bigcup_{j=1}^m S_{\sigma j}$ hence P^b is contained in $\bigvee_{j=1}^m I_{\sigma j}$. As $a \wedge b$ does not belong to $\bigvee_{j=1}^m I_{\sigma j}$ and clearly lies under b, the support of $a \wedge b$ in P^b must be infinite. Let $c = a \wedge b$. Condition 3 of Lemma 4.3 gives that $d = c \wedge f_i^b(c)$ has infinite support in P_{n+2} . As $f_i^b(c)$ belongs to the image of f_i^b , it belongs to P_i^b , and as $b \in S_{\sigma}$, we have $f_i^b(c)$ belongs to $S_{\sigma i}$, and hence also to the ideal $I_{\sigma i}$ it generates. As $d \leq f_i^b(c)$ we have $d \in I_{\sigma i}$. Since the support of d in P_{n+2} is infinite and $\bigvee_{j=1}^m I_{\sigma ij}$ is generated by a subset of P_{n+2} , it follows that d does not belong to this join.

Let *X* be the Stone space of ultrafilters of the Boolean algebra $\wp(\mathbb{N})/_{\text{Fin}}$. We recall that $\{\phi(a) : a \in \wp(\mathbb{N})/_{\text{Fin}}\}$ forms a basis of clopen (simultaneously closed and open) subsets for the topology on *X*, where $\phi(a) = \{x \in X : a \in x\}$. For an ideal *I* of $\wp(\mathbb{N})/_{\text{Fin}}$, let $U_I = \bigcup \{\phi(a) : a \in I\}$ denote the open subset of *X* associated with *I* by the Stone duality.

Definition 4.6 For $x \in X$ and $n \ge 1$ define

(1) $\Sigma(x) = \{\sigma : x \in U_{I_{\sigma}}\}.$ (2) $\Sigma_n(x) = \{\sigma : x \in U_{I_{\sigma}} \text{ and } \sigma \text{ has length at most } n\}.$

Lemma 4.7 For $x \in X$ and $n \ge 1$

(1) $\Lambda \in \Sigma(x)$.

(2) If $\sigma, \rho \in \Sigma(x)$ then one of σ, ρ is an extension of the other.

(3) $\Sigma_n(x)$ has a unique element of maximal length.

We let $\sigma_n(x)$ be the unique element of maximal length in $\Sigma_n(x)$.

Proof The first statement follows as $1 \in S_{\Lambda}$, so I_{Λ} is all of $\wp(\mathbb{N})/F_{\text{in}}$. For the second, if neither σ , ρ extends the other, then by Lemma 4.5 we have $I_{\sigma} \cap I_{\rho} = \{0\}$, and this gives $U_{I_{\sigma}} \cap U_{I_{\rho}} = \emptyset$. For the third, $\Sigma_n(x)$ trivially must have elements of maximal length. That there is only one element of maximal length follows from the second condition.

Proposition 4.8 For $n \ge 1$, the map $f : X \to T_{m,n}$ defined by $f(x) = \sigma_n(x)$ is interior and onto.

Proof This map is well defined. To see it is continuous, since principal upsets of $T_{m,n}$ form a basis for the topology on $T_{m,n}$, it is enough to show the inverse image of a principal upset is open. For any σ of length at most n, the principal upset $\uparrow \sigma$ in the tree $T_{m,n}$ consists of all ρ where ρ is an extension of σ with length at most n. Thus $f^{-1}(\uparrow \sigma)$ is all $x \in X$ with $\sigma_n(x)$ an extension of σ . This is exactly those x belonging to $U_{I_{\sigma}}$. Thus $f^{-1}(\uparrow \sigma) = U_{I_{\sigma}}$ so f is continuous.

To see f is open, it is enough to show that for each $a \in \wp(\mathbb{N})/F_{\text{in}}$, the image of the basic open set $\phi(a)$ under f is an upset of $T_{m,n}$. To establish this, it is enough to show that if σ has length at most n - 1 and $\sigma \in f[\phi(a)]$, then for each $i \leq m$ we have $\sigma i \in f[\phi(a)]$. As $\sigma \in f[\phi(a)]$, there is $x \in \phi(a)$ with $f(x) = \sigma$. This means $\sigma_n(x) = \sigma$, so $x \in U_{I_{\sigma}} - \bigcup_{j=1}^m U_{I_{\sigma j}}$. As $U_{I_{\sigma}}$ is open, there is a basic open $\phi(e)$ with $x \in \phi(e)$ and $\phi(e) \subseteq U_{I_{\sigma}}$. This implies $e \in I_{\sigma}$. As $x \in \phi(e)$ and $x \notin \bigcup_{j=1}^m U_{I_{\sigma j}}$, we also have $e \notin \bigvee_{j=1}^m I_{\sigma j}$. Then by condition 4 of Lemma 4.5 there is $d \leq e$ with $d \in I_{\sigma i} - \bigvee_{j=1}^m I_{\sigma i j}$. Then $\phi(d) \subseteq U_{I_{\sigma i}}$ and $\phi(d) \notin \bigcup_{j=1}^m U_{I_{\sigma i j}}$. Let $y \in \phi(d)$ with $y \notin \bigcup_{j=1}^m U_{I_{\sigma i j}}$. Then $y \in \phi(a)$ and $f(y) = \sigma i$.

It is left to be shown that f is onto. Since f is open and the whole of $T_{m,n}$ is the only open set containing the root Λ , it is sufficient to show there is some $x \in X$ with $f(x) = \Lambda$. But condition 3 of Lemma 4.5 says $\bigcup_{j=1}^{m} U_{I_j}$ is not equal to all of X, and this provides the result.

Lemma 4.9 For any σ , $U_{I_{\sigma}} - \bigcup_{j=1}^{m} U_{I_{\sigma j}}$ has no isolated points in the subspace topology.

Proof Suppose the set $Y = U_{I_{\sigma}} - \bigcup_{j=1}^{m} U_{I_{\sigma j}}$ has an isolated point *x*. This means there is some open subset of *X* that intersects *Y* only in the point *x*. As *x* belongs to the open set $U_{I_{\sigma}}$ we may choose this open set to be a basic open set contained in $U_{I_{\sigma}}$, hence of the form $\phi(a)$ for some $a \in I_{\sigma}$. As $a \in I_{\sigma}$ we have $\{e \in S_{\sigma} : a \land e \neq 0\}$ is finite,

and $a = \bigvee \{a \land e : e \in S_{\sigma}\}$. As we have expressed *a* as a finite join, this translates into expressing $\phi(a)$ as a finite union. As $x \in \phi(a)$, this means *x* belongs to one of the sets in this union. So there is some $b \in S_{\sigma}$ with $x \in \phi(a \land b)$. As $x \notin \bigcup_{j=1}^{m} U_{I_{\sigma_j}}$ we have $a \land b \notin \bigvee_{j=1}^{m} I_{\sigma_j}$. Since $\bigvee_{j=1}^{m} I_{\sigma_j}$ contains P^b , $a \land b$ has infinite support in P^b .

Let $c = a \wedge b$ and $Q = \{c \wedge h : h \in \text{Support}_{P^b}(c)\}$. As P^b is a partition of b we have Q is a partition of c, and as c has infinite support in P^b , by definition Q is infinite. As the interval [0, c] is isomorphic to $\wp(\mathbb{N})/\text{Fin}$, by Proposition 3.2, the ideal generated by Q is not a maximal ideal of this interval. So there are distinct ultrafilters y, z of this interval with both y, z disjoint from Q. Extend y, z to ultrafilters y', z' of $\wp(\mathbb{N})/\text{Fin}$. As $y' \cap \downarrow c = y$ and $z' \cap \downarrow c = z$ we have y', z' are distinct. As $c \in y', z'$ we have $y', z' \in \phi(c)$, hence $y', z' \in \phi(a)$. We claim $y', z' \notin \bigcup_{j=1}^m U_{I_{\sigma j}}$. We show this only for y', that it is true also of z' follows by symmetry.

If $y' \in \bigcup_{j=1}^{m} U_{I_{\sigma j}}$, then there is some element of $\bigvee_{j=1}^{m} I_{\sigma j}$ belonging to y'. As $\bigvee_{j=1}^{m} I_{\sigma j}$ is generated by $S = \bigcup \{P^d : d \in S_{\sigma}\}$ some finite join of elements of this generating set belongs to y', and since y' is a maximal, hence prime, filter we have that some member h of this generating set S belongs to y'. As $c, h \in y'$ we have $c \wedge h \in y'$, hence $c \wedge h \in y' \cap \downarrow c = y$. In particular $c \wedge h \neq 0$. Because $h \in S$ we have $h \in P^d$ for some $d \in S_{\sigma}$, and as $0 \neq c \wedge h \leq b \wedge h$ it must be that $h \in P^b$ since the elements of S_{σ} are orthogonal. Then as $c \wedge h \neq 0$ we have h belongs to Support $_{P^b}(c)$. Thus $c \wedge h$ belongs to both y and Q, contradicting that y and Q are disjoint. This shows $y' \notin \bigcup_{j=1}^{m} U_{I_{\sigma j}}$.

We have produced two distinct points y', z' of the Stone space belonging to the open set $\phi(a)$ and not belonging to $\bigcup_{j=1}^{m} U_{I_{\sigma j}}$. This shows that x cannot be an isolated point of $U_{I_{\sigma}} - \bigcup_{j=1}^{m} U_{I_{\sigma j}}$.

We are now able to prove our desired result.

Main Lemma For each $m, n, k \ge 1$ there is an interior map from X onto $Q_{m,n,k}$.

Proof Consider the map $f: X \to T_{m,n}$ given by Proposition 4.8. For σ of length at most n - 1, by Lemma 4.9, the set $U_{I_{\sigma}} - \bigcup_{j=1}^{m} U_{I_{\sigma j}}$ has no isolated points in the subspace topology, and if σ has length n we have $U_{I_{\sigma}}$ is open so trivially has no isolated points as X has none. So for each $\sigma \in T_{m,n}$ we have $f^{-1}(\sigma)$ has no isolated points, and as each $f^{-1}(\sigma)$ is locally compact and Hausdorff, it is k-resolvable (see, e.g., [9, p. 332]). This means we can split $f^{-1}(\sigma)$ into k disjoint pieces $C_1^{\sigma}, \ldots, C_k^{\sigma}$ so that every open subset of X that intersects $f^{-1}(\sigma)$ non-trivially intersects each of these sets non-trivially. Define $g: X \to Q_{m,n,k}$ by mapping all elements in C_i^{σ} to the i^{th} element q_i^{σ} of the cluster associated with σ . Clearly g is onto. For an open $U \subseteq X$, if U intersects $f^{-1}(\sigma)$ nontrivially, it intersects each C_i^{σ} nontrivially. It then follows by Proposition 4.8 that $g(U) = \{q_i^{\sigma} : \sigma \in f(U)\}$, so g(U) is an upset, hence is open. Suppose U is an upset of $Q_{m,n,k}$. If U contains one element of a cluster, it contains all elements of the cluster. Then for $V = \{\sigma \in T_{m,n} : q_i^{\sigma} \in U$ for some $i \leq m\}$ we have $g^{-1}(U) = f^{-1}(V)$, so it is open in X.

Corollary 4.10 For each finite quasi-tree Q, there exists an interior map from X onto Q.

Proof It follows from [4, Lem. 5] that for each finite quasi-tree Q there exist $m, n, k \ge 1$ such that Q is an interior image of $Q_{m,n,k}$. Then the composition $X \to Q_{m,n,k} \to Q$ is interior and onto.

Now we are ready to establish our first main result.

Theorem 4.11 S4 *is the modal logic of* \mathbb{N}^* *.*

Proof Since \mathbb{N}^* is a topological space, every theorem of **S4** is satisfied in \mathbb{N}^* . If φ is not provable in **S4**, there exists a finite quasi-tree Q such that φ is refuted on Q. By [10, p. 95], \mathbb{N}^* is homeomorphic to X. Thus, by Corollary 4.10, there exists an interior map from \mathbb{N}^* onto Q. Finally, since validity of formulas is preserved by onto interior maps and φ is refuted on Q, it is also refuted on \mathbb{N}^* . Therefore, **S4** is complete with respect to \mathbb{N}^* .

5 The modal logic of $\beta(\mathbb{N})$

Let **S4.1.2** denote the normal extension of **S4** by the axiom $\Box \Diamond p \leftrightarrow \Diamond \Box p$. In this section we show that **S4.1.2** is the modal logic of $\beta(\mathbb{N})$.

Let $\langle X, \leq \rangle$ be a quasi-ordered set. We call $x \in X$ a maximal point if $x \leq y$ implies x = y for each $y \in X$. Let max X denote the set of maximal points of X. It is well-known (see, e.g., [6, pp. 80, 82]) that $\Box \Diamond p \to \Diamond \Box p$ is valid in $\langle X, \leq \rangle$ iff for each $x \in X$ there exists $y \in \max X$ with $x \leq y$, and that $\Diamond \Box p \to \Box \Diamond p$ is valid in $\langle X, \leq \rangle$ iff for each $x, y, z \in X$ with $x \leq y$ and $x \leq z$ there exists $w \in X$ such that $y \leq w$ and $z \leq w$. Therefore, if X is finite and rooted, then $\Box \Diamond p \leftrightarrow \Diamond \Box p$ is valid in X iff X has a top element. Moreover, it is well-known (see, e.g., [6, p. 144]) that **S4.1.2** is complete with respect to finite rooted quasi-ordered sets with a top element.

For a finite rooted quasi-ordered set $\langle X, \leq \rangle$ let X^{\top} denote the quasi-ordered set obtained by adjoining \top to X as the top element.

Lemma 5.1 Let $\langle X, \leq \rangle$ be a finite rooted quasi-ordered set. If there is an interior map from \mathbb{N}^* onto X, then there is an interior map from $\beta(\mathbb{N})$ onto X^{\top} .

Proof Let f be an interior map from \mathbb{N}^* onto X. Define $g : \beta(\mathbb{N}) \to X^\top$ by

$$g(x) = \begin{cases} \top & \text{if } x \in \mathbb{N}, \\ f(x) & \text{otherwise.} \end{cases}$$

Since f is onto, it is clear that g is a well-defined onto map. To see that g is continuous, let U be an upset of X^{\top} , and let $V = U - \{\top\}$. Clearly V is an upset of X. Moreover, $g^{-1}(U) = \mathbb{N} \cup f^{-1}(V)$, which is open in $\beta(\mathbb{N})$ since $f^{-1}(V)$ is open in the subspace topology on \mathbb{N}^* . Finally, to see that g is open, let U be a basic open in $\beta(\mathbb{N})$. Then $g(U) = f(U) \cup \{\top\}$, which is an upset in X^{\top} because f(U) is an upset in X. Therefore, g is interior and onto.

Now we are ready to establish our second main result.

Theorem 5.2 S4.1.2 *is the modal logic of* $\beta(\mathbb{N})$ *.*

Proof It follows from [5, Prop. 2.1] that $\Box \Diamond p \to \Diamond \Box p$ is valid in a topological space *X* iff the set of dense subsets of *X* is a filter. In particular, if the set Iso(*X*) of isolated points of *X* is dense in *X*, then $\Box \Diamond p \to \Diamond \Box p$ is valid in *X*. Also it follows from [8, Thm. 1.3.3] that $\Diamond \Box p \to \Box \Diamond p$ is valid in a topological space *X* iff *X* is extremally disconnected. Since Iso($\beta(\mathbb{N})$) = \mathbb{N} is dense in $\beta(\mathbb{N})$ and $\beta(\mathbb{N})$ is extremally disconnected, $\beta(\mathbb{N})$ validates every theorem of **S4.1.2**. Suppose φ is not provable in **S4.1.2**. Then there exists a finite rooted quasi-ordered set with a top element refuting φ . We can assume that it has the form Q^{\top} for some finite quasi-tree *Q*. By Corollary 4.10, there exists an interior onto map $f : \mathbb{N}^* \to Q$. By Lemma 5.1, there exists an interior onto map $g : \beta(\mathbb{N}) \to Q^{\top}$. Therefore, φ is refuted on $\beta(\mathbb{N})$. Thus, **S4.1.2** is complete with respect to $\beta(\mathbb{N})$.

6 Conclusions

In this paper we showed that under the assumption of $(\mathfrak{a} = 2^{\omega})$, the modal logic of \mathbb{N}^* is **S4**, and that of $\beta(\mathbb{N})$ is **S4.1.2**. It remains an open question whether the same is true in ZFC. We recently became aware of a paper by P. Simon [16] that may be of use in this matter.

In proving our main results, we constructed an interior map from \mathbb{N}^* onto every finite quasi-tree, and then used completeness of S4 with respect to finite quasi-trees and preservation of validity of modal formulas under interior images to obtain the desired completeness. It is well-known (see, e.g., [15, pp. 64-65]) that S4 is complete with respect to the infinite binary tree T, and that **S4.1.2** is complete with respect to T adjoined with a top element. One might think that an alternative (even easier) way of proving completeness of S4 with respect to \mathbb{N}^* , and that of S4.1.2 with respect to $\beta(\mathbb{N})$ would be by constructing an interior map from \mathbb{N}^* onto T. We show now that such a map does not exist. Let \mathfrak{F} denote the relational frame $(\mathbb{N}, <)$, where < is the standard ordering of \mathbb{N} . By identifying the immediate successor nodes of each node of T, we obtain that \mathfrak{F} is an interior image of T in the Alexandroff topologies associated with \mathfrak{F} and T, respectively. We show that \mathfrak{F} is not an interior image of \mathbb{N}^* , which, by the above, implies that T is not an interior image of \mathbb{N}^* . Suppose f is an interior map from \mathbb{N}^* onto \mathfrak{F} . Since $\{\uparrow n : n \in$ \mathbb{N} } is a strictly decreasing family of open subsets of the Alexandroff topology on F with empty intersection, by continuity of f, $\{f^{-1}(\uparrow n) : n \in \mathbb{N}\}$ is a strictly decreasing family of open subsets of \mathbb{N}^* with empty intersection. As clopens of \mathbb{N}^* form a basis and f is open, we then can produce a strictly decreasing family $\{A_n : n \in \mathbb{N}\}$ of clopens of \mathbb{N}^* with $f(A_n) = \uparrow n$. Therefore, $f(\bigcap A_n) \subseteq$ $\bigcap f(A_n) = \bigcap \uparrow n = \emptyset$, which is a contradiction since $\bigcap A_n$ is nonempty by compactness of \mathbb{N}^* .

Since S4 is a modal companion of the propositional intuitionistic logic Int and S4.1.2 is a modal companion of the logic $\mathbf{KC} = \mathbf{Int} + (\neg p \lor \neg \neg p)$ of weak excluded middle (see, e.g., [6, p. 325]), our main results imply that Int is complete with respect to \mathbb{N}^* , and that **KC** is complete with respect to $\beta(\mathbb{N})$. Algebraically, this means that the variety of all Heyting algebras is generated by the Heyting algebra of open subsets

of \mathbb{N}^* , and that the variety of Heyting algebras satisfying the Stone identity $\neg x \lor \neg \neg x = 1$ is generated by the Heyting algebra of open subsets of the Stone–Čech compactification of \mathbb{N} .

Acknowledgments We would like to thank David Gabelaia of the Georgian Academy of Sciences for many useful discussions and Peter Nyikos of the University of South Carolina for several helpful suggestions.

References

- Aiello, M., van Benthem, J., Bezhanishvili, G.: Reasoning about space: the modal way. J. Logic Comput. 13(6), 889–920 (2003)
- van Benthem, J., Bezhanishvili, G., Gehrke, M.: Euclidean hierarchy in modal logic. Studia Logica 75(3), 327–344 (2003)
- van Benthem, J., Bezhanishvili, G., ten Cate, B., Sarenac, D.: Multimodal logics of products of topologies. Studia Logica 84(3), 369–392 (2006)
- Bezhanishvili, G., Gehrke, M.: Completeness of S4 with respect to the real line: revisited. Ann. Pure Appl. Logic 131(1–3), 287–301 (2005)
- Bezhanishvili, G., Mines, R., Morandi, P.J.: Scattered, Hausdorff-reducible, and hereditarily irresolvable spaces. Topol. Appl. 132(3), 291–306 (2003)
- Chagrov, A., Zakharyaschev, M.: Modal logic, Oxford Logic Guides, vol. 35. The Clarendon Press Oxford University Press, New York (1997)
- 7. Engelking, R.: General Topology. PWN-Polish Scientific Publishers, Warsaw (1977)
- 8. Gabelaia, D.: Modal definability in topology, Master's Thesis (2001)
- 9. Hewitt, E.: A problem of set-theoretic topology. Duke Math. J. 10, 309-333 (1943)
- 10. Koppelberg, S.: Handbook of Boolean Algebras, vol. 1. North-Holland Publishing Co., Amsterdam (1989)
- 11. Kunen, K.: Set theory. An introduction to independence proofs, Studies in Logic and the Foundations of Mathematics, vol. 102. North-Holland Publishing Co., Amsterdam (1980)
- 12. McKinsey, J.C.C., Tarski, A.: The algebra of topology. Ann. Math. 45, 141–191 (1944)
- McKinsey, J.C.C., Tarski, A.: Some theorems about the sentential calculi of Lewis and Heyting. J. Symbolic Logic 13, 1–15 (1948)
- 14. Mints, G.: A completeness proof for propositional S4 in Cantor Space. In: Orlowska, E. (ed.) Logic at Work: Essays Dedicated to the Memory of Helena Rasiowa. Physica-Verlag, Heidelberg (1998)
- 15. Shehtman, V.B.: Modal logics of domains on the real plane. Studia Logica 42(1), 63-80 (1983)
- Simon, P.: A compact Fréchet space whose square is not Fréchet. Comment. Math. Univ. Carolin. 21(4), 749–753 (1980)
- 17. van Mill, J.: An introduction to $\beta \omega$. Handbook of Set-theoretic Topology, pp. 503–567. North-Holland, Amsterdam (1984)