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Abstract We show that for any infinite cardinal «, every complete lattice where each
element has at most one complement can be regularly embedded into a uniquely
complemented «-complete lattice. This regular embedding preserves all joins and
meets, in particular it preserves the bounds of the original lattice. As a corollary, we
obtain that every lattice where each element has at most one complement can be
embedded into a uniquely complemented «-complete lattice via an embedding that
preserves the bounds of the original lattice.
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1 Introduction

In the early days of lattice theory, there was a well-publicized debate regarding
the basic axiomatics of the subject. This lead Huntington [12] to ask, in 1904,
whether every uniquely complemented lattice was distributive. Here, a lattice is
called uniquely complemented (abbreviated: uc) if it is bounded and each element
has exactly one complement. As described in the articles by Adams [1] and Gritzer
[8], this innocuous sounding question had considerable effect on the subsequent
development of lattice theory. By 1940, it had been shown that Huntington’s question
had a positive answer if one placed some further assumptions on the lattice, such as its
being modular, or being complete and atomic. These facts can be found in Birkhoff’s
book [4] on lattice theory, or in Salii’s monograph [14]. Apparently, by the 1940’s, it
was widely believed that Huntington’s problem was true in general.
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In 1945 R. P. Dilworth proved the unexpected result that every lattice can be
embedded into a uc lattice [7]. The idea behind his proof was simple. Expand the
type of lattices to include an extra unary operation symbol * for complementation,
then take the free lattice with period two complementation generated by the given
lattice. To implement this simple idea, Dilworth gave an involved construction of
this free lattice that yielded a solution to its word problem. It should be noted that
Dilworth’s construction did not preserve the bounds of the original lattice, thus
destroyed existing complements.

Chen and Gritzer [5] gave a technically simpler proof of Dilworth’s theorem
in 1969. A bounded lattice is said to be at most uniquely complemented if each
element has at most one complement. Their idea was to use portions of Dilworth’s
construction to show any at most uc lattice L can be embedded into an at most
uc lattice M, via an embedding that preserves the bounds of the original lattice, so
that each element of L has a complement in M. One uses this to define recursively
a countable chain of lattices beginning with the original lattice, then the union of
this chain is a uc lattice containing the original as a bounded sublattice. This result
sharpens Dilworth’s as existing complements in the original lattice are preserved.
Recently, Gritzer and Lakser [8-10] further simplified the proof by using a tranfinite
recursion together with a fairly simple construction showing an at most uc L can be
embedded into an at most uc M so that a given element of L has a complement in
M. Further details on this recent construction are given in Section 2 below.

The study of uc lattices remained an active area of study after Dilworth’s result.
Many authors proved results stating that under further natural assumptions on L,
Huntington’s problem has a positive answer. For instance, if L is atomic, or if the
complementation on L is order inverting, or if L is complete and continuous, then
Huntington’s problem has a positive answer [1, 4, 14]. One very natural question
remains open, is every complete uc lattice distributive?

Birkhoff alludes to this question about completions [4] when he asks whether the
MacNeille completion of a uc is uc. This was shown to not be the case in [11], where
the MacNeille completion of the free uc lattice over an unordered set was shown to
be a sublattice of its ideal lattice, hence at most uc but not complemented. Salii also
raises prominently the question of whether a complete uc lattice need be distributive
in his monograph [14]. We cannot answer this question, but show the following.

Main Theorem For « an infinite cardinal, every complete at most uc lattice can be
regularly embedded into a k-complete uc lattice.

Here the phrase x-complete means that every subset of cardinality at most « has
a join and meet, and a regular embedding is one that preserves all existing joins
and meets. As the ideal lattice of an at most uc lattice is complete and at most
uc, we obtain that every at most uc lattice can be embedded, by an embedding
that preserves bounds, into a x-complete uc lattice. Therefore, every lattice can be
embedded into a k-complete uc lattice, but of course this latter embedding cannot
be required to preserve bounds.

The proof of the Main Theorem uses transfinite recursion to construct a chain of
lattices L,, where a ranges over all elements of the successor cardinal «*. Each L,
is a complete at most uc lattice, and for each o < g we have L, < Ly is a regular
embedding and each element of L, has a complement in Lg. The union of this chain
is the required x-complete uc lattice extending our original lattice L.
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To produce such a chain, we use the recent construction of Gritzer and Lakser in
conjunction with a completion method. In view of the result of Harding above [11]
it would be natural to consider the MacNeille completion for this job, however this
posed technical difficulties we could not overcome. Instead, we tailor a completion
specifically for this job.

2 The Construction of Gritzer and Lakser

In this section we describe the construction of Gritzer and Lakser. This is given in
more detail in the survey article of Grétzer [8], and is a special case of results in [9].
The best reference is the manuscript of Gritzer and Lakser [10] found on Grétzer’s
website. We begin with the general setup.

Definition 2.1 Let K be a bounded lattice and a € K be an element having no
complement in K. Let u be an element not in K, set Q = K U {u} and extend the
partial ordering of K to Q by requiring additionally that0 < u < 1.

One then considers Q to have partially defined binary meet and join operations.
These are defined for all elements of K, all comparable elements of Q, and addi-
tionally we seta Au =0 and a v u = 1. Then F(Q) is the lattice freely generated by
QO and preserving the binary meets and joins defined in Q. Each element of F(Q) is
given by a polynomial A involving elements of Q and the connectives A, V. Different
polynomials may give the same elements of F(Q). For polynomials A, B we say
A < B, if there is a comparability between the corresponding elements of F(Q). The
first key observation is the following.

Proposition 2.2 For any polynomial A, there is a largest element Ak of K beneath A
and a least element AX of K above A.

The elements Ax and AX were denoted A, and A* by Gritzer and Lakser. We
need a bit more expressive terminology. We next collect several results established
by Griitzer and Lakser. It should be noted that Dean’s Theorem [6] on free lattices
generated by partially ordered sets plays a key role in the proofs.

Proposition 2.3 Let K, a, u, and F(Q) be as above.

1. K is a sublattice of F(Q) having the same bounds as F(Q).

2. If Kis at most uc so is F(Q).

3. a has the complement u in F(Q).

4. For polynomials A, B, if AV B # 1, then (AV B)x = Ax V Bg.

In the fourth condition, when we write A v B # 1 we mean that the join of the elements
to which A and B evaluate is not equal to 1.

3 The Completion Step

In this section we provide the key completions needed for the proof of the Main
Theorem. We begin by introducing terminology that is useful in discussing these
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completions. This terminology is motivated by certain properties of the construction
of Grétzer and Lakser described above.

Definition 3.1 A bounded lattice embedding L < M is a special embedding if for
each m € M there is a largest element n1;, of L beneath m, a least element mL of L
above m, and

forallm,n e M,eithermvn=1or(mvn)y =mpVny.

So the embedding K < F(Q) in the previous section is a special embedding. For
the following property of special embeddings, we recall that an embedding is regular
if it preserves all existing joins and meets.

Proposition 3.2 If L < M is a special embedding, it is a regular embedding.

Proof Suppose S C L and a is the least upper bound of S in L. Suppose m € M is an
upper bound of S'in M. Then s < m for each s € S. Asm is the largest element of L
lying beneath m, we have s < m for each s € S. As a is the least upper bound of S in
L and m;, belongs to L, we have a < m, hence a < m. So a is the least upper bound
of §Sin M as well. That meets are preserved is dual. O

Proposition 3.3 If L < M and M < P are special embeddings, so is L < P.

Proof Clearly L, M, P are bounded lattices having the same bounds. For each
p € P,wehave py, is the largest element of M beneath p, and for this element p,;, we
have (py) is the largest element of L beneath it. This element (pj,) is an element
of L beneath p. If a is an element of L beneath p, then a is an element of M beneath
p, hence a < py, soa < (py)r. Thus (py)r is the largest element of L beneath p,
hence (py)r = pr. The dual argument shows there is a least element of L above
p. Suppose p,g € Pwith pvg#1. As M < Pisspecial, (pV @)y = pm NV qu- As
L < M is special and py vV gy # 1, we have (py vV agu)r = (pm)r VvV (@m) L. As we
have seen (py)r = pr, we have (pVvV @)L = (pV @Om)L = (pu NV qgm)L = (Pm)L vV
(gm)r = pr VvV qr. Thus L < Q is special. O

We now come to the first of our completions. We remark that for a bounded lattice
M, we consider ideals of M to be by definition non-empty. So the ideal lattice Z(M)
of M is a complete lattice and there is an obvious embedding M < Z(M) sending
each m € M to the principal ideal m | it generates. This embedding clearly preserves
bounds. Unfortunately, the ideal lattice completion is not suitable for our purposes
as it is not regular, and we must modify the notion to suit our needs.

Definition 3.4 For L < M a bounded lattice embedding, let Z; (M) be the collection
of all ideals 7 of M with I N L a normal ideal of L.

As the intersection of a family of normal ideals of L is again a normal ideal of L,
it follows that Z; (M) is a collection of subsets of M that is closed under intersections,
hence forms a complete lattice under set inclusion. There is an obvious embedding of
L into Z; (M) sending an element a € L to the principal ideal a | of M it generates.
We slightly abuse notation and consider L as a sublattice of Zy;(L). A technically
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correct approach would be to define a new lattice 7 (M) formed from Z; (M) by
replacing the image of L in this lattice with L itself.

Proposition 3.5 Suppose L < M is a special embedding and L is complete.

1. Zp (M) is a bounded sublattice of the ideal lattice of M.
2. L <Z;(M)isaspecial embedding.
3. Z1 (M) contains all principal ideals of M.

Proof Clearly 1| is the largest element of Z;(M) and 0/ is the least. So the
embedding L < 7; (M) preserves bounds and these bounds agree with those of the
ideal lattice of M.

Suppose I € Z;(M). As L is complete, the normal ideals of L are exactly the
principal ideals. As I N L is normal, it is principal, so there is a largest element a
in I N L. Then a is the largest element of the image of L contained in 7, so is I .
Let U be the set of upper bounds of /in L and b be the meetof Uin L. As L < M
is a special embedding, it is a regular embedding, so b is also the meet of U in M.
Then b is an upper bound of 7 in L, hence b | is the least element of the image of L
containing I, and therefore is I*.

Suppose I, J € Zp (M) and let I v J be their join in the ideal lattice of M. We claim
I v J belongs to Z; (M), hence is the join of I, J in Z; (M) as well. This is clear if
IvJ=1],sosuppose 1 ¢ IV J.If I}, =al and J;, =b |, we then haveae INL
andbeJNL,soavbe(IVvJ)ynL. Suppose ce (IvJ)NL. ThenascelvJ
there are x € [ and y € J with ¢ < xV y. As x, is the largest element of L under
x we have x; € IN L, hence x; <a, and similarly y;, <b. As L < M is special
andxvy#l(aslglv/)ywehavec<(xVvyp=x,Vvy,<avb.SodvJ])N
L= (avb)]. This shows IV J belongs to Z; (M) and that if /v J # 1], then
Uvyy,=1,vIJL.

We have shown L < 7 (M) is special and that binary joins in Z; (M) agree with
those in the ideal lattice. As we remarked above, arbitrary meets in Zy (M) are given
by intersections, as are those in the ideal lattice. So Z; (M) is a sublattice of the
ideal lattice and the bounds of Z; (M) agree with those in the ideal lattice. The final
condition, that Z; (M) contains all principal ideals of M, is a direct consequence of
L < M being special. O

We shall require a second completion method closely related to the first. The
second completion method allows us to deal not with a single special embedding,

but rather with a certain type of chain of special embeddings.

Definition 3.6 Let A be an ordinal and L, (¢ € 1) be a family of lattices.

1. This family is a chain if L, < Lg for each o < g.
2. Itisaspecial chainif L, < Lg is a special embedding for each o < B.

It is well known that if L, (e € 1) is a chain, then (,, Ly is a lattice containing
each L, as a sublattice. In fancier terms, this union is the direct limit of the family.

Proposition 3.7 If L, (« € 1) is a special chain, each L, < | e Lp is special.
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Proof Let M = Jz.; Lp and o € A. As all the Lg have the same bounds, these are
surely the bounds of M as well. Suppose x € M. Then thereis g € A withx € Lg, and
this § may be chosen so that o < 8. Then as L, < Lg is special, there is a largest
element x;, of L, beneath x and a least element xLe of L, above x. We note that
xr, and x’ do not depend on the choice 8. Suppose x, y € M with x v y # 1. Then
there is B with x, y € Lg, and this 8 may be chosen so that « < 8. Then as L, < Lg
is special, we have (x vV y);, = x1, V y1,.So L, < M is special. O

Definition 3.8 For L, (o € 1) a special chain and M = (J,, Lg, let Z,(M) be the
collection of all ideals I of M with I N L, a normal ideal of L, for each a € A.

As the intersection of normal ideals is normal, Z, (M) is a set of subsets of M closed
under intersections, so is a complete lattice under set inclusion. Form € M and o € A,
as L, < M is special, there is a largest element m, in L, under m. Thenm | N L, is
the principal ideal of L, generated by m,_, so is normal. Thus m | € Z, (M), giving an
embedding of M into Z, (M), hence an embedding of each L, into Z; (M). We abuse
notation and consider M to be a sublattice of Z, (M).

Proposition 3.9 Let L, (o € 1) be a special chain and M = Jz, Lg. If each Ly is
complete, then

1. Z,(M) is a bounded sublattice of the ideal lattice of M.
2. Ly <7,(M) is a special embedding for each a € A.

Proof For each o € A Proposition 3.7 shows L, < M is special. As we have assumed
L, is complete, Proposition 3.5 yields Z; (M) is a bounded sublattice of the ideal
lattice of M. Working directly from the definitions of Z; (M) and 7, (M) it follows
that Z, (M) = (s Zr, (M). Then as Z, (M) is the intersection of a family of bounded
sublattices of the ideal lattice of M, it is also bounded sublattice of the ideal lattice.
The proof of the second statement is like that of Proposition 3.5. For I € 7, (M), the
largest element /7, in the image of L, contained in [ is a| where a is the largest
element of the principal ideal I N L, and the least element I'« in the image of L,
containing [ is b | where b is the meet in L, of the set of upper bounds of / in L.
Finally, for 1, J € Z,(M) with I v J # 1], showing (I v J)p, = I1, v J1, follows as
in Proposition 3.5 without substantial modification. O

4 Proof of the Main Theorem

In this section, we prove the Main Theorem as stated in the introduction.
Proposition 4.1 If M is an at most uc lattice, then the ideal lattice of M is bounded and
the complemented elements of this lattice are exactly the principal ideals a | generated
by complemented elements of M.

Proof Clearly 1| is the largest ideal of M and 0| is the least. If a, b are complements

in M,thenal vb|=1] andal Ab |=0]. Suppose I, J are ideals of M that are
complements in the ideal lattice. As Iv J=1] there are ac [ and b € J with
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avb =1 Thenas INJ=0) andanb elInJ,wehavearnb =0. Asac I we
have a|C I. If ce I, thenavce l Surely (ave)vb =1and as INJ=0] we
have (avc) Ab =0.So aVcis acomplement of b. As a is also a complement of
b and M is at most uc we have a vV ¢ = a, hence c <a.Soal= 1. O

Proposition 4.2 If L is complete and at most UC, there is a special L < L* where

1. L*is complete and at most uc.
2. Each element of L has a complement in L*.

Proof Suppose L has cardinality A and a, (¢ < %) is an enumeration of L. We define
recursively a family of lattices L, (¢ < A) with Ly = L such that

1. Foreacha < A, L, is complete and at most UC.
2. Foreach o < A, the element a, has a complement in L.
3. Foreacha < 4, the family Lg (B < «) is a special chain.

Set Lo = L. Assume « < A and L, is defined. If a, has a complement in L,, set
Ly+1 = Lg. If a, has no complement in L,, apply the construction of Gritzer and
Lakser with K = L, and a = a,. Then by Proposition 2.3 L, < F(Q) is special, as L,
is at most uc so is F(Q), and a, has a complement in F(Q). Set Loy =Z;,(F(Q))
and note that L, is complete. As L, is complete, Proposition 3.5 gives L, < L, is
special and L, is a sublattice of the ideal lattice of F(Q). As the complements in the
ideal lattice of F(Q) are exactly the principal ideals generated by the complemented
elements of F(Q), we have L, is at most uc and a, has a complement in L.
Further, as we assumed the chain Lg (8 < «) is special, and L, < L4 is special, it
follows from Proposition 3.3 that Lg (8 < « + 1) is special.

Assume o < A is a limit ordinal and Lg is defined for all 8 < «. Let M = Uﬂ<a Lg
and set L, = Z,(M). Note that L, is complete. By Proposition 3.9 we have Lg < L,
is special for each 8 < « and L, is a sublattice of the ideal lattice of M. As M is the
union of a chain of at most uc lattices, it is at most uc, and as L, is a sublattice of the
ideal lattice of M, we have L, is at most uc as well.

Having constructed the special chain L, (¢ < 1), we set L* = L,. Then L* is
complete and at most uc. As this chain is special, we have Ly < L, is special, hence
L < L* is special. For any a € L we have a = a, for some o« < A. Then ¢« +1 < A.
As a = a, has a complement in L, and L, < L; we have a has a complement in
L, = L*. Thus each element of L has a complement in L*. O

We come to our Main Theorem which we restate below.

Main Theorem For k an infinite cardinal, every complete at most uc lattice can be
regularly embedded into a k-complete uc lattice.

Proof Let ™ be the successor cardinal to «. It is well known that «* has cofinality
«t, which means that any subset of «* of cardinality less than «* is bounded above
by some a < «* [13]. Given a complete at most uc lattice L, we define recursively a
family of lattices L, (o < «™) with Ly = L such that

1. Foreachoa < k™, L, is complete and at most uc.
2. Foreacha < k™, every element in L, has a complementin L.
3. Foreach o < k™, the family Lg (8 < ) is a special chain.
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Set Lo = L. Assuming o < «*t and L, is defined, let L, = L the lattice
provided by the above proposition. Then L, < L, is special, L,y is complete and
at most uc, and every element of L, has a complement in L, . Further, as the chain
Lg (B < a) is special, Proposition 3.3 gives Lg (8 < « + 1) is special.

Assume o <« is a limit ordinal and Lg is defined for all B < . As in the
previous proposition, let M = [ J p-o Lp and set Ly = Z,(M). Then L, is complete.
By Proposition 3.9 we have Lg < L, is special for each 8 < «, and L, is a sublattice
of the ideal lattice of the at most uc lattice M, so L, is at most UC.

Set C = Uy_,+ Lp. As the chain L, (« < «™)is special, by Proposition 3.7 L, < C
is special for each a < «™. So by Proposition 3.2 L, < C is regular for each a < «*.
In particular, as Ly = L, we have L < C is regular. As the bounds of C agree with
those of each L, and each L, is at most uc, we have C is at most uc. If a € C, then
a € L, forsome o < k*,s0a has acomplementin L, showing a has a complement
in C. Thus C is uniquely complemented.

Suppose § € C and S has cardinality at most «. As k™ has cofinality «*, there is
some o < kT with § C L,. As L, is complete, S has a join and a meet in L,. As
L, < Cis regular, this join and meet are the join and meet of S in C as well. So C is
k-complete. O

We conclude with several simple consequences of this result.

Corollary 4.3 Let « be an infinite cardinal. Then every at most uc lattice can be
embedded into a k-complete uc lattice by an embedding that preserves the bounds
of the given lattice.

Proof Given an at most uc lattice L, by Proposition 4.1 the ideal lattice Z(L) is at
most uc and the embedding L < Z(L) preserves bounds. We then apply the Main
Theorem to embed Z(L) into a k-complete uniquely complemented lattice. O

Corollary 4.4 Let k be an infinite cardinal and L be a lattice. Then L can be embedded
into a k-complete uc lattice by an embedding that preserves all existing joins and all
existing non-empty meets of elements of L.

Proof Take the MacNeille completion of L then add to this a new top element to
form M. Then M is complete and at most uc, and the embedding L < M preserves
all existing joins and all existing non-empty meets of elements of L. Then apply the
Main Theorem to M. ]

5 Conclusions

We conclude with a few remarks and questions. First, the embedding in Corollary 4.4
cannot be chosen to preserve bounds as the lattice we are given may have elements
with more than one complement. In the proof of Corollary 4.3 the embedding
provided is not a regular embedding. It is natural to ask whether this embedding can
be chosen to be regular, I suspect it cannot. A more technical question that seems to
be of some interest is whether the use of these somewhat more exotic completions
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can be replaced by a suitable use of MacNeille completions. Finally, the key question
remains whether a complete uc lattice must be Boolean.

Acknowledgements I thank the two referees of this paper. One referee suggested the above form
of Corollary 4.4. The other suggested the technique of Adams and Sichler [2, 3] might be considered
in this context. This suggestion seems an interesting one, but I have decided to take it up at a future
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