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Abstract We provide a simple formula to compute the Hausdorff dimension of the attractor of

an overlapping iterated function system of contractive similarities satisfying a certain collection of

assumptions. This formula is obtained by associating a non-overlapping infinite iterated function

system to an iterated function system satisfying our assumptions and using the results of Moran to

compute the Hausdorff dimension of the attractor of this infinite iterated function system, thus showing

that the Hausdorff dimension of the attractor of this infinite iterated function system agrees with that

of the attractor of the original iterated function system. Our methods are applicable to some iterated

function systems that do not satisfy the finite type condition recently introduced by Ngai and Wang.
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1 Introduction

Consider an iterated function system (abbreviated: IFS) consisting of similarities S1, . . . , Sm :
R

d → R
d where

‖Si(x) − Si(y)‖ = ρi‖x − y‖ for all x, y ∈ R
d,

and 0 < ρi < 1 for i = 1, . . . , m.

Let K be the attractor of this system and let Hs(K) and dimK be the s-dimensional Haus-
dorff measure and Hausdorff dimension of K, respectively. The computation of dim K is well
known when the system satisfies the open set condition. Without the open set condition, com-
putation of dimK can only be achieved in certain instances[1−5]. Recently, Ngai and Wang[6]

introduced the notion of an IFS of finite type and gave a formula for computing dimK for an
attractor K generated by an overlapping IFS of finite type. Their results include many previous
results as special cases.

In this paper we provide yet another method to compute dimK for an attractor generated
by an overlapping IFS satisfying certain assumptions. This method can be applied in some
instances where the IFS is not of finite type. The basic idea is to decompose the overlapping
finite IFS into an infinite IFS satisfying the open set condition whose attractor has the same
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Hausdorff dimension as the original. Thus the computation of dimK can be done through an
open set condition argument.

The idea of decomposing an overlapping IFS into an infinite IFS satisfying the open set
condition is not new. Moran[7] has shown that any overlapping IFS of contractive similarities
can be decomposed into an infinite IFS satisfying the open set condition whose attractor has
the same Hausdorff dimension as that of the original. Our contribution is to give conditions on
the overlapping IFS sufficient to provide an explicit description of such an associated infinite
IFS, and thus to provide a simple formula for the Hausdorff dimension of the attractor of the
original overlapping IFS.

It is shown in [7] that if a self-similar set is generated by an infinite IFS, then its Hausdorff
measure may not be positive even if the system satisfies the open set condition, this is in
contrast to the case when the attractor is generated by a finite IFS. In order to obtain a
positive Hausdorff measure for the attractor, we further show that, under our conditions, the
given IFS satisfies the weak separation condition (WSC) introduced in [8, 9], and by a theorem
of Zerner[9], it implies that the attractor has a positive Hausdorff measure.

This paper is organized in the following manner. We review some preliminaries in the second
section. The main result providing a formula for the Hausdorff dimension of the attractor of
an IFS satisfying certain conditions is given in the third section. In the final section we provide
several examples illustrating the use of our result.

2 Preliminaries

We briefly review some results about finite and infinite iterated function systems, and introduce
our notation and terminology for these matters. For infinite iterated function systems, we follow
[7], but have made several simplifications to his presentation as we do not need the full generality
of his results. The reader should also consult [10, 11] for further details.

An infinite iterated function system over a compact set X ⊂ R
d is a countable family F =

{fi : i ∈ I} such that each fi : X → X is a similarity with contraction ratio ρi and there is an
upper bound ρ < 1 with ρi < ρ for each i ∈ I.

For F = {fi : i ∈ I} an infinite IFS over the compact set X we let F∞ be the set of all
infinite sequences {fik

} of members of F , and set

KF =
⋃{ ∞⋂

n=1

fi1fi2 · · · fin(X)|{fik
} ∈ F∞

}
.

The set KF is called the invariant set, or attractor, of F . We will denote KF by K if there is
no confusion.

The following result can be found in [11].

Proposition 1. For an infinite IFS F = {fi : i ∈ I} the invariant set KF satisfies KF =
⋃

i∈I fi(KF).

In the case of a finite IFS, it is well known that this invariant set KF is compact, and is in
fact the unique non-empty compact set satisfying the above property.

A finite or infinite IFS F = {fi : i ∈ I} over the compact set X is said to satisfy the open
set condition (abbreviated: OSC) if there is a non-empty open set V ⊆ X such that

(1) fi(V ) ⊆ V for each i ∈ I, and
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(2) fi(V ) ∩ fj(V ) = ∅ for each i 	= j.

The following result can be found in [7].

Proposition 2. Suppose that F = {fi : i ∈ I} is a relatively compact (in the topology of the
uniform convergence over compact sets) infinite IFS satisfying the OSC, then

dimKF = inf
{

t ∈ R :
∑

i∈I

ρt
i � 1

}
,

where ρi is the contraction ratio of fi.

In the following section, we place conditions on an IFS sufficient to allow us to give an explicit
definition of an infinite IFS that satisfies the open set condition and whose attractor has the
same Hausdorff dimension as the original one. The above formula then gives us an explicit
formula for the Hausdorff dimension of the attractor.

3 The main theorem

Throughout {Si}m
i=1 is an IFS on R

d with contraction ratios ρ1, . . . , ρm and is considered to be
defined over a large bounded closed ball X . Further, k is an integer with 1 � k < m, and we
set Σ1 = {1, . . . , k}, Σ2 = {k + 1, . . . , m} and Σ = {1, . . . , m}.

For any A ⊆ Σ let A∗ be the set of all finite sequences whose members belong to A. The
sequence of length 0 is denoted by ∅. For sequences I = i1 · · · in and J = j1 · · · jr in Σ∗

define IJ = i1 · · · inj1 · · · jr, SI = Si1 ◦ Si2 · · · ◦ Sin , and ρI = ρi1ρi2 · · · ρin . Note that SI is a
contraction and ρI is its contraction ratio. If I = ∅ is the empty sequence, we let S∅ be the
identity map and ρ∅ = 1.

The following assumptions on {Si}m
i=1 hold throughout this section.

Assumption H : Assume V is a bounded open subset of X so that

(1) {Si}k
i=1 and {Si}m

i=k+1 satisfy the OSC with respect to V ,

(2) for each i ∈ Σ1 there is some j ∈ Σ2 with Si(V ) ∩ Sj(V ) 	= ∅,
(3) for each i ∈ Σ1 and j ∈ Σ2 with Si(V ) ∩ Sj(V ) 	= ∅, there is nij ∈ Σ2 and Iij ∈ Σ∗

2 with

(a) Si(V ) ∩ Sj(V ) ⊆ Si ◦ Snij (V ),

(b) Si ◦ Snij = Sj ◦ SIij .

It is convenient to introduce the following notations:

For the IFS {Si}m
i=1 for each i ∈ Σ1 set

(i) Bi = {j ∈ Σ2 : Si(V ) ∩ Sj(V ) 	= ∅},
(ii) Ci = {nij : j ∈ Bi},
(iii) Di = Σ2 \ Ci,

(iv) F1 = {Si : i ∈ Σ1},
(v) F2 = {Si : i ∈ Σ2},
(vi) F3 = {SI ◦ Si ◦ Sj : I ∈ Σ∗

1, i ∈ Σ1, j ∈ Di}.
We let K be the attractor of the IFS {Si}m

i=1 and let K1 and K2 be the attractors of F1 and
F2 respectively.

The following two lemmas (Lemmas 3 and 5) are the keys in decomposing an overlapping
IFS into an infinite IFS satisfying the OSC. The crucial step is to repeatedly make use of
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Assumption H (3) to replace SI ◦ Sj , where I ∈ Σ∗ and j ∈ Σ2, by a composition of functions
in F2 ∪ F3 and show that the IFS F2 ∪ F3 satisies the OSC.

Lemma 3. The IFS F2 ∪ F3 satisfies the OSC with respect to V.

Proof. Assumption H (1) states that F1 and F2 satisfy the OSC with respect to V , so
Si(V ) ⊆ V for each i ∈ Σ. It follows that f(V ) ⊆ V for each f ∈ F2 ∪ F3. It remains to show
f(V ) ∩ g(V ) = ∅ for any distinct f, g ∈ F2 ∪ F3. We consider several cases.

Case 1. f, g ∈ F2.

The result follows as F2 satisfies the OSC with respect to V .

Case 2. f ∈ F2 and g ∈ F3.

Suppose g = SI ◦ Si ◦ Sl where I ∈ Σ∗
1, i ∈ Σ1 and l ∈ Di. We show f(V ) ∩ g(V ) = ∅ for

each f ∈ F2 by induction on the length of I. If I has length 0 then g = Si ◦ Sl and as f ∈ F2

we have f = Sj for some j ∈ Σ2. As g(V ) ⊆ Si(V ) the result is trivial if Si(V ) ∩ Sj(V ) = ∅.
Assume that this intersection is non-empty and consider nij given by Assumption H (3). As
l ∈ Di the definition of Di shows l 	= nij . Then as nij and l belong to Σ2 and F2 satisfies the
OSC, we have Snij (V ) ∩ Sl(V ) = ∅. Assumption H (3) then gives

f(V ) ∩ g(V ) = Sj(V ) ∩ Si ◦ Sl(V )

= Sj(V ) ∩ Si(V ) ∩ Si ◦ Sl(V )

⊆ Si ◦ Snij (V ) ∩ Si ◦ Sl(V )

= Si(Snij (V ) ∩ Sl(V ))

= ∅.

Suppose that I has the length greater than 0 and let r be the first term of I and J be the
remainder of the sequence. Then g = Sr ◦ SJ ◦ Si ◦ Sl. As g(V ) ⊆ Sr(V ) our result is trivial
if Sr(V ) ∩ Sj(V ) = ∅, so we assume that this intersection is non-empty and consider nrj . A
calculation similar to the one above shows f(V ) ∩ g(V ) ⊆ Sr(Snrj (V ) ∩ SJ ◦ Si ◦ Sl(V )).

The inductive hypothesis gives Snrj (V ) ∩ SJ ◦ Si ◦ Sl(V ) = ∅, and our result follows.

Case 3. f, g ∈ F3.

As f ∈ F3 there is a sequence J = j1 · · · js ∈ Σ∗
1, some js+1 ∈ Σ1 and r ∈ Djs+1 with

f = SJ ◦ Sjs+1 ◦ Sr, or equivalently f = Sj1···js+1 ◦ Sr. Similarly g = Si1···in+1 ◦ Sl for some
i1, . . . , in+1 ∈ Σ1 and l ∈ Din+1 . We may assume s+1 � n+1. As f(V )∩g(V ) ⊆ Sj1(V )∩Si1 (V )
our result follows trivially unless j1 = i1 as F1 satisfies the OSC. Assuming j1 = i1 we have

f(V ) ∩ g(V ) = Sj1(Sj2···js+1 ◦ Sr(V ) ∩ Si2···in+1 ◦ Sl(V )).

Our task reduces to showing Sj2···js+1 ◦ Sr(V ) ∩ Si2···in+1 ◦ Sl(V ) = ∅. Repeat the above
argument to eliminate j2, . . . , js+1. If s + 1 = n + 1 our task reduces to showing Sr(V )∩ Sl(V )
= ∅, and this follows as F2 satisfies the OSC and r 	= l as f and g are distinct. If s+1 < n+1,
our task reduces to showing Sr(V )∩Sis+2···in ◦Sin+1 ◦Sl(V ) = ∅, and this follows from Case 2.

Corollary 4. Let f1, . . . , fr, g1, . . . , gs ∈ F2 ∪ F3 with r � s and

f1 ◦ · · · ◦ fr(V ) ∩ g1 ◦ · · · ◦ gs(V ) 	= ∅.
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Then fi = gi for i = 1, . . . , r, and g1 ◦ · · · ◦ gs(V ) ⊆ f1 ◦ · · · ◦ fr(V ).

Proof. This is a simple consequence of the OSC.

Lemma 5. For any I ∈ Σ∗ and j ∈ Σ2, there exist f1, . . . , fl in F2∪F3 with SI◦Sj =f1◦· · ·◦fl.

Proof. As the last term of the sequence Ij belongs to Σ2 we can break Ij into segments,
each consisting of an initial (possibly empty) sequence of terms from Σ1 followed by a single
element of Σ2. Suppose J = i1 · · · ipk is such a sequence where i1, . . . , ip ∈ Σ1 and k ∈ Σ2.
We prove by induction on p that SJ can be written as a composite of members of F2 ∪ F3. If
p = 0 this is trivial as Sk is a member of F2. Suppose p > 0. If k ∈ Dip then by definition
SJ ∈ F3. Otherwise k ∈ Cip so there is some j ∈ Bip with k = nipj . Using Iipj ∈ Σ∗

2

provided by Assumption H (3) we have Sip ◦ Sk = Sip ◦ Snipj = Sj ◦ SIipj . It follows that
SJ = Si1···ip−1j◦SIipj . The inductive hypothesis shows that Si1···ip−1j is a composite of members
of F2 ∪ F3 and SIipj is by definition a composite of members of F2.

For the IFS {Si}m
i=1 let ρ∗ = min{ρi : 1 � i � m}. Then for b > 0 set

(1) Ib = {I ∈ Σ∗ : ρI � b < ρIρ
−1
∗ },

(2) Ab = {SI : I ∈ Ib}.
For a full account of the following, see [8, 9].

Definition 6. An IFS {Si}m
i=1 is said to satisfy the weak separation condition (WSC ) if there

exist x0 ∈ R
d and γ > 0 such that for every 0 < b < 1, every J ∈ Σ∗ and every x ∈ R

d

�{SI ∈ Ab : SI(SJ(x0)) ∈ Bb(x)} � γ,

where Bb(x) is the ball centered at x with radius b.

Theorem 7. The IFS {Si}m
i=1 satisfying Assumption H satisfies the WSC.

Proof. Fix x0 ∈ V and l ∈ Σ2. For any x ∈ R
d, J ∈ Σ∗ and 0 < b < 1, if SI ∈ Ab,

and SI(SJ(x0)) ∈ Bb(x), since SJ(x0) ∈ V and ρI � b, so SI(V ) ⊂ Bb(1+|V |)(x). Hence
SI(Sl(SJ(x0))) ∈ SI(V ) ⊂ Bb(1+|V |)(x), where |V | is the diameter of the bounded set V . Hence

{SI ∈ Ab : SI(SJ (x0)) ∈ Bb(x)} ⊆ {SI ∈ Ab : SI(Sl(SJ(x0))) ∈ Bb(1+|V |)(x)},

set
{SI ∈ Ab : SI(Sl(SJ (x0))) ∈ Bb(1+|V |)(x)} = {SI1 , SI2 , . . . , SIq}.

We need only to show that there is a constant γ, not dependent on x, J or b, with q � γ. This
establishes the WSC. We remark that the set above is finite as I ∈ Ib implies bρ∗ < ρI which
gives a bound on the length of I.

For each i = 1, . . . , q Lemma 5 gives a family f i
1, . . . , f

i
ni

in F2∪F3 with SIi ◦Sl = f i
1◦· · ·◦f i

ni
.

For convenience, set Ψi = f i
1 ◦ · · · ◦ f i

ni
, and note that this map has contraction ratio ρIiρl. As

SIi ∈ Ab we have ρIi � b < ρIiρ
−1
∗ , and it follows that the contraction ratio of Ψi is less than

b. As Ψi(SJ (x0)) = SIi(Sl ◦ SJ(x0)) ∈ Bb(1+|V |)(x), it follows that Ψi(V ) ∩ Bb(1+|V |)(x) 	= ∅,
since SJ (x0) ∈ V . Hence Ψi(V ) ⊆ Bb(1+2|V |)(x).

Suppose i, j � q and I ∈ Σ∗ is a sequence with Ψi ◦ SI = Ψj. Then ρIiρlρI = ρIj ρl, so
ρI = ρIj /ρIi . But ρIi � b < ρIj ρ

−1∗ , so ρ∗ < ρI . There are a finite number of sequences I ∈ Σ∗

with this property (this number is at most c = ln ρ∗
ln maxj{ρj} ). Corollary 4 shows that for each i, j
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with Ψi(V ) ∩ Ψj(V ) 	= ∅ there is a sequence I ∈ Σ∗ with either Ψi ◦ SI = Ψj or Ψj ◦ SI = Ψi.
So for any i = 1, . . . , q we have �{j : Ψi(V ) ∩ Ψj(V ) 	= ∅} � 2c. It follows that there is a set
S ⊆ {1, . . . , q} of cardinality s � q/2c so that Ψi(V ) ∩ Ψj(V ) = ∅ for any distinct i, j ∈ S. We
assume for simplicity that this set is {1, . . . , s}. Then as the contraction ratio of each Ψi is
greater than bρ2

∗ we have

L(Bb(1+2|V |)(x)) � L
( s⋃

i=1

Ψi(V )
)

=
s∑

i=1

L(Ψi(V )) � q

2c
(bρ2

∗)
dL(V ),

where L(V ) is the Lebesgue measure of V. Therefore

q �
2cL(Bb(1+2|V |)(x))

(bρ2∗)dL(V )
=

2cL(B(1+2|V |)(x))
ρ2d∗ L(V )

.

As L(B(1+2|V |)(x)) depends only on the diameter of V and the dimension of the space, we
have q � γ for some universal constant γ.

The above theorem extends Proposition 4.4 in [12], and our proof is also simpler.
We now present the main theorem of the paper.

Theorem 8. Suppose that the IFS {Si}m
i=1 satisfies Assumption H . Then the Hausdorff

dimension s = dim K of the attractor K is computed as follows:
(i) If Di = ∅ for all i ∈ Σ1, then s is the unique solution to

m∑

j=k+1

ρs
j = 1;

(ii) If Di 	= ∅ for at least one i ∈ Σ1, then s is the unique solution to

m∑

j=1

ρs
j −

k∑

i=1

ρs
i

∑

j∈Ci

ρs
j = 1.

In either case (i) or case (ii), 0 < Hs(K) < ∞.

Proof. (i) As F2 satisfies the OSC it suffices to show K = K2, or equivalently K ⊆ K2, since
the reversed inclusion is obvious. Let a ∈ K2 be the fixed point of Sm. As K is the closure of
⋃

I∈Σ∗ SI(a), we need only show SI(a) ∈ K2 for any I ∈ Σ∗. For any such I ∈ Σ∗, Lemma 5
provides f1, . . . , fl ∈ F2 ∪F3 with SI ◦ Sm = f1 ◦ · · · ◦ fl. But Di = ∅ for all i ∈ Σ1, so F3 = ∅,
hence f1, . . . , fl belong to F2. Therefore SI(a) = SI ◦ Sm(a) = f1 ◦ · · · ◦ fl(a) ∈ K2.

(ii) We first show dim K = max{dimK1, dimK2,3} where K2,3 is the attractor of the IFS
F2 ∪ F3. Surely K1, K2,3 ⊆ K, so we trivially have dim K1, dimK2,3 � dimK. For the other
inequality note that for an infinite sequence i = i1i2 · · · ∈ Σ∞ the intersection below is of a
decreasing family of compact sets, hence is a singleton xi =

⋂∞
j=1 Si1 ◦ · · · ◦ Sij (X).

By the definition of the attractor, K = {xi : i ∈ Σ∞}. Break K into two pieces. The first
piece, A, consists of those xi where infinitely many terms of i belong to Σ2, and the second piece,
B, consists of those xi where only finitely many terms of i belong to Σ2. It is not important
whether A and B are disjoint, provided their union is K.

If i has infinitely many terms in Σ2, then it can be split into infinitely many disjoint pieces
of the form ij · · · ir where ir ∈ Σ2. It follows from Lemma 5 that each Sij ◦ · · · ◦ Sir is equal
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to a composite of members of F2 ∪ F3. From this, one obtains that A is contained in K2,3.
If i has only finitely many terms in Σ2, then i = Ij where I is a finite sequence and j is an
infinite sequence whose terms all belong to Σ1. In this case xi = SI(xj), and we note that
xj belongs to K1. It follows that B ⊆ ⋃{SI(K1) : I ∈ Σ∗}, and as Σ∗ is countable, B is
contained in the union of countably many sets all having the same Hausdorff dimension as K1.
So dimK � max{dimK1, dimK2,3}.

We consider now dim K2,3. Set

q(t) =
m∑

j=k+1

ρt
j +

∞∑

r=0

∑

I∈Σr
1

ρt
I

k∑

i=1

∑

j∈Di

ρt
iρ

t
j,

and denote the partial sums of q(t) by

qn(t) =
m∑

j=k+1

ρt
j +

n∑

r=0

∑

I∈Σr
1

ρt
I

k∑

i=1

∑

j∈Di

ρt
iρ

t
j .

In Lemma 3 we have shown the IFS F2 ∪ F3 satisfies the OSC, it is easy to verify by using
the Arzela-Ascoli theorem that it is relatively compact, therefore by Proposition 2 dim K2,3 =
inf{t ∈ R : q(t) � 1}.

As qn(t) involves only a finite sum, it is a continuous decreasing function. It follows that
there is a real number sn with qn(sn) = 1. But sn is the Hausdorff dimension of a subsystem of
F1 ∪F2, so sn � d where d is the dimension of the Euclidean space R

d. As the sn are bounded
above, we may define s = sup{sn : n � 0}.

As qn is decreasing, qn(s) � qn(sn) = 1, and as q(s) is the limit of the partial sums qn(s),
q(s) � 1. Noting that

∑
I∈Σr

1
ρs

I = (
∑k

i=1 ρs
i )

r, it follows from q(s) � 1 that
∑k

i=1 ρs
i < 1. As

the IFS F1 satisfies the OSC, dim K1 is the unique solution to
∑k

i=1 ρt
i = 1. So dim K1 < s.

Let I be the open interval (dimK1,∞). Then s ∈ I and for all t ∈ I

q(t) =
m∑

j=k+1

ρt
j +

(
1 −

k∑

i=1

ρt
i

)−1 k∑

i=1

∑

j∈Di

ρt
iρ

t
j .

This shows q(t) is continuous on I. As sn ∈ I for large n and q(sn) > qn(sn) = 1, then as s is
the limit of the sn, it follows that q(s) � 1. Therefore q(s) = 1 and we conclude dim K2,3 = s.
As we have shown that dim K1 < s, we have dimK = s.

It remains to show s is the unique solution to the equation given in condition (ii). Let

h(t) =
m∑

j=1

ρt
j −

k∑

i=1

∑

j∈Ci

ρt
iρ

t
j .

Then as

q(t) =
m∑

j=k+1

ρt
j +

(
1 −

k∑

i=1

ρt
i

)−1 k∑

i=1

ρt
i

( m∑

j=k+1

ρt
j −

∑

j∈Ci

ρt
j

)
,

we have (
1 −

k∑

i=1

ρt
i

)
q(t) =

m∑

j=k+1

ρt
j −

k∑

i=1

ρt
i

∑

j∈Ci

ρt
j .
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It follows that (
1 −

k∑

i=1

ρt
i

)
q(t) = h(t) − 1 +

(
1 −

k∑

i=1

ρt
i

)
.

Hence h(t) = 1 if and only if q(t) = 1, and s = dimK is the unique solution of the equation
in (ii).

For the further remark, Theorem 7 shows our IFS satisfies WSC. A result of [9] then gives
0 < Hs(K) < ∞.

4 Examples

We give several examples to illustrate the use of the main theorem.

Example 9. Suppose 0 < p, q < 1 and let K ⊂ R be the attractor of the IFS

S1(x) = px + 1, S2(x) = qx, S3(x) = px + 1/q.

If 2p + q − pq < 1, then 0 < Hs(K) < ∞, where s = dim K is the unique solution to
2ps + qs − psqs = 1. Otherwise the attractor K is an interval.

Proof. Suppose 2p + q − pq < 1. It is enough to show this IFS satisfies Assumption H with
Σ1 = {1}, Σ2 = {2, 3} and V = (0, b), where b = 1/q(1 − p).

The condition 2p + q − pq < 1 implies S2(b) < S1(b) < S3(0) < S3(b) = b and so Si(V ) ⊆ V

for i = 1, 2, 3 and S2(V )∩S3(V ) = ∅, the first assumption. Also S2(0) < S1(0) < S2(b) < S1(b)
implies B1 = {2} 	= ∅, the second assumption. Note that S1(V )∩S2(V ) = (1, pb+1)∩ (0, qb) =
(1, qb). The observation pqb + 1 = qb provides S1(V ) ∩ S2(V ) = S1S2(V ), and a computation
shows S1S2 = S2S3. This provides the final assumption with n12 = 2 and I12 = 3.

Conversely, assume that 2p + q − pq � 1, then we have S1(b) � S3(0) and as S2(b) = qb >

1 = S1(0). It follows that S2([0, b]) ∪ S1([0, b]) ∪ S3([0, b]) = [0, b]. Hence [0, b] is the attractor.

Remark 10. Example 9 was presented by the third author at a Seminar in Fractals at
the Chinese University of Hong Kong in 2001, and was later studied by Lau and Wang in [12,
Proposition 4.4]. Note that the IFS in the example is related to the well known (0, 1, 3) problem
by letting p = q = 1/3. In this case, the Hausdorff dimension of the attractor s = dim K satisfies
3 · 3−s − 3−2s = 1, so x ≈ 0.87604.

Example 11. Suppose 0 < r2, r4 � r1 � 1/4, r1r3 = r2r4 and let K be the attractor of the
IFS

S1(x) = r1x + 1, S2(x) = r2x + 1 + 3r1, S3(x) = r3x + 3, S4(x) = r4x.

Then 0 < Hs(K) < ∞, where s = dim K is the unique solution to rs
1 + rs

2 + rs
3 + rs

4 − rs
1r

s
3 = 1.

Proof. It is enough to show this IFS satisfies Assumption H with Σ1 = {1}, Σ2 = {2, 3, 4},
B1 = {2}, n12 = 3, I12 = 4 and V = (0, b), where b = 3/(1 − r3).

Noting that 3 < b � 4 and that b is the fixed point of S3 it follows that fi(V ) ⊆ V for
each i = 0, 1, 2, 3 and S4(b) < S2(0) < S2(b) < S3(0) implying that S2(V ), S3(V ), S4(V )
are pairwise disjoint, providing the first assumption. As S1(V ) = (1, 1 + r1b) and S2(V ) =
(1+3r1, r2b+1+3r1) we have S1(V )∩S2(V ) = (1+3r1, 1+r1b) and S1(V )∩S2(V ) = S1S3(V ).
Finally, a computation shows S1S3 = S2S4, hence the last two assumptions are satisfied.
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Example 12 (A modified Sierpinski triangle). Assume that u, v are two independent vectors
in R

2. For any l, n ∈ N, let (1 − r)(1 − 1
2n ) � 1

2 and let K be the attractor of the IFS:

S1(x) =
1
2l

x +
1
2

(
1 − 1

2l

)
v, S2(x) =

1
2n

x + (1 − r)
(

1 − 1
2n

)
u,

S3(x) =
1
2
x, S4(x) =

1
2
x +

1
2
v, S5(x) = rx + (1 − r)u.

Then 0 < Hs(K) < ∞, where s = dim K is the unique solution to the equation (1
2 )ls +

(1
2 )ns + 2(1

2 )s + rs − 2(1
2 )(l+1)s − (1

2 )nsrs = 1 (see Figure 1).

Proof. Let Σ1 = {1, 2}, Σ2 = {3, 4, 5}, B1 = {3, 4}, B2 = {5} and V ={pv + qu : p > 0, q > 0,

p + q < 1}. Then u, v and the origin 0 are fixed points of S5, S4 and S3, respectively. Fur-
thermore, V is an invariant open set for our IFS and both {S1, S2} and {S3, S4, S5} satisfy the
OSC with respect to the open set V . By the definition of Si, it is not difficult to check that
S1(V ) ∩ S3(V ) = S1S3(V ) and S1S3 = S3S

l
4, i.e., n1 3 = 3 and I1 3 = 44 · · · 4 with length l;

S1(V ) ∩ S4(V ) = S1S4(V ) and S1S4 = S4S
l
3, i.e., n1 4 = 4 and I1 4 = 33 · · · 3 with length l;

S2(V ) ∩ S5(V ) = S2S5(V ) and S2S5 = S5S
n
3 , i.e., n2 5 = 5 and I2 5 = 33 · · · 3 with length n.

Thus Assumption H is satisfied. Note that C1 = {3, 4} and C2 = {5}. So s = dimK is the
unique solution to the equation

(
1
2l

)s

+
(

1
2n

)s

+ 2
(

1
2

)s

+ rs −
(

1
2l

)s[(
1
2

)s

+
(

1
2

)s]
−

(
1
2n

)s

rs = 1.

This proves the statement.

Example 13. Assume that rl + 2r � 1 and 0 < ri < 1/3 for i = 3, 4, where l is a positive
integer. Let K be the attractor of the IFS on the plane:

S0(x) = rlx +
1
2
(1 − rl, 1 − rl), S1(x) =

1
2
x, S2(x) = rx + (1 − r, 1 − r),

S3(x) = r3x + (0, 1 − r3), S4(x) = r4x + (1 − r4, 0).

Then 0 < Hs(K) < ∞, where s = dim K is the unique solution to the equation rls + (1
2 )s +

rs + rs
3 + rs

4 − (1
2 )srls = 1 (see Figure 2).
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Proof. Note A = (0, 0), B = (1, 1), C = (0, 1), D = (1, 0) are the fixed points of S1, S2, S3, S4

respectively. It is enough to verify that this IFS satisfies Assumption H with Σ1 = {0},
Σ2 = {1, 2, 3, 4}, B0 = {1}, n01 = 1, I01 = 2 · · · 2 with length l and V the interior of
�ABCD. These calculations are left to the reader.

In [6] Ngai and Wang introduced a property which is called the finite type condition and
developed a method to compute the Hausdorff dimension of the attractor of an overlapping IFS
satisfying the finite type condition. Ngai and Wang showed that their methods include many
of the instances where the dimension of the attractor of an IFS can be calculated. We show
that our methods do not lie within the scope of Ngai and Wang’s finite type condition.

We review the definition of the finite type condition as it applies to a family of similarities
S0, . . . , Sm on R. Let r0, . . . , rm be the contraction ratios of these maps and r = min ri. For
i = i1, . . . , ik a sequence of integers from {0, . . . , m} let ri = ri1 · · · rik

and Si = Si1 · · ·Sik
.

Let Γk be the collection of all triples s = (ri, Si(0), k) where i is a sequence with ri � rk and
rk < rj for all proper subsequences j of i. For such a triple s define the map Ss by setting
Ss(x) = rix + Si(0). For V an open set we put

V (s) = {t ∈ Γk : Ss(V ) ∩ St(V ) 	= ∅}.
The crucial point is that for s ∈ Γk and t ∈ Γn we define V (s) ≡ V (t) if there is a map
τ(x) = rn−kx+ b with St = τ ◦Ss and {St′ : t′ ∈ V (t)} = {τ ◦Ss′ : s′ ∈ V (s′)}. The IFS is said
to be of a finite type if there is a bounded open set V with Si(V ) ⊆ V for each i = 0, . . . , m

such that the equivalence relation ≡ for V has only finitely many equivalence classes.
If the IFS satisfies the finite type condition, it is easy to show that there are rationals

t1, . . . , tm such that rj = r
tj

0 , j = 1, . . . , m. Therefore, the above examples do not satisfy
the finite type condition in general. On the other hand, an IFS that satisfies the finite type
condition does not necessarily satisfy Assumption H as illustrated by the following IFS defined
on R: S1(x) = x/2 + 1/7, S2(x) = x/4 and S3(x) = x/8 + 7/8.

Acknowledgements We would like to thank N. Nguyen for his valuable discussions during
the preparation of this paper, and the referee for the constructive remarks to make the paper
more readable.
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