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Abstract Interpreting modal diamond as the closure of a topological space, we
axiomatize the modal logic of each metrizable Stone space and of each extremally
disconnected Stone space. As a corollary, we obtain that S4.1 is the modal logic
of the Pelczynski compactification of the natural numbers and S4.2 is the modal
logic of the Gleason cover of the Cantor space. As another corollary, we obtain an
axiomatization of the intermediate logic of each metrizable Stone space and of each
extremally disconnected Stone space. In particular, we obtain that the intuitionistic
logic is the logic of the Pelczynski compactification of the natural numbers and the
logic of weak excluded middle is the logic of the Gleason cover of the Cantor space.
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1 Introduction

Topological semantics of modal logic was first developed by McKinsey and Tarski
[13], who interpreted modal diamond as the closure operator and consequently
modal box as the interior operator of a topological space. The main result of [13]
states that under the above interpretation Lewis’ modal system S4 is the modal logic
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of each dense-in-itself metrizable space. Our purpose here is to study modal logics of
compact Hausdorff spaces having a basis of clopen sets, also known as Stone spaces.

Up to homeomorphism, the Cantor space C is the unique dense-in-itself metriz-
able Stone space. The result of McKinsey and Tarski implies the modal logic of
the Cantor space is S4. The results of [5] yield a description of the modal logic of
each countable Stone space, and in [3] we described the modal logic of the Stone–
Čech compactification of the natural numbers (but under an additional set-theoretic
assumption). To the best of our knowledge, these are the only results describing
modal logics of Stone spaces. In this paper, to these results we add descriptions of
the modal logic of each metrizable Stone space and of each extremally disconnected
Stone space. Our result for extremally disconnected Stone spaces uses our earlier
result on the modal logic of the Stone–Čech compactification, so makes use of a set-
theoretic assumption beyond ZFC. As corollaries, we obtain that the modal logic of
the Pelczynski compactification of the natural numbers is S4.1 and the modal logic of
the Gleason cover of the Cantor space is S4.2.

Using Stone duality [17] it is natural to extend our terminology and speak of the
modal logic of a Boolean algebra, meaning the modal logic of its Stone space. Our
results will then have two versions: one for Stone spaces, and one for their corre-
sponding Boolean algebras. Under Stone duality, countable Boolean algebras corre-
spond to metrizable Stone spaces, atomless Boolean algebras correspond to dense-
in-itself Stone spaces, and complete Boolean algebras correspond to extremally
disconnected Stone spaces. Our results then classify the modal logics of countable
Boolean algebras and of complete Boolean algebras. The original result of McKinsey
and Tarski, applied to the setting of Stone spaces, amounts to describing the modal
logic of the unique (up to isomorphism) countable atomless Boolean algebra.

Each topological space not only gives a modal logic, but also an intermediate logic
via its Heyting algebra of open sets. As a further corollary of our results we obtain an
axiomatization of the intermediate logic of each metrizable Stone space and of each
extremally disconnected Stone space. In particular, we obtain that the intuitionistic
logic is the logic of the Pelczynski compactification of the natural numbers and the
logic of weak excluded middle is the logic of the Gleason cover of the Cantor space.

This paper is organized in the following way. The second section gives necessary
background, including our primary technical tools. In the third section we describe
the modal logics of metrizable Stone spaces, and in the fourth we describe the
modal logics of extremally disconnected Stone spaces. The fifth section applies these
results to intermediate logics of these spaces. The final section makes some small ob-
servations on the problem of describing the modal logic of an arbitrary Stone space.

2 Preliminaries

We recall that S4 is the least set of formulas of basic propositional modal language
containing the axiom schemas:

(1) �(p → q) → (�p → �q);
(2) �p → p;
(3) �p → ��p;

and closed under Modus Ponens (ϕ, ϕ → ψ/ψ) and Generalization (ϕ/�ϕ).
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We also recall that S4.1 is obtained from S4 by postulating �♦p → ♦�p as a
new axiom schema, that S4.2 is obtained from S4 by postulating ♦�p → �♦p as
a new axiom schema, and that S4.1.2 is obtained from S4 by postulating �♦p ↔
♦�p as a new axiom schema; that is, S4.1.2 is the join of S4.1 and S4.2 in the lattice
of normal extensions of S4. We will also be interested in the modal logic S4.Grz,
which is obtained from S4 by postulating �(�(p → �p) → p) → p as a new axiom
schema, and the modal logics S4.Grzn, for n ≥ 1, which are obtained from S4.Grz by
postulating bdn as new axiom schemas, where bdn are defined recursively as follows:

(1) bd1 = ♦�p1 → p1,
(2) bdn+1 = ♦(�pn+1 ∧ ¬bdn) → pn+1.

The inclusion relation between the normal extensions of S4 we are interested in is
depicted in the figure below.

Definition 2.1 For a topological space X, let M(X) be the modal algebra associated
with X, namely the powerset algebra P(X) with � and ♦ interpreted as interior and
closure of X, respectively. For a modal formula ϕ, write X |= ϕ if the identity ϕ = 1
holds in M(X). Then L(X) = {ϕ : X |= ϕ} is a modal logic over S4, and we call it the
modal logic of X. The modal logic of a class K of topological spaces is the intersection
of the modal logics L(X), where X ∈ K.

For more on topological semantics of modal logic we refer the reader to [1, 19].
We recall that X is extremally disconnected if the closure of each open subset of X
is open in X. We also recall that x ∈ X is an isolated point if {x} is open in X, that
X is scattered if each nonempty subspace of X has an isolated point, and that X is
weakly scattered if the set of isolated points of X is dense in X. We view each ordinal
as a topological space in the interval topology. The next proposition is well-known.
To keep the paper self-contained, and also to introduce the necessary background,
we outline a short proof of it later in the section using Proposition 2.5 below.

Proposition 2.2

(a) S4 is the modal logic of the class of all topological spaces.
(b) S4.1 is the modal logic of the class of weakly scattered spaces.
(c) S4.2 is the modal logic of the class of extremally disconnected spaces.
(d) S4.1.2 is the modal logic of the class of weakly scattered extremally disconnected

spaces.
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(e) S4.Grz is the modal logic of the class of scattered spaces; in fact, S4.Grz = L(α)

for each ordinal α such that ωω ≤ α.
(f) S4.Grzn = L(α) for each ordinal α such that ωn + 1 ≤ α ≤ ωn+1.

The standard way to prove these types of results is through the relational seman-
tics of S4. We recall that F = 〈W, R〉 is an S4-frame if W is a nonempty set and R is a
reflexive and transitive relation on W; in other words, an S4-frame is a quasi-ordered
set. For w ∈ W we let R(w) = {v ∈ W : wRv} and R−1(w) = {v ∈ W : vRw}.

Definition 2.3 For an S4-frame F = 〈W, R〉, we let M(F) be the modal algebra asso-
ciated with F, namely the powerset P(W) where � and ♦ are defined for S ⊆ W by

�S = {w ∈ W : R(w) ⊆ S} and ♦S = {w ∈ W : R(w) ∩ S �= ∅}.
For a modal formula ϕ, we write F |= ϕ if the identity ϕ = 1 holds in M(F). Then
L(F) = {ϕ : F |= ϕ} is a modal logic over S4 that we call the modal logic of F.
The modal logic of a class K of S4-frames is the intersection of the modal logics
L(F), where F ∈ K.

For more on relational semantics of modal logic we refer the reader to [6, 7]. Given
an S4-frame F = 〈W, R〉, we say w is a root of F if W = R(w). Also, for any w ∈ W
we let C(w) = {v ∈ W : wRv and vRw} and call C(w) the cluster generated by w. A
subset C of W is called a cluster if C = C(w) for some w ∈ W. A cluster C is simple if
it consists of a single point, proper if it consists of more than one point, and a maximal
cluster, or leaf, if w ∈ C, v ∈ W, and wRv imply v ∈ C. If W = C(w) for some w ∈ W,

then we call F a cluster. We also call a subset E of W a chain if for each w, v ∈ E we
have wRv or vRw.

Let F be a rooted S4-frame. We call F a quasi-tree if R−1(w) is a chain for each
w ∈ W, and a tree if F is a quasi-tree and each cluster of F is simple. Let F = 〈W, R〉
be a tree and w ∈ W. We say that w is of depth n if there is an n-element chain E ⊆ W
with the root w, and every other chain with the root w does not contain more than n
elements. We say that the depth of F is n if the root of F has depth n.

Definition 2.4 Let F = 〈W, R〉 be a quasi-tree and G = 〈V, S〉 be a cluster with W ∩
V = ∅. We let F ⊕ G be the frame 〈W ∪ V, T〉, where for w, v ∈ W ∪ V we have:

wTv if, and only if, w, v ∈ W and wRv or w, v ∈ V or w ∈ W and v ∈ V.

We call F ⊕ G the sum of F and G.

For an S4-frame F = 〈W, R〉, there is an equivalence relation ∼ on W given by
w ∼ v if C(w) = C(v), and a partial ordering ≤ on W/∼ given by w/∼≤ v/∼ if wRv.
Let F/∼ be the S4-frame (W/∼,≤). The above notions have natural interpretation
in terms of the poset F/∼. For instance, a cluster is an equivalence class of ∼; an S4-
frame F being a quasi-tree means F/∼ is a tree, and the construction F ⊕ G can be
viewed by noting (F ⊕ G)/∼ is the ordinal sum of F/∼ and G/∼.

It is well known (see, e.g., [7, Sections 5.3, 5.5, and 8.6]) that S4 is the modal logic
of the class of all finite S4-frames, that S4.1 is the modal logic of the class of finite
S4-frames whose maximal clusters are simple, that S4.2 is the modal logic of the class
of finite S4-frames where each pair of elements with a lower bound has an upper



Order

bound, that S4.Grz is the modal logic of the class of all finite partially ordered S4-
frames, and that S4.Grzn is the modal logic of the class of all finite partially ordered
S4-frames of depth at most n. Consequently, S4.Grz is the intersection of the logics
S4.Grzn. We will use the following well-known sharpening of these results.

Proposition 2.5

(i) S4 is the modal logic of the class of all f inite quasi-trees.
(ii) S4.1 is the modal logic of the class of all f inite quasi-trees whose maximal clusters

are simple.
(iii) S4.2 is the modal logic of the class of sums F ⊕ G, where F is a f inite quasi-tree

and G is a f inite cluster.
(iv) S4.1.2 is the modal logic of the class of sums F ⊕ G, where F is a f inite quasi-tree

and G is a simple cluster.
(v) S4.Grz is the modal logic of the class of all f inite trees.

(vi) S4.Grzn is the modal logic of the class of all f inite trees of depth ≤ n.

Proof (Sketch) It is well-known (see, e.g., [7, Sections 5.3, 5.5, and 8.6]) that each of
the logics in the proposition is determined by its finite rooted frames. The desired
quasi-trees are now produced as in [2, Section 3]. ��

Let F = 〈W, R〉 be an S4-frame. We recall that a subset U of W is an upset if w ∈ U
and wRv imply v ∈ U , and that the collection τR of upsets of W forms a topology on
W, called the Alexandrof f topology. Therefore, each S4-frame can be viewed as a
topological space. In fact, it is a special topological space in which the intersection of
open sets is again open.

We recall that a map f between two topological spaces X and Y is continuous
if V open in Y implies f −1(V) is open in X, that f is open if U open in X implies
f (U) is open in Y, and that f is interior if f is continuous and open. We remark that
the interior maps between S4-frames are precisely the “bounded morphisms” (also
known as “p-morphisms”) from the model theory of modal logic (see, e.g., [6, 7]).
The following basic result [20, Proposition 2.9.2] is key in later proofs.

Proposition 2.6 If f : X → Y is an onto interior map and Y �|= ϕ, then X �|= ϕ.

In proving that a modal logic L is the modal logic of a topological space X, sound-
ness is usually not difficult. The above proposition is key to proving completeness.
For instance, to show S4 is complete with respect to X, we must show that if S4 �� ϕ,
then X �|= ϕ. For this, it is enough to show that for each finite quasi-tree Y, there is
an interior map from X onto Y, as any such ϕ will be falsified on some such finite
quasi-tree. Similarly, to show S4.1 is complete with respect to X it is enough to show
there is an interior map from X onto each finite quasi-tree whose maximal clusters
are simple, and so forth.

Proof of Proposition 2.2 Parts (a)–(f) of Proposition 2.2 will be proved using the
above remarks and (i)–(vi) of Proposition 2.5. For (a) it is obvious that S4 is sound
with respect to all topological spaces. Conversely, if S4 �� ϕ, by (i) there is a finite
quasi-tree F such that F �|= ϕ. Therefore, ϕ is refuted on a finite topological space,
and so S4 is complete with respect to all topological spaces. For (b) it is easy to see
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that each weakly scattered space is irresolvable (does not have two disjoint dense
subsets), and so by [4, Proposition 2.1], S4.1 is sound with respect to all weakly
scattered spaces. Conversely, if S4.1 �� ϕ, then by ii) there is a finite quasi-tree F with
simple maximal clusters such that F �|= ϕ. Since simple maximal clusters are isolated
points in the Alexandroff topology on F, it is easy to verify that each tree with simple
maximal clusters viewed as a topological space is weakly scattered. Therefore, ϕ is
refuted on a finite weakly scattered space, and so S4.1 is complete with respect to
all weakly scattered spaces. For (c) it follows from [10, Theorem 1.3.3] that S4.2 is
sound with respect to all extremally disconnected spaces. Conversely, if S4.2 �� ϕ, by
(iii) there is a finite quasi-tree F and a finite cluster G such that F ⊕ G �|= ϕ. Now it
is easy to verify that F ⊕ G viewed as a topological space is extremally disconnected.
Therefore, ϕ is refuted on a finite extremally disconnected space, and so S4.2 is
complete with respect to all extremally disconnected spaces. For (d) we again see
S4.1.2 is sound with respect to all weakly scattered extremally disconnected spaces.
If S4.1.2 �� ϕ, then by iv) there is a finite quasi-tree F and a simple cluster G such that
F ⊕ G �|= ϕ. Viewed as a topological space, F ⊕ G is weakly scattered and extremally
disconnected, providing completeness.

To establish (e) and (f), since each scattered space X is hereditarily irresolvable
(that is, each subspace of X is irresolvable) and S4.Grz is sound with respect to
hereditarily irresolvable spaces (see, e.g., [5, Section 6]), S4.Grz is also sound with
respect to scattered spaces. As each ordinal is scattered, S4.Grz is sound with respect
to any ordinal α. Moreover, S4.Grzn is sound with respect to any ordinal α ≤ ωn+1.
Conversely, if S4.Grzn �� ϕ, then by vi) there is a finite tree F of depth ≤ n such that
F �|= ϕ. Without loss of generality we may assume that the depth of F is n. By [5,
Lemma 3.4], there is an interior onto map f : ωn + 1 → F. Therefore, ωn + 1 �|= ϕ.
It follows that α �|= ϕ for each ordinal α with ωn + 1 ≤ α ≤ ωn+1, and so S4.Grzn is
complete with respect to α. If S4.Grz �� ϕ, then by (v) there exists a finite tree F with
F �|= ϕ. By the above, there exist n ≥ 1 and an interior onto map f : ωn + 1 → F.
Therefore, ωn + 1 �|= ϕ. But then ωω �|= ϕ, and so γ �|= ϕ for each γ ≥ ωω. So, S4.Grz
is complete with respect to any γ ≥ ωω. This establishes (e) and (f), completing the
proof. ��

3 Modal Logics of Metrizable Stone Spaces

In this section we characterize the modal logics of metrizable Stone spaces. We begin
with a basic result used throughout the paper.

Proposition 3.1 If U, V are complementary clopen subsets of a topological space X,
then the modal logic of X is the intersection of the modal logics of the subspaces U
and V.

Proof If U and V are complementary clopen subsets of X, then X is the disjoint
union of U and V. The result now follows from [20, Proposition 2.9.3]. ��

For a Boolean algebra B and a ∈ B, let a′ denote the complement of a in B. Then
the intervals [0, a] and [0, a′] naturally form Boolean algebras and B is isomorphic to
[0, a] × [0, a′]. The above result, restricted to the setting of Stone spaces, translates
to the following.
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Proposition 3.2 For B a Boolean algebra and a ∈ B, the modal logic of B is the
intersection of the modal logics of [0, a] and [0, a′].

The McKinsey–Tarski theorem shows S4 is the modal logic of a metrizable dense-
in-itself Stone space. Using this, and the above result, we can see that if X is a
metrizable Stone space which is not weakly scattered, then the modal logic of X
is S4. Indeed, such an X has a clopen subset that is metrizable and dense-in-itself, so
by the above result, the logic of X is contained in S4, but S4 is contained in the modal
logic of every space.

By Stone duality, each Stone space is homeomorphic to the Stone space of a
Boolean algebra. It is well known [12, pp. 103–104] that if B is a Boolean algebra with
Stone space X, then B is countable if, and only if, X is metrizable; B is atomless if,
and only if, X is dense-in-itself; and B is atomic if, and only if, X is weakly scattered.
These equivalences will be used throughout the paper to state equivalent versions of
the results. To begin, we have the following.

Proposition 3.3 Let X be a metrizable Stone space and B be a countable Boolean
algebra.

(1) If X is not weakly scattered, its modal logic is S4.
(2) If B is not atomic, its modal logic is S4.

It remains to consider matters for metrizable Stone spaces that are weakly
scattered, or equivalently, for countable Boolean algebras that are atomic. The result
will depend on whether the Boolean algebra satisfies a stronger form of atomicity.

Definition 3.4 For a Boolean algebra B we say a ∈ B is of finite height if [0, a] is
finite. Define recursively for each ordinal α an ideal Iα of B as follows.

(1) I0 = {0}.
(2) Iα+1 = {a ∈ B : a/Iα is of finite height in B/Iα}.
(3) Iβ = ⋃{Iα : α < β}.
Eventually Iα = Iα+1 for some α. Set I = Iα . We say B is superatomic if B/I is trivial.

It is well known [12, pp. 271–275] that B is superatomic if, and only if, every
homomorphic image of B is atomic, and that this is equivalent to the Stone space
of B being scattered.

Proposition 3.5 Let X be a metrizable Stone space and B be a countable Boolean
algebra.

(1) If X is scattered, its modal logic is either S4.Grz or S4.Grzn for some n ≥ 1.
(2) If B is superatomic, its modal logic is either S4.Grz or S4.Grzn for some n ≥ 1.

Proof It is enough to show the first statement as it is equivalent to the second. As
X is a scattered metrizable Stone space, it is well known [16, Theorem 8.6.10] that
X is homeomorphic to a countable compact ordinal α under the interval topology.
Such α can be constructed from X using techniques from [9]. In this case, results of
[5, Section 6] show the modal logic of X is either S4.Grz or S4.Grzn for some n ≥ 1,
depending whether α ≥ ωω or ω < α ≤ ωn+1. ��
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It remains to consider the case where X is a weakly scattered, but not scattered,
metrizable Stone space. As every Stone space is homeomorphic to the Stone space
of a Boolean algebra, we assume X is the Stone space of a Boolean algebra B, and
by the above remarks, that B is countable and atomic, but not superatomic. We will
show S4.1 is the modal logic of X and B. To do so, we show each finite rooted quasi-
tree whose maximal clusters are simple is an interior image of X, and then make use
of Propositions 2.5 and 2.6.

As B is countable and not superatomic, the quotient A = B/I is nontrivial, where
I is the ideal provided by Definition 3.4. Note that by construction, A is atomless, and
as B is countable, A is countable. Therefore, the Stone space of A is homeomorphic
to the Cantor space C. Finally, we let κ : B → A be the canonical homomorphism.

Since B is countable, it is well known [12, p. 247] that there is a chain C of B that
generates B and contains the bounds 0, 1. As B is atomic, each interval of C contains
a cover. We let D be the image of C under κ and note that D is a chain of A that
generates A and contains its bounds. Because A is atomless, D contains no covers.
Although we do not use the fact, we remark that the chain D can be constructed
directly from C by repeatedly collapsing covers of C in a process known as taking the
condensation of C [15, Chapter 5].

Let D(C) be the set of all nonempty proper downsets of C; that is, all downsets
V ⊆ C containing 0 and not 1. Then D(C) is in bijective correspondence with the
prime ideals of B. Moreover, D(C) itself forms a chain under set inclusion, and it
is well known that under the interval topology (where closed intervals are a basis
of closed sets) D(C) is homeomorphic to the Stone space X of B [12, pp. 241–246].
Similarly the collection D(D) of all nonempty proper downsets of D with its interval
topology is homeomorphic to the Stone space Y of A, and hence to the Cantor
space C.

We identify X with D(C) and Y with D(D). For U ⊆ C and V ⊆ D, we use κU
for the image of U under κ and κ−1V for the preimage of V. By Stone duality,
Y is homeomorphic to the subspace κ−1Y = {κ−1 y : y ∈ Y} of X. We note that an
element y ∈ Y is a proper downset of D, so the preimage κ−1 y is a proper downset
of C, hence an element of X. We develop further the relationship between X
and κ−1Y.

Lemma 3.6 For x ∈ X, the following conditions are equivalent:

(1) x ∈ κ−1Y.
(2) x = κ−1κx.
(3) x ⊇ κ−1κx.

Proof Since it is always the case that x ⊆ κ−1κx, we have (2) is equivalent to (3). To
see that (1) implies (2), let x ∈ κ−1Y. Then x = κ−1 y for some y ∈ Y. As κ : C → D
is onto, κκ−1 y = y, giving x = κ−1κκ−1 y = κ−1κx. Finally, to see that (2) implies (1),
let x = κ−1κx. Then as x is proper, 1 �∈ x = κ−1κx, and this shows 1 �∈ κx. Then as κ

is onto, κx is a proper downset of D, hence κx ∈ Y. ��

For an element d in the chain D, we use ↓d for the principal downset {e ∈ D :
e ≤ d} generated by d and ⇓d for the downset ↓d − {d} = {e ∈ D : e < d}. If d ∈ D −
{0, 1}, then both ↓d and ⇓d belong to Y, and ⇓d is covered by ↓d. The least element
of Y is ↓0 = {0} and the largest is ⇓1 = D − {1}. By [12, pp. 241–246], the sets of the
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form [↓0,↓d) and (⇓d, ⇓1], where d ∈ D − {0, 1}, are a subbasis for the topology on
Y consisting of clopen sets. Similar comments hold for an element c ∈ C and for the
topology on X.

For d ∈ D − {0} we let d− be the element κ−1(⇓d) of X, and for d ∈ D − {1} we
let d+ be the element κ−1(↓d) of X. So as κ−1 is a homeomorphism from Y to the
subspace κ−1Y of X, the intersections with κ−1Y of sets of the form [0+, d+) and
(d−, 1−] form a subbasis for the subspace topology on κ−1Y.

Lemma 3.7 For x ∈ X, exactly one of the following holds.

(1) x ∈ κ−1Y.
(2) x > 1−.
(3) x < 0+.
(4) x ∈ (d−, d+) for some d ∈ D − {0, 1}.

Proof Clearly these cases are exclusive. We show they are exhaustive. Let x �∈ κ−1Y.
By Lemma 3.6, κ−1κx ⊃ x, so there is c ∈ κ−1κx − x. If κc = 1, we have x > 1−; if
κc = 0, we have x < 0+; and if κc = d for some d ∈ D − {0, 1}, we have x ∈ (d−, d+).

��

Lemma 3.8 Suppose b , c ∈ C − {0, 1}.
(a) If κc = 0, then [↓0,↓c) is disjoint from κ−1Y.
(b) If κb = 1, then (⇓b ,⇓1] is disjoint from κ−1Y.
(c) If κc ≤ κb, then (⇓b , ↓c) is disjoint from κ−1Y.

Proof (a) If κc = 0, then c ∈ 0+ = κ−1(↓0), and the result follows as 0+ is the smallest
member of κ−1Y. (b) If κb = 1, then b /∈ 1− = κ−1(⇓1), so 1− < ↓b . This shows 1− ≤
⇓b , and as 1− is the largest element of κ−1Y, the result follows. (c) If c ≤ b , then
(⇓b ,↓c) is empty, so we may assume b < c and as we also assume κc ≤ κb , that κb =
κc. Note (κb)− = {a : κa < κb}, so b /∈ (κb)−, showing (κb)− < ↓b , hence (κb)− ≤
⇓b . Also, (κc)+ = {a : κa ≤ κc}, so ↓c ≤ (κc)+. Thus (⇓b ,↓c) ⊆ ((κb)−, (κc)+). But
as κb = κc we have (κb)− is covered by (κc)+ in κ−1Y. ��

Lemma 3.9 For each d ∈ D − {0, 1}, the interval [d−, d+] of X contains a cover which
we denote μd− < μd+ .

Proof If d− is covered by d+, there is nothing to show. Otherwise there is some
x ∈ X with d− < x < d+. This means there exist b ∈ x and c �∈ x with κb = κc = d.
Then d− < ↓b < ↓c ≤ d+. As each interval of C contains a cover, the interval [b , c]
contains a cover p < q. We set μd− = ↓p and μd+ = ↓q. ��

Definition 3.10 For a finite rooted quasi-tree Q, let Q′ be the quasi-tree obtained
from Q by adding a single simple leaf off of each leaf of Q. We note that a leaf of Q
may be a single node or a cluster, but the added leaf of Q′ above each leaf of Q is a
single node.
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A typical example of building Q′ from Q is given in the figure below.
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We equip Q with the Alexandroff topology, that is, the topology where the open
sets are the upsets. As noted above, the Stone space of A = B/I is homeomorphic
to the Cantor space C, so by [1, Lemma 4.5] there is an interior map from the Stone
space of A onto Q, hence there is an onto interior map f : κ−1Y → Q, where κ−1Y
has the subspace topology.

Definition 3.11 Define g : X → Q′ as follows. On κ−1Y let g agree with f ; on
(1−,⇓1] let g(x) be some leaf of Q′ above f (1−); on [↓0, 0+) let g(x) be a leaf of
Q′ above f (0+); and for each d ∈ D − {0, 1} let g(x) be a leaf of Q′ above f (d−) on
(d−, μd−], and let g(x) be a leaf of Q′ above f (d+) on [μd+ , d+).

Remark 3.12 In some cases μd− will equal d− or μd+ will equal d+ or both. So the
intervals (d−, μd−] and [μd+ , d+) can be empty. But this poses no difficulty. There is
also ambiguity in the definition as to which leaf of Q′ will be chosen as the constant
value of g on the various intervals, at least in the case when any of f (1−), f (0+),
f (d−), f (d+) has more than one leaf of Q above it. We could remove this ambiguity
by requiring g to take some leftmost leaf of Q′ above the given element of Q, but
this is not necessary. Any map g with the above properties will suit our purpose, and
there is at least one.

A typical situation is given in the figure below.
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We equip Q′ with the Alexandroff topology and show that g : X → Q′ is an onto
interior map.
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Lemma 3.13 g is continuous.

Proof Note that (1−,⇓1] and [↓0, 0+) are open, and for d ∈ D − {0, 1}, as μd− is
covered by μd+ , we have (d−, μd−] = (d−, μd+) and [μd+ , d+) = (μd− , d+), so these
intervals are open as well (although possibly empty). As g is constant on these
intervals, it is continuous on them. It remains to show that g is continuous at each
point of κ−1Y.

Suppose x ∈ κ−1Y and x �= 0+, 1−. As f : κ−1Y → Q is continuous, there is
a neighborhood of x in κ−1Y mapped by f into the upset of Q generated by
f (x) = g(x). From the description of the subspace topology on κ−1Y given before
Lemma 3.7, we may assume this neighborhood is of the form κ−1Y ∩ (c−, e+) for
some c < e in D − {0, 1}. By Lemma 3.7, (c−, c+) and (e−, e+) are disjoint from κ−1Y,
so c+ ≤ x ≤ e−. Then as μc− < c+ and e− < μe+ , we have (μc− , μe+) is a neighborhood
of x in X. The points in this interval belonging to κ−1Y are mapped by f , and hence
by g, above f (x) = g(x). A point z in this interval not in κ−1Y lies in (d−, d+) for
some d ∈ D − {0, 1} with c < d < e, so is mapped by g above either f (d−) or f (d+).
As d−, d+ ∈ κ−1Y ∩ (μc− , μe+), they are mapped by f above g(x), and it follows that
z is mapped by g above g(x). So this neighborhood is mapped by g into the upset of
Q′ generated by g(x), showing g is continuous at x. The cases where x = 0+, 1− are
handled similarly using a neighborhood [↓0, μc+) if x = 0+ and (μc− ,⇓1] if x = 1−.

��

Lemma 3.14 g is open.

Proof Suppose U is an open subset of X. We must show g(U) is an upset of Q′. As
U ∩ κ−1Y is an open subset of κ−1Y and g agrees with the open map f on κ−1Y, the
image under g of U ∩ κ−1Y is an upset of Q. Also, each point of X − κ−1Y is mapped
by g to a simple leaf of Q′. So it remains to show that if x ∈ U ∩ κ−1Y and l is a leaf
of Q′ above f (x), then l is in the image of U .

As the image of U ∩ κ−1Y is an upset of Q, there is some y ∈ U ∩ κ−1Y with f (y)

lying in a cluster leaf L of Q where the cluster L lies above f (x) and has l as the
unique leaf of Q′ above it. As f is continuous and L is an open subset of Q, there is
some neighborhood of y in κ−1Y mapped by f into L. Therefore, there is some open
subset V of X containing y so that V ∩ κ−1Y is mapped by f into L, and clearly V
can be chosen to be contained in U .

Claim For any open set T of X that contains a point y of κ−1Y there is some d ∈
D − {0, 1} with [d−, d+] contained in T and either d− < μd− or μd+ < d+, or both.

Proof of Claim The point y will be contained in some basic open interval of X that
is contained in T, and the discussion following Lemma 3.6 shows this interval will
be of one of the forms (i) [↓0,↓c), (ii) (⇓b ,⇓1], or (iii) (⇓b ,↓c) for some b , c ∈
C − {0, 1}. In the first case, Lemma 3.8(a) shows κc �= 0, so as κ is onto and D is a
dense chain, there is b ∈ C − {0, 1} with κb < κc and (⇓b ,↓c) ⊆ T. In the second
case, Lemma 3.8(b) shows κb �= 1, then giving some c ∈ C − {0, 1} with κb < κc and
(⇓b ,↓c) ⊆ T. In the final case, Lemma 3.8(c) shows κb < κc and (⇓b , ↓c) ⊆ T.

As D is dense, κ is onto, and each interval of C contains a cover, we can find
elements b < b 1 < p < q < c1 < c in C so that κb < κb 1 < κc1 < κc and p < q is



Order

a cover. As κ collapses covers, κp = κq, and we set d = κp = κq. As b ∈ d−, p �∈
d−, q ∈ d+, and c �∈ d+, we have ⇓b < d− < ↓p < ↓q ≤ d+ < ↓c. So [d−, d+] has
more than two elements and is contained in (⇓b , ↓c), hence contained in T. As μd−

is covered by μd+ , our claim follows. ��

To conclude the proof of the lemma, the set V contains a point of κ−1Y, so we may
apply the above claim to find some [d−, d+] contained in V with either d− < μd− or
μd+ < d+. As d−, d+ belong to κ−1Y and f maps V ∩ κ−1Y into the cluster L, both
f (d−) and f (d+) belong to L. By Lemma 3.7, at least one of μd− , μd+ does not belong
to κ−1Y, so will be mapped to the leaf l of Q′ above the cluster L. ��

Lemma 3.15 g is onto.

Proof As f is onto Q, the image of g contains the elements in the cluster root of Q′.
As the image of g is an upset of Q′, it must be all of Q′. ��

Theorem 3.16 Let X be a metrizable Stone space and B be a countable Boolean
algebra.

(1) If X is weakly scattered but not scattered, its modal logic is S4.1.
(2) If B is atomic, but not superatomic, its modal logic is S4.1.

Proof These statements are equivalent. To prove them we use the method described
in the previous section. By Proposition 2.5 it is sufficient to show that each finite
rooted quasi-tree having simple clusters as its leaves is an interior image of X. Let Q
be such a finite rooted quasi-tree having simple clusters as its leaves. From the above
results, there is an interior map g from X onto Q′. But there is an interior map h
from Q′ onto Q: one maps elements of Q′ belonging to Q to themselves, and maps a
leaf l of Q′ to the unique element in the simple leaf of Q beneath it. Then h ◦ g is an
interior map from X onto Q. ��

Assembling the above results we now axiomatize the modal logic of each metriz-
able Stone space.

Theorem 3.17 Let X be a metrizable Stone space. Then:

(1) If X is scattered, its modal logic is S4.Grz or S4.Grzn for some n ≥ 1.
(2) If X is weakly scattered but not scattered, then its modal logic is S4.1.
(3) If X is not weakly scattered, its modal logic is S4.

In algebraic form this becomes the following.

Theorem 3.18 Let B be a countable Boolean algebra. Then:

(1) If B is superatomic, its modal logic is S4.Grz or S4.Grzn for some n ≥ 1.
(2) If B is atomic but not superatomic, its modal logic is S4.1.
(3) If B is not atomic, its modal logic is S4.

This applies directly to zero-dimensional metrizable compactifications of ω [14].
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Corollary 3.19 If X is a zero-dimensional metrizable compactif ication of ω, then the
modal logic of X is either S4.Grz, S4.Grzn for some n ≥ 1, or S4.1. Further, S4.1 is the
modal logic of the Pelczynski compactif ication of ω.

Proof Let X be a zero-dimensional metrizable compactification of ω. Then ω is
dense in X. Therefore, X is a weakly scattered Stone space, and it follows from
Theorem 3.17 that its modal logic is either S4.Grz, S4.Grzn for some n ≥ 1, or S4.1. If
X is the Pelczynski compactification of ω, then the remainder of X is homeomorphic
to the Cantor space. Therefore, X is weakly scattered but not scattered, and so by
Theorem 3.17, the modal logic of X is S4.1. ��

4 Modal Logics of Extremally Disconnected Stone Spaces

We recall that a topological space X is extremally disconnected if the closure of each
open subset of X is open in X; that is, the closure of each open subset of X is clopen
in X. Equivalently, X is extremally disconnected if, and only if, regular open subsets
of X coincide with clopen subsets of X. It is well known [18] that if X is the Stone
space of a Boolean algebra B, then X is extremally disconnected if, and only if, B is
complete. Our purpose in this section is to axiomatize the modal logics of extremally
disconnected Stone spaces, or equivalently, of complete Boolean algebras.

An important example of an extremally disconnected Stone space is the Stone-
Čech compactification β(ω) of ω. This is the Stone space of the power set P(ω)

of ω. In [3] we showed that the modal logic of β(ω) is S4.1.2. However, our proof
used the set-theoretic assumption that each infinite maximal almost disjoint family
of subsets of ω has cardinality 2ω, which is not provable in ZFC. We use this result of
[3] to prove the results in this section, so the results in this section depend, indirectly,
on this additional set-theoretic assumption. We remark that if this assumption can
be removed from the result for β(ω), then it will be removed from the results here
as well.

Let X be an extremally disconnected Stone space. If X is finite, then X is discrete,
and so the modal logic of X is S4.Grz1. Therefore, without loss of generality we may
assume that X is infinite.

Proposition 4.1 Let X be an inf inite extremally disconnected Stone space. If X is
weakly scattered, then the modal logic of X is S4.1.2.

Proof Since X is extremally disconnected, X |= ♦�p → �♦p, and as X is weakly
scattered, X |= �♦p → ♦�p. Therefore, X |= �♦p ↔ ♦�p, and so X |= S4.1.2
(see Proposition 2.2). Because X is infinite, the Boolean algebra B of clopen subsets
of X is an infinite complete and atomic Boolean algebra. Let A be a countable set of
atoms of B and let b = ∨

A. Then the interval [0, b ] is isomorphic to the power set
P(ω) of ω. By Stone duality, the Stone space of P(ω) is a clopen subset of X. But the
Stone space of P(ω) is homeomorphic to β(ω). Therefore, β(ω) is homeomorphic to
a clopen subset of X. By [3, Theorem 5.2], the modal logic of β(ω) is S4.1.2. Thus,
by Proposition 3.1, the modal logic of X is contained in S4.1.2. This together with
X |= S4.1.2 gives us the modal logic of X is S4.1.2. ��
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The proof of the next lemma was suggested to us by D. Monk.

Lemma 4.2 Let B be an inf inite complete Boolean algebra. Then P(ω) is a homomor-
phic image of B.

Proof Since B is an infinite Boolean algebra, B has a countable pairwise orthogonal
set P = {an : n ∈ ω}. Let S be the subalgebra of B generated by P. Clearly S
is isomorphic to the Boolean algebra FC(ω) of finite and cofinite subsets of ω.
Therefore, there is an embedding i : S → P(ω). As S is a subalgebra of B and P(ω)

is complete, hence injective, we can extend i to j : B → P(ω). We show that j is onto.
Let A ⊆ ω and let A∗ be the corresponding set of elements of P. Then A∗ = {an : n ∈
A}. Let b = ∨

A∗. We show that j(b) = A. If n ∈ A, then an ≤ b , so j(an) ≤ j(b),
and so n ∈ j(b). If n /∈ A, then an /∈ A∗, and so an ∧ a = 0 for each a ∈ A∗. Since B is
complete, the infinite distributive law holds in B, by which an ∧ ∨

A∗ = 0. Therefore,
an ∧ b = 0, so j(an) ∧ j(b) = 0, and so n /∈ j(b). Thus, j(b) = A, and so j is onto.
Consequently, P(ω) is a homomorphic image of B. ��

Proposition 4.3 Let X be an inf inite extremally disconnected Stone space. If X is
dense-in-itself, then the modal logic of X is S4.2.

Proof Since X is extremally disconnected, X |= ♦�p → �♦p. Therefore, X |=
S4.2. Let S4.2 �� ϕ. By Proposition 2.5, there is a finite quasi-tree Q and a cluster
C = {c1, . . . , ck} such that Q ⊕ C �|= ϕ. We define an interior map f from X onto
Q ⊕ C.

Let B be the Boolean algebra of clopen subsets of X. Then B is an infinite
complete Boolean algebra. By Lemma 4.2, P(ω) is a homomorphic image of B. By
Stone duality, β(ω) is homeomorphic to a closed subset Y of X. Then Y is the disjoint
union of Y1 and Y2, where Y1 is homeomorphic to ω, and Y2 is homeomorphic to
the remainder ω∗ = β(ω) − ω. Because ω∗ is closed, it is compact. Therefore, Y2 is
closed in X. Since X is dense-in-itself, so is the open set X − Y2. Therefore, X − Y2

is a dense-in-itself locally compact Hausdorff space. Thus, by [11, p. 332], we can split
X − Y2 into k nonempty disjoint pieces C1, . . . Ck so that each open set that intersects
X − Y2 nontrivially intersects each of these sets nontrivially.

Since ω∗ is homeomorphic to Y2, by [3, Section 4] there is an onto interior map g :
Y2 → Q. We define f : X → Q ⊕ C so that f agrees with g on Y2 and f takes value
ci on Ci for i ≤ k. Clearly f is a well-defined onto map. To see that f is continuous,
note that g−1(C) = X − Y2, which is open in X. Moreover, for each q ∈ Q, we have
f −1(↑q) = g−1(↑q) ∪ (X − Y2), which is again open in X. Therefore, f is continuous.
To see that f is open, let U be a nonempty open subset of X. If U ⊆ X − Y2, then as
each Ci is dense in X − Y2, U has a nonempty intersection with each Ci, and so f (U)

contains all of the cluster C, which is an upset of Q ⊕ C. Otherwise, U ∩ Y2 �= ∅, and
as ω is dense in β(ω), the construction of Y, Y1, and Y2 shows U ∩ Y1 �= ∅. Therefore,
f (U) = g(U ∩ Y2) ∪ C. Thus, f (U) is an upset of Q ⊕ C.

Consequently, f : X → Q ⊕ C is an onto interior map, and so X �|= ϕ. Thus, S4.2
is the modal logic of X. ��

Corollary 4.4 The modal logic of the Gleason cover of the Cantor space is S4.2.
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Proof Since the Cantor space C is dense-in-itself, so is the Gleason cover Ĉ of C.
Therefore, by Proposition 4.3, the modal logic of Ĉ is S4.2. ��

Putting the obtained results together, we arrive at the characterization of the
modal logic of each extremally disconnected Stone space.

Theorem 4.5 Let X be an extremally disconnected Stone space. Then:

(1) If X is f inite, its modal logic is S4.Grz1.
(2) If X is inf inite and weakly scattered, its modal logic is S4.1.2.
(3) If X is inf inite and not weakly scattered, its modal logic is S4.2.

Proof We already saw that (1) and (2) hold. To see that (3) holds, let X be an
extremally disconnected Stone space and let Y be the closure of the set of isolated
points of X. Then Y is a proper clopen subset of X. If Y = ∅, then X is dense-in-itself,
and so by Proposition 4.3, the modal logic of X is S4.2. Suppose that Y �= ∅ and let
Z = X − Y. Then Y is a weakly scattered extremally disconnected Stone space, Z is
a dense-in-itself extremally disconnected Stone space, and X is the disjoint union of
Y and Z . By Proposition 4.1, the modal logic of Y is S4.1.2; by Proposition 4.3, the
modal logic of Z is S4.2; so by Proposition 3.1 the modal logic of X is the intersection
of the modal logic of Y and the modal logic of Z . Now as S4.2 ⊆ S4.1.2, it follows
that the modal logic of X is S4.2. ��

Remark 4.6 Representing X as the disjoint union of Y and Z algebraically corre-
sponds to representing a complete Boolean algebra B as the product A × C, where
A is complete and atomic and C is complete and atomless.

Theorem 4.7 Let B be a complete Boolean algebra. Then:

(1) If B is f inite, its modal logic is S4.Grz1.
(2) If B is inf inite and atomic, its modal logic is S4.1.2.
(3) If B is inf inite and not atomic, its modal logic is S4.2.

We conclude this section by mentioning that it is still an open problem whether the
characterization of Theorem 4.5 of the modal logic of each extremally disconnected
Stone space can be done within ZFC.

5 Intermediate Case

We recall that logics containing the intuitionistic propositional logic Int and con-
tained in the classical propositional logic Cl are called intermediate logics.

As we saw in Section 2, the modal logic of a topological space X is determined
by the modal algebra M(X) associated with X. If instead we work with the Heyting
algebra H(X) of open subsets of X, then we obtain the intermediate logic of X.
Our purpose in this section is to describe the intermediate logics of metrizable Stone
spaces and of extremally disconnected Stone spaces.

There are well-known methods (see, e.g., [7, Sections 3.9 and 9.6]) to translate
an intermediate logic L into a normal extension L∗ of S4, and to translate a normal
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extension S of S4 into an intermediate logic S∗. We have L∗∗ = L, but there can
be S1 �= S2 with S∗

1 = S∗
2. We say S is a modal companion of L if S∗ = L. For

any topological space X, the modal logic of X is such a modal companion of the
intermediate logic of X. These results will allow us to translate our results on modal
logics of Stone spaces to the intuitionistic setting.

Definition 5.1 Let KC = Int + (¬p ∨ ¬¬p) be the logic of the weak excluded middle
and Intn denote Int + ibdn, where:

ibd1 = p1 ∨ ¬p1.

ibdn+1 = pn+1 ∨ (pn+1 → bdn).

Here ibdn is an intuitionistic version of the formula bdn used in Section 2 to define
S4.Grzn.

The following diagram shows containments between the intermediate logics des-
cribed above.

It is well known (see, e.g., [7, Section 9.6]) that S4, S4.1, and S4.Grz are modal
companions of Int; that S4.2 and S4.1.2 are modal companions of KC; and that
S4.Grzn is a modal companion of Intn for each n ≥ 1. Putting this together with our
earlier results, we obtain:

Theorem 5.2

(1) If X is a metrizable Stone space, then the intermediate logic of X is either Int or
Intn for some n ≥ 1. In particular, Int is the intermediate logic of the Pelczynski
compactif ication of ω.

(2) If X is an extremally disconnected Stone space, then the intermediate logic of X
is KC or Cl. In particular, KC is the intermediate logic of the Gleason cover of
the Cantor space.

Proof (1) Let X be a metrizable Stone space. First suppose that X is not scattered.
By Theorem 3.17, the modal logic of X is either S4 or S4.1. Since both of these
are modal companions of Int, it follows that the intermediate logic of X is Int. In
particular, since the Pelczynski compactification of ω is a metrizable non-scattered
space, it follows that its intermediate logic is Int. Next suppose that X is scattered.
By Proposition 3.5, the modal logic of X is either S4.Grz or S4.Grzn for some n ≥ 1,
depending whether α ≥ ωω or ωn < α < ωn+1. Since S4.Grz is a modal companion of
Int and S4.Grzn is a modal companion of Intn, the intermediate logic of X is either
Int or Intn for some n ≥ 1.
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(2) Let X be an extremally disconnected Stone space. If X is finite, then by
Theorem 4.5 the modal logic of X is S4.Grz1, which is a modal companion of
Int1 = Cl. Therefore, the intermediate logic of X is Cl. On the other hand, if X is
infinite, then Theorem 4.5 implies that the modal logic of X is S4.2 or S4.1.2. Since
both of these are modal companions of KC, it follows that the intermediate logic
of X is KC. In particular, KC is the intermediate logic of the Gleason cover of the
Cantor space. ��

Putting Theorem 5.2 with [3] yields:

Int = The intermediate logic of the Pelczynski compactification of ω

= The intermediate logic of any ordinal α ≥ ωω

= The intermediate logic of the remainder ω∗ of β(ω).

KC = The intermediate logic of the Gleason cover of the Cantor space
= The intermediate logic of β(ω).

Again, our proof of Theorem 5.2(2) and the above result for KC rely on Theo-
rem 4.5, so we use an assumption of set theory past ZFC. We do not know if these
results can be proved in ZFC.

6 The General Problem

In this section we make some remarks on the general problem of describing the mo-
dal logics of Stone spaces. First, we collect, and slightly extend, some results estab-
lished above.

Theorem 6.1 Each modal logic that is an intersection of some collection of the logics
S4, S4.1, S4.2, S4.1.2, S4.Grz, and S4.Grzn where n ≥ 1, is the modal logic of some
Stone space.

Proof By the original result of McKinsey and Tarski [13], S4 is the modal logic of the
Cantor space. Theorem 3.16(2) shows S4.1 is the modal logic of the Stone space of
the Boolean algebra generated by the chain Q × 2, with lexicographic order, as each
interval in this chain has a cover, and the quotient obtained by collapsing covers is
Q. Theorem 4.7 shows S4.2 is the modal logic of the Stone space of any complete
atomless Boolean algebra, and S4.1.2 is the modal logic of the Stone space of any
complete atomic Boolean algebra. Proposition 3.5 shows S4.Grz is the modal logic
of ωω + 1 with the interval topology, and S4.Grzn is the modal logic of ωn + 1 with
the interval topology. Noting that the disjoint union of finitely many Stone spaces is a
Stone space, it follows from Proposition 3.1 that any finite intersection of these logics
can be obtained as the modal logic of some Stone space. As S4.Grz is the intersection
of the S4.Grzn, any intersection of these logics can be obtained as a finite intersection.

��

Question 6.2 Is there a Stone space whose modal logic is not an intersection of some
collection of the logics S4, S4.1, S4.2, S4.1.2, S4.Grz, and S4.Grzn where n ≥ 1.
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Understanding better when a finite quasi-tree is an interior image of a Stone space
X would perhaps shed light on this question. For all the cases considered above,
when X had an interior image of a certain kind, it would have all members of one of
the classes in Proposition 2.2 as interior images. For instance, in all cases above, if X
had a tree of depth 2 with at least two branches as an interior image, then every tree
of depth 2 was an interior image of X. This allowed us to show the modal logic of X
was contained in S4.Grz2.

We collect below a number of fairly simple observations about when some par-
ticularly easy quasi-trees are interior images of Stone spaces. Still, we do not know
if there is a Stone space X having a tree of depth 2 with two branches as an interior
image, but not a tree of depth 2 with three branches as an interior image. Such an
example, if one exists, would perhaps be a place to look to settle Question 6.2. Our
results here show there is no such X that is metrizable or extremally disconnected.

To begin our observations, we require the following definition.

Definition 6.3 An ideal of a Boolean algebra B is a dense ideal if it is non-principal
and has join 1.

Recall that ideals of a Boolean algebra correspond to open subsets of its Stone
space. Since a subset D of a Stone space X is dense if, and only if, X is the only clopen
set containing D, it follows that dense ideals correspond to dense open subsets. We
recall also that each ideal I of a Boolean algebra B gives a congruence, and the
associated quotient is written B/I.

Lemma 6.4 Suppose B is a Boolean algebra with Stone space X, I is an ideal of B,
and there is an interior map from the Stone space of B/I onto an S4-frame F.

(1) If I is dense, there is an interior map from X onto F� = F ⊕ {t}.
(2) If F has a simple maximum cluster, there is an interior map from X onto F.

Proof (1) Suppose the Stone space of B is X and U is the dense open subset of X
corresponding to the ideal I. Then the Stone space of B/I is the closed subspace
Y = X − U of X. Let f : Y → F be the given interior map. Define g : X → F� by
letting g agree with f on Y and having g send everything in U to the top element t
of F�. Surely g is onto. To see it is continuous, it is clearly continuous at each point
of the open set U . For any point x ∈ Y we have g(x) = f (x). As f is continuous at
x, there is an open neighborhood of x in Y that maps into the upset of F generated
by f (x). This neighborhood is of the form V ∩ Y for some open neighborhood V of
x in X. Then g maps V into the upset of F� generated by f (x). So g is continuous.
To see g is open, take any nonempty open set V of X. As U is dense, we have V
intersects U nontrivially. Then the image g(V) is equal to f (V ∩ Y) ∪ {t}. As f is
interior, f (V ∩ Y) is an upset of F, so g(V) is an upset of F�.

The proof of (2) is similar, mapping all elements of U to the existing top element
of F. ��

In the terminology of Definition 3.4, for any superatomic Boolean algebra B, there
is an ordinal α with Iα = Iα+1. We call the degree of a superatomic Boolean algebra
the least α for which this happens. So B has degree 0 if it is trivial, degree 1 if it
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is finite but nontrivial, degree 2 if it is infinite and B modulo its elements of finite
height is finite, and so forth.

Proposition 6.5 If B is a nontrivial superatomic Boolean algebra, then there is an
interior map from the Stone space of B onto the n-element chain if, and only if, the
degree of B is at least n.

Proof We show by induction that if B is superatomic with degree at least n, then
there is an interior map from the Stone space of B onto the n-element chain. For the
base case, there is an interior map from the Stone space of any nontrivial Boolean
algebra onto the 1-element chain. Suppose B has degree at least n + 1. As B is
superatomic, hence atomic, the ideal I of elements of finite height in B is a dense
ideal. As B/I has degree at least n, there is an interior map from the Stone space of
B/I onto the n-element chain. Then by Lemma 6.4 there is an interior map from the
Stone space of B onto the (n + 1)-element chain.

For the converse, we show by induction that if B has degree at most n, there can
be no interior map from the Stone space of B onto a finite chain with more than
n elements. The base case follows as the Stone space of a finite Boolean algebra is
discrete. Suppose B has degree at most n, that X is the Stone space of B, and f is
an interior map from X onto a chain C with more than n elements. Let t be the top
of C, let s be the element beneath it, and let D = C − {t}. So C = D ∪ {t} and s is the
top element of D. Let U be the set of isolated points of X, let Y = X − U , and note
that f maps all elements in U to t. Define g : Y → D by setting g(y) = s if f (y) = t,
and letting g agree with f otherwise. Then Y is the Stone space of a Boolean algebra
of degree at most n − 1 and g is an interior map from Y onto a chain with more than
n − 1 elements, contrary to our inductive hypothesis. ��

Before settling the matter of having an n-element chain as an interior image of the
Stone space of a Boolean algebra, we establish a lemma whose proof was suggested to
us by I. Juhasz. The key ingredient in this proof is the notion of an irreducible map f :
X → Y between topological spaces. This is a continuous map that is onto, but has no
restriction to a proper closed subspace that is onto. A simple Zorn’s lemma argument
shows that any continuous onto map f : X → Y between compact Hausdorff spaces
has a restriction to a closed subset of X that is irreducible. Further, if f : X → Y is
irreducible and X, Y are compact Hausdorff spaces, then the image of any nonempty
open set of X contains a nonempty open set of Y. For further details see [8, p. 55].

Lemma 6.6 If B is an atomless Boolean algebra, then B has a dense ideal I with B/I
atomless.

Proof We prove a stronger topological statement, that if X is a dense-in-itself
compact Hausdorff space, then X has a dense open subset Y with X − Y dense-
in-itself. By [16, Theorem 8.5.4], for such X there is a continuous map f : X → I
onto the unit interval I = [0, 1]. Let U be an open set so that the restriction of f
to X − U is an irreducible map onto I, and let g : (X − U) → I be this irreducible
restriction. For the Cantor set C let V = g−1(I − C). Then V is open in X − U , and
as g is irreducible and I − C is dense in I, we have V is dense in X − U since a
nonempty open subset of X − U disjoint from V would have its image contain a
nonempty open subset of I that is contained in C. So U ∪ V is a dense open subset
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of X. As g : (X − (U ∪ V)) → C is onto, there is an open subset W of X − (U ∪ V)

so that the restriction h of g to X − (U ∪ V ∪ W) is an irreducible map onto C. Set
Y = U ∪ V ∪ W and note that Y is dense open in X. Further, as h : (X − Y) → C is
irreducible and C is dense-in-itself, it follows that X − Y is dense-in-itself. Indeed, if
{x} is an isolated point of X − Y, then the irreducibility of h would imply that {h(x)}
contains a nonempty open set of C, an impossibility. ��

Proposition 6.7 If B is a nontrivial Boolean algebra that is not superatomic, then there
is an interior map from the Stone space of B onto the n-element chain for each n ≥ 1.

Proof Suppose B is not superatomic. By [12, p. 271], there is a quotient Q of B that
is not atomic. Take an element q ∈ Q with no atoms beneath it. As the interval [0, q]
is isomorphic to a quotient of Q, there is a quotient Q′ of B that is atomless. By the
second part of Lemma 6.4 it is enough to show that for each n ≥ 1, the n-element
chain is an interior image of the Stone space of Q′. We prove by induction on n that
the n-element chain is an interior image of the Stone space of any atomless Boolean
algebra. For n = 1 this is trivial. Assume the statement is true for n, and let A be an
atomless Boolean algebra. By Lemma 6.5, A has a dense ideal I with A/I atomless.
By the inductive hypothesis, there is an interior map from the Stone space of A/I
onto the n-element chain, so by the first part of Lemma 6.4 there is an interior map
from the Stone space of A onto the n + 1-element chain. ��

Combining Propositions 6.5 and 6.7 then gives the following.

Corollary 6.8 Let B be a nontrivial Boolean algebra with Stone space X and C be the
n-element chain.

(1) If B is not superatomic, then there is an interior map from X onto C.
(2) If B is superatomic, then there is an interior map from X onto C if, and only if,

the degree of B is at least n.

In particular, a Boolean algebra has an interior map from its Stone space onto the
2-element chain if, and only if, it is inf inite.

Having settled matters for chains, we consider a few other configurations.

Definition 6.9 Let V be the three-element tree having one root and two maximal
nodes.

Proposition 6.10 There is an interior map from the Stone space of B onto V if, and
only if, B is not complete.

Proof If B is not complete, there is a regular open subset R of the Stone space X
that is not clopen. Then R′ = int(X − R) is also regular open, R ∪ R′ is dense open,
and R ∪ R′ �= X. Define f : X → V by sending everything in R to one of the two
maximal nodes, everything in R′ to the other maximal node, and the rest to the root.
Clearly f is continuous and onto. To see f is open, we need only show that if U is an
open set containing a point of X not belonging to R ∪ R′, then U intersects both R
and R′ nontrivially. But this follows as regularity shows each of R, R′ is the interior
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of the complement of the other. Conversely, suppose B is complete and f : X → V
is an interior map. Let p, q be the two maximal nodes of V. Then {p} and {q} are
regular open in V, so f −1(p) and f −1(q) are regular open in X, and as B is complete,
this means they are clopen in X. But {p, q} is dense in V, so f −1(p) ∪ f −1(q) is dense
in X, and as this is clopen, it must be all of X. Therefore, there can be nothing sent
by f to the root of V, so f is not onto. ��

We consider the four-element diamond ♦ = V ⊕ {t}.

Proposition 6.11 If B is a Boolean algebra with Stone space X, then there is an interior
map from X onto the three-element chain 3 if, and only if, there is an interior map from
X onto the four-element diamond ♦.

Proof If there is an interior map from X onto ♦, then, as there is an interior map
from ♦ onto 3, there is an interior map from X onto 3. Conversely, suppose there is
an onto interior map f : X → 3. For u the top element of 3 we have {u} is a dense
open subset of 3, so U = f −1(u) is a dense open subset of X. Let I be the dense
ideal of B that corresponds to U . Then the Stone space of B/I is homeomorphic to
X − U . As f restricts to an interior map from X − U onto the two-element chain,
by Corollary 6.8, B/I is infinite. As P(ω) has an incomplete quotient, namely the
quotient by the ideal of finite subsets of ω, and Lemma 4.2 shows every infinite
complete Boolean algebra has a quotient isomorphic to P(ω), it follows that every
infinite Boolean algebra has an incomplete quotient. So there is a quotient of B/I
that is incomplete, hence an ideal J ⊇ I corresponding to this quotient, with B/J
incomplete. By Proposition 6.10, there is an interior map from the Stone space of
B/J onto V, and as J is dense, Lemma 6.4 shows there is an interior map from X
onto ♦. ��

Remark 6.12 Increasing the branching size from two to three seems to impart
substantial difficulties. Consider the simplest case of the four element tree W with
one root and three maximal nodes. We have no useful characterization, past a fairly
simple direct translation in terms of regular open sets or normal ideals, of when there
will be an interior map from the Stone space of a Boolean algebra onto W. This
seems a basic problem in determining the possible modal logic of the Stone space of
an arbitrary Boolean algebra.

Acknowledgement We thank the referee for carefully reading the manuscript and making helpful
suggestions regarding presentation.

References

1. Aiello, M., van Benthem, J., Bezhanishvili, G.: Reasoning about space: the modal way. J. Log.
Comput. 13(6), 889–920 (2003)

2. Bezhanishvili, G., Gehrke, M.: Completeness of S4 with respect to the real line: revisited. Ann.
Pure Appl. Logic 131(1–3), 287–301 (2005)

3. Bezhanishvili, G., Harding, J.: The modal logic of β(N). Arch. Math. Log. 48(3–4), 231–242 (2009)
4. Bezhanishvili, G., Mines, R., Morandi, P.J.: Scattered, Hausdorff-reducible, and hereditarily

irresolvable spaces. Topol. Appl. 132(3), 291–306 (2003)



Order

5. Bezhanishvili, G., Morandi, P.J.: Scattered and hereditarily irresolvable spaces in modal logic.
Arch. Math. Log. 49(3), 343–365 (2010)

6. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge
(2001)

7. Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford Logic Guides, vol. 35. The Clarendon
Press Oxford University Press, New York (1997)

8. Comfort, W.W., Negrepontis, S.: The Theory of Ultrafilters. Die Grundlehren der Mathematis-
chen Wissenschaften, Band 211. Springer, New York (1974)

9. de Groot, J.: Topological classification of all closed countable and continuous classification of all
countable pointsets. Indag. Math. 7, 42–53 (1945)

10. Gabelaia, D.: Modal definability in topology. Master’s thesis, ILLC, University of Amsterdam
(2001)

11. Hewitt, E.: A problem of set-theoretic topology. Duke Math. J. 10, 309–333 (1943)
12. Koppelberg, S.: Handbook of Boolean Algebras, vol. 1. North-Holland, Amsterdam (1989)
13. McKinsey, J.C.C., Tarski, A.: The algebra of topology. Ann. Math. 45, 141–191 (1944)
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